• Nenhum resultado encontrado

About Solution of Contact Problem for Semi-Plane with Elastic Stringer

N/A
N/A
Protected

Academic year: 2017

Share "About Solution of Contact Problem for Semi-Plane with Elastic Stringer"

Copied!
10
0
0

Texto

(1)

Ա Ա Ա ՈՒԹ ՈՒ Ա Ա Ա Ա Ա Ղ Ա

61, №1, 2008

539.3

. ., . .

Ключевые слова: , , , ,

.

Keywords: contact, stringer, integral equation, functional equation, infinite system.

. . Ա , . . Ա

Ֆ - ,

,

[1]- ,

: Ա

: Ա

,

Ֆ :

K.L.Aghayan, E.Kh.Grigoryan

About Solution of Contact Problem for Semi-Plane with Elastic Stringer

The new approach to the solution of singular integro-differential equation in finite interval is showed at example of contact problem for elastic semi-plane [1] by Fourier transformation and Wiener-Hopf method. The solution is obtained in the form of power series with segregated singularities. The definition of coefficients is reduced to the system of regular infinite system of linear algebraic equations with simple structure in regard to residue of Fourier’s transformant of unknown contact strains.

, [1],

- .

.

.

( , ) ,

. ,

. . [1], [2]

( )

.

, - , [3],

.

-,

. [4]

( ),

( , , )

.

(2)

. -,

.

1968 . . . [1]

, ( )

.

-, ,

.

,

. ,

,

. , [1]

,

.

, ,

[6,7,8],

[1,3]

. [9,10]

,

. -

– .

[1]. , [9,10],

,

,

. ,

.

1.

[1].

[

a

,

a

]

( )

h

,

P

. [1,2]

,

,

[1]

( )

( )

<

<

τ

λ

=

τ

π

a

a

a

x

a

x

a

ds

s

P

ds

x

s

s

,

,

1

*

(1.1)

:

( )

=

τ

a

a

P

dx

x

. (1.2)

( )

x

τ

– ,

(3)

(

)

1 2 2 2 *

1

2

hE

E

ν

=

λ

. (1.3)

1

E

– ,

h

– ,

E

2

,

ν

2– .

(1.1)

τ

( )

x

[1]:

( )

( )

( )

( )

( )

( )

( )

1 2

1 1 2 2

,

,

,

x

x

x

x

x

x

x

τ

= τ

+ τ

τ − = −τ

τ

= τ −

(1.4)

(1.4) (1.1) (1.2) ,

(

ϑ

( )

x

– ):

( )

(

) ( )

⎢⎣

⎥⎦

τ

=

λ

ϑ

τ

<

<

+

π

a a

a

x

ds

s

s

x

ds

s

x

s

x

s

0 0 2 *

2

,

0

,

1

1

1

(1.5)

( )

(

) ( )

τ

ϑ

λ

=

τ

⎥⎦

⎢⎣

+

+

π

a a

ds

s

x

s

P

ds

s

x

s

x

s

0 0 1 * 1

,

2

1

1

1

(1.6)

( )

τ

=

a

P

ds

s

0

2

2

. (1.7)

,

(1.5) (1.6) (1.7).

(1.5)-(1.7)

v

,

x

ae

ae

s

=

u

=

0

<

v

<

.

( )

( ) (

v

v

) ( )

( )

v

(

v

)

,

1

1

1

1

1

2 2 2 -v -v

<

<

+

λϑ

=

=

⎥⎦

⎢⎣

+

π

+ ∞ ∞ − − ∞ ∞ − −

g

du

e

u

q

u

du

u

q

e

e

u u u (1.8)

( )

( )

(

v

) ( )

( ) (

v

v

)

,

2

v

1

1

1

1

1

1 1 1 -v -v

<

<

+

ϑ

λϑ

=

=

⎥⎦

⎢⎣

+

+

π

+ ∞ ∞ − − ∞ ∞ − −

g

du

e

u

q

u

a

P

du

u

q

e

e

u u u (1.9)

( )

∞ ∞ −

=

λ

=

λ

a

a

P

du

e

u

q

2 u

2

,

*

,

(

1.10)

( )

( )

( )

( ) ( )

( )

( ) ( )

( )

( )2

( )

,

,

, 0

v

v

v ,

v

1

u

j j j j

j

j j j

ae

q

u

q

u

u q

u

du

x

g

g

g

dx

+

τ

=

= ϑ −

μ

= ϑ

= ⎢

− ν

(4)

( )

,

0

2

x

u

– ,

u

2( )2

( )

x

,

0

u

2( )1

( )

x

,

0

, .

(1.8) (1.9) ,

-:

( )

(

)

( )

+

( )

α

α

λ

=

α

α

λ

+

α

πα

− − − +

2 2

2 2

2

th

q

q

i

q

i

i

g

(

1

<

Im

α

<

0

)

, (1.12)

( )

(

)

+

( )

α

α

λ

=

α

α

λ

+

α

πα

− − +

1 1

1

2

2

cth

i

g

a

P

i

q

q

, (1.13)

( )

( )

( )

( )

(

1

,

2

)

,

=

α

=

α

α

=

α

∞ −

α + +

∞ ∞ −

α − −

j

du

e

g

g

du

e

q

q

j j i u j j i u

(1.14)

,

τ

+

σ

=

α

i

( )

α

j

q

Im

α

<

0

,

g

+j

( )

α

Im

α

>

1

,

( ) ( )

1

1

u

O

q

=

,

g

+j

( )

u

=

O

( )

e

u

u

. ,

τ

j

( )

ax

( )

ax

g

j

(

1

x

)

−12

x

1

[11,1],

( )

α

~

α

−12

,

+

( )

α

~

α

−12

,

(

=

1

,

2

)

j

g

q

j j

(

1.15)

α

.

, (1.10) (1.14)

( )

i

P

a

q

2

=

2

. (

1.16)

2. - (1.12) (1.13)

- [12].

( ) (

α

=

1

,

2

)

j

q

j

Im

α

0

[9,10].

(1.12). ,

q

2

( )

α

0

Im

α

<

,

g

2+

( )

α

Im

α

>

1

.

q

2

( )

α

,

Im

α

<

0

.

, (1.16),

q

2

( )

i

,

g

2+

( )

α

Im

α

>

1

(

2

)

0

th

πα

=

α

=

0

, (1.12) ,

α

=

0

( )

α

2

q

. ,

α

=

i

(

i

)

q

2

α

. ,

α

=

i

th

(

πα

2

)

,

( )

i

g

2+ , (1.12) ,

q

2

( )

i

. ,

( )

i

q

2

g

2+

( )

2

i

,

th

(

πα

2

)

=

0

α

=

2

i

,

α

=

2

i

( )

α

2

q

.

α

=

3

i

.

( )

i

g

2+

3

,

th

(

πα

2

)

,

q

2

(

α

i

)

(5)

,

q

2

( )

α

(

0

,

1

,

2

,...

)

2

=

=

α

ni

n

, , .

(1.12).

(

2

)

th

πα

, :

(

πα

)

=

( )

α

=

( )

α

+

( )

α

2 2

2

2

K

K

K

th

, (2.1)

( )

( )

α

Γ

α

Γ

=

α

+

α

+

α

Γ

α

=

α

+

2

1

2

2

2

1

,

2

1

2

2

2

1

2 2

i

i

K

i

i

K

, (2.2)

( )

α

Γ

– - .

,

K

2+

( )

α

Im

α

>

1

,

( )

α

2

K

Im

α

<

0

. , (2.2) ,

( )

( )

( )

( )

12 2

2 1

2

α

=

α

,

α

=

α

− −

+

O

K

O

K

α

.

(2.1) (1.12),

( ) ( )

(

( )

)

( )

( )

( )

( ) (

,

1

Im

0

)

2 2

2 2

2 2 2

2

α

<

α

<

α

=

α

α

λ

α

α

α

λ

+

α

α

− − ++ ++

K

g

i

K

i

q

K

i

q

q

K

, (2.3)

, ,

( )

( ) ( )

( )

( )

( )

( )

( )

( )

( )

(

)

2 2 2 2 2 2 2

2 2 2

,

1

Im

0 ,

L

K

q

F

F

ig

K

L

− − − − − + +

+ + +

α =

α

α + λφ α − λ

α = λ

α − λφ α −

α

α =

α

− <

α <

(2.4)

( )

2

( )

( )

( )

2

( )

( )

2

( )

( )

2 2

2 2 2

,

,

0

0

q

i

q

i

q

i

F

F

K

K

K

− +

+ + +

α =

α =

α

α

α

α

(2.5)

( )

2

(

( )

)

( )

( )

2 2 2

2

.

q

i

K

+ −

+

α −

φ α =

= φ α + φ α

α

α

(2.6)

( )

α

+

2

F

φ

2+

( )

α

Im

( )

α

>

1

,

F

2

( )

α

φ

2

( )

α

( )

0

Im

α

<

. :

( )

( )

,

Im

0

0

2

2

α

=

φ

α

<

φ

∞ −

α −

du

e

u

i u , (2.7)

( )

( )

,

Im

1

0 2

1

α

=

φ

α

>

φ

α +

du

e

u

i u , (2.8)

( )

( )

,

1

0

2

1

2

2

=

π

φ

α

α

<

τ

<

φ

∞ + τ

∞ − τ

α −

i

i

u i

d

e

u

. (2.9)

,

K

2+

( )

α

=

O

( )

α

−12

,

q

2

( )

α

=

O

( )

α

−12

α

(6)

σ

. , (2.9) ,

φ

2

( )

u

=

O

( )

ln

u

u

0

.

(2.7) (2.8) ,

φ

2±

( )

α

=

O

(

α

−1

ln

α

)

α

.

, (2.4),

α

, ,

L

2

( )

α

=

O

( )

1

α

,

Im

( )

α

<

0

L

2+

( )

α

=

O

( )

1

α

,

Im

( )

α

>

1

. ,

, (2.4)

( ) ( )

2 2

( )

2

( )

2

,

Im

0

2

α

α

+

λ

φ

α

λ

α

=

α

<

− − − −

a

F

q

K

, (2.10)

( )

2

( )

2

( )

2

( )

2

,

Im

1

2

α

λ

φ

α

α

α

=

α

>

λ

+ + + +

a

K

g

i

F

, (2.11)

2

a

– ,

(1.16).

, (2.6)

( )

α

2

q

,

α

=

0

,

α

=

(

2

n

1

) (

i

n

=

1

,

2

,...

)

( )

α

φ

2 .

φ

2+

( )

α

Im

α

>

1

,

( )

α

φ

2 [13]:

( )

( )

( )

(

)

(

(

( )

)

) ( )

= + − + − −

+

α

+

α

=

α

φ

0 2 2 1 2 2 2

2

1

2

1

2

0

n n

ni

K

n

i

n

iA

K

i

q

, (2.12) ( )

( )

(

α

(

+

)

) (

α

)

=

(

α

) ( )

α

=

− → α − + → α − 2 2 2 1 2 2

1

lim

i

2

n

1

q

i

lim

2

ni

q

A

ni i n n . (2.13)

(2.12) (2.10), (2.5)

( )

( )

(

)

(

(

( )

)

) ( )

( )

α

+

+

α

+

α

λ

=

α

= + − − −

2 2 0 2 2 1 2 2

2

1

2

1

2

K

a

ni

K

n

i

n

A

K

i

q

n n . (2.14)

, ,

A

( )21m

q

2

( )

α

(

0

,

1

,

2

,...

)

2

=

=

α

mi

m

, (2.13) (2.14)

( )

(

)

,...

2

,

1

,

0

2 1

=

n

A

n :

( ) ( ) ( )

(

)(

)

( )

∞ =

β

=

+

+

Χ

β

λ

+

Χ

0 2 2 2 2

,

2

1

2

1

4

n m n m m

m

n

n

(2.15)

( )

(

(

)

)

( )

,...

2

,

1

,

0

,

1

2

2 2 2 2

1

=

+

Χ

=

+

a

K

i

m

m

A

m m (2.16)

( )

(

)

( )

,

1

,

2

,...

4

1

1

!

2

!

!

1

2

1

2

1

2 1 2 2

2

β

=

⎛ +

=

⎥⎦

⎢⎣

+

+

=

β

m

m

m

m

m

m m

m ( ) ( )

( )

,

1

,

1

2 2

0

=

β

m

=

O

β

m

. ( 2.17)

, (1.12)

(2.15) .

(7)

(

)

⎪⎩

[

(

) ( )

]

=

ψ

+

ψ

=

π

=

+

+

=

3

1

2

1

2

,

1

,

2

,...

0

,

2

2

1

2

1

1

2

0

m

m

m

m

m

n

n

n

(2.18)

( )

z

ψ

– - .

(2.15), (2.16), (2.14) (1.16)

a

2

( )

(

)(

)

1

0

2

2

1

1

2

2

1

2

− ∞

=

+

+

Χ

λ

π

=

n

n

n

n

a

P

ia

. (2.19)

(2.19) (2.14),

( )

x

2

τ

:

( )

( )

(

)

(

)

( ) ( )

(

)

2

2 2

2 2

2 2

2 2

0

1 2

2

2

1

0

,

m

m m

m m

m

ia

a

i

a

x

x

a

m

a

x

x

a

∞ =

Γ

+

⎛ ⎞

τ

=

+

Χ − β

⎜ ⎟

π

π

β Γ

+

⎝ ⎠

≤ <

(2.20)

( )2

(

=

0

,

1

,

2

,...

)

Χ

m

m

– (2.15),

a

2

(2.19).

, (2.20)

(

)

( )

( )

(

1

( )

)

,

1

0

2

1

0 1 0

0 0

<

<

α

Γ

ϑ

=

α

α

Γ

α

α

Γ

π

− α α

− α

− ∞

+ −

∞ − −

c

i

e

e

u

d

e

i

i

i

i u i u u i ic

ic

. (2.21)

(2.15) (2.18)

( ) ( )

(

Χ

β

) (

=

)

m

m

m

O

m

m

ln

,

1 2

2

. (2.22)

, (2.20)

0

x

a

, . .

( )

x

2

τ

.

0

=

λ

( )

Χ

( )m2

=

β

( )m2

(

m

=

0

,

1

,

2

,...

)

. (2.19) (2.20)

( )

2 2

2

x

=

P

π

a

x

τ

. (2.23)

3. - (1.13),

q

1

( )

α

0

Im

α

<

,

g

1+

( )

α

Im

α

>

1

.

(

2

)

cth

πα

(

πα

)

=

( )

α

=

( )

α

+

( )

α

1 1

1

2

cth

K

K

K

, (3.1)

(1.13) :

( )

( ) ( )

( )

( )

( )

( )

( )

( )

( )

(

)

1

1 1 1 1 1

1

1 1 1

2

,

1

Im

0 ,

2

ig

P

L

K

q

F

a

K

P

F

L

a

+

− − − + −

+

+ + +

α

λ

α =

α

α + λφ α −

α =

+

α

λ

+

α − λφ α =

α

− <

α <

(3.2)

( )

[

( )

]

−1 +

( )

[

+

( )

]

−1

(8)

( )

( )

( )

( )

( )

1 1

1 1 1

1

1

1

,

,

0

0

F

F

K

K

K

− +

+ + +

α =

α =

α

α

α

α

(3.4)

( )

(

( )

)

=

φ

( )

α

+

φ

( )

α

α

α

α

=

α

Φ

+ −

+ −

1 1

1 1 1

K

i

q

, (3.5)

( )

α

±

2

K

(2.2).

( )

α

( )

α

φ

( )

α

1 1

1

,

F

,

K

Im

α

<

0

,

( )

α

+

( )

α

φ

+

( )

α

+

1 1

1

,

F

,

K

Im

α

>

1

. , (2.2) (3.3) ,

( )

( )

12

1

0

± ±

α

=

α

K

α

. (1.15)

(3.5) ,

φ

1

( )

σ

=

O

(

( )

σ

σ

−1

)

σ

.

, (2.7)-(2.9)

φ

1±

( )

α

1

( )

A

O

(

2

ln

)

i

± −

φ α =

+

α

α

α

(3.6)

α

,

( )

,

1

0

2

1

1

α

α

<

τ

<

φ

π

=

τ

+∞

∞ − τ

d

A

i

i

. (3.7)

(3.6) ,

(3.2) , ,

L

1

( )

α

=

O

( )

α

−1

α

,

Im

α

<

0

( )

( )

1 1

− +

α

=

α

O

L

α

,

Im

α

>

1

. ,

, (3.2)

( )

( )

1 2

0

L

+

α =

L

α ≡

.

q

1

( )

α

:

( )

( )

( )

( )

( )

,

Im

0

0

1

2

1 1

1 1

1

α

α

α

<

λ

+

α

α

φ

λ

=

α

+

K

K

a

P

K

q

. (3.8)

φ

1

( )

α

(3.5). c ,

( )

α

2

q

, (1.13) ,

( )

α

1

q

Im

α

0

(

2

1

)

,

=

1

,

2

,

3

,...

=

α

n

i

n

, . (3.5) ,

(

0

,

1

,

2

,...

)

2

=

=

α

ni

n

( )

α

φ

1

[13]

( )

1

( )

( )

(

(21

) ( )

1) 1

1

1

0

2

2

1

2

n

n

q

i

A

K

ni

ni K

ni

− ∞ −

− −

+ +

=

φ α =

+

α

α −

, (3.9)

( )

(

)

( )

( )

2 1

1 1 2

lim

2 1 1

,

1, 2,...

n

-ni n i

A

q

i

q

n

α= α→ −

(9)

(3.9) (3.8) (3.10),

(2 1)

(

1

,

2

,...

)

1

=

− −

n

A

n : ( ) ( ) ( )

(

1

2

)

2

1

( )

,

1

,

2

,...

4

1 1

1

1

β

=

λ

=

+

Χ

β

λ

+

Χ

m

m

m

n

n

m n m

m (3.11)

( )

(

)

(

)

(

)

,

2

,

3

,...

1

4

1

1

!

1

2

!

!

1

2

2

1

1 2 1

1

β

=

⎟⎟

⎜⎜

+

=

=

β

m

m

m

m

m

m

m m

m

( )

=

β

( )

=

( )

β

11

1

2

,

m1

O

1

,

m

(3.12)

( )

( )

2

( )1

,

1

,

2

,...

1 1 1 2

1

=

Χ

=

+ −

ia

K

mi

m

A

m m

(3.13)

1

a

(3.8)

( )

(

)

1 1 1 1

1

2

4

2

1

2

− ∞ =

+

Χ

λ

+

λ

+

π

=

n n

n

n

a

P

a

. (3.14)

(3.12) :

( )

(

)

1

1

2

1

1

2

2

1 2

2

1

2

2

1, 2,... ,

n

m

m

n n

m

m

m

∞ =

⎛ ⎞

=

ψ

+ ψ

+

− ψ

⎜ ⎟

+ γ

− +

⎝ ⎠

=

(3.15)

...

5772

.

0

=

γ

– ,

ψ

( )

z

– - .

( )

{ }

=

Χ

1 1

m

m (3.11), (3.8), (3.9), (3.13) (3.14)

(1.13)

q

1

( )

α

. ,

( )

x

1

τ

. ,

( )

( ) ( )

(

(

)

)

2 1

1 1 0 1 1 1 2 2 0

1

2

1

1

2

2

2

∞ + −

=

λ

+

Χ

β

π

+

π

λ

=

τ

m m m m

a

x

i

m

K

m

c

a

x

a

x

c

x

(

0

x

<

1

)

, (3.16)

( )

∞ =

Χ

=

1 1 0

2

1

1

n n

n

c

. (3.17)

( )

(

)

,...

2

,

1

,

0

1

=

Χ

m

m

– (3.11),

a

1

(3.14).

(3.6) (3.8), ,

( ) ( )

=

(

)

λ

+

Χ

β

m

m

m

O

m

c

a

m m

,

ln

1

2

2 0 1 1

1 (3.18)

, (3.3) (3.18) , (3.16)

a

x

(10)

1. . . . // . 1968. .32. .4. .632-646.

2. Melan E. Ein eitrag zur Theorie geschwesster Verbindungen. –Ingenieur –Archiv. 1932. Bd3. Hef 2. s123-129.

3. Benscoter S.U. Analysis of single stiffener on an infinite sheet. // J.Appl. Mech. 1949. Vol.16. №3. P.242-246.

4. Bufler H. Scheibe mit endlichaer elastischer Vesteifang. VDI –Forshungsh. 1961.

№485. S.41.

5. . .

. // . . 1964. .154. №4. .806-808.

6. . ., . .

. // . 1970. .34. №3. .412-421.

7. Arutunyan N.Kh., Mkhitaryan S.M. Some contact problems for a semi-plane with elastic stiffeners.-Trends in elasticity and thermoelasticity (W. Novacki Anniversary Volume). Groningen, Wolters-Noordhoff publ. 1971.

8. ., . . // .

. . . - .- . . . 1971. .34. №4.

9. . . ,

. // . . . 1993. .46. №3-4. C.20–30.

10. . . ,

. :

. . . . 1991. №8.

11. Koiter W.T. On the diffusion of load from a stiffener into a sheet. //Quart. J. Mech. And Appl. Math. 1955. 8. №2.

12. . - . .: 1962. 278 .

13. . . . .: .

1961.

Referências

Documentos relacionados

We also determined the critical strain rate (CSR), understood as the tangent of the inclination angle between the tangent to the crack development curve and the crack development

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

(1996) found significantly higher numbers of globule leucocytes/mucosal mast cells in the intestinal mucosa in resistant than in susceptible lambs that were naturally infected

At the first stage of the measurements results analysis, the gear wheel cast surface image was compared with the casting mould 3D-CAD model (fig.. Next, the measurements results

The structure of the remelting zone of the steel C90 steel be- fore conventional tempering consitute cells, dendritic cells, sur- rounded with the cementite, inside of

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

a sufficient condition based on the absolute value of the matrix coefficients, for the convergence of Gauss–Seidel method (GSM) for a square system of linear algebraic equations,