• Nenhum resultado encontrado

Antiplane contact problem for elastic half-space with cracks and stringers

N/A
N/A
Protected

Academic year: 2016

Share "Antiplane contact problem for elastic half-space with cracks and stringers"

Copied!
10
0
0

Texto

(1)

ՈՒԹ ՈՒ

А А Ь А А А А

69, №1, 2016

593.3

А А А А А А А

Щ А А А А А

А

А . ., . .

ы : , , , ,

Keywords: contact problem, stringer, crack, half-space, singular equation

. , , , ,

. ., . .

`

:

:

– :

:

, :

Aghayan K.L, Zakaryan V.G

Antiplane contact problem for elastic half-space with cracks and stringers

The contact problem of load transfer of a thin elastic plate to the elastic half-space is considered. The half-space weakened by a system of finite length collinear tunnel cracks which are perpendicular to the half-space boundary. The border of half-space reinforced by stringers. By external forces applied to the plates and the banks of the cracks, the half-space - plate system deformed under antiplane strain. In the frame of well-known Melan model for stringer the solution of the problem is reduced to a system of singular integral equations, whose solution is built by numerically - analytical method of mechanical quadratures. The behavior of the contact stresses and stress intensity factors at the crack tip and the end points of stringers is investigated.

.

, . ё

– . ,

, .

,

- .

.

1. .

( ) ,

,

ё ,

. ,

ё .

, [1–11],

, , ,

. , , ,

(2)

, ,

. ,

,

,

.

2. .

G

,

y

0

,

Oxyz

.

   

;

1 2

;

(1)

0;

1, 2,...,

j

x

a l

j j

y

l

j

z

l

j

j

n

 

 

 

-,

y

0

,

 

k

c

k

 

x

b y

k

;

0;

z

 

1

(

a

k

c

k

b

k

a

k

)

, ( )

 k s

h

G

s k

,

k

1, 2,...,

n

1

.

. 1

, : )

0

xz

a

j

w a

j

0

; )

ё

yz

x

,

h

s k

, )

x

c

k

x

b

k

T

c( )k

T

b( )k ( . 1). ,

Oz z

 

.

– ,

G

s( )k

G

,

( )k

s k k

h

 

b

c

. Э

[3-4]. , ,

,

s

w x y

, . .

w x y

s

,

w x

s

 

.

, ,

.

,

Oxy

1

b 1

c c2 b2 x

y z

 1 1 l

 2 1 l

 2 2 l

 1 2 l 1

a a2

1 n

cbn1

 1 1 n l

 2 1 n l

1 n a

 1 n l

 2 n l

(3)

0

y

,

1,

j

x

a

j

n

y

0

.

0

y

:

2 2

2 2

0

w

w

x

y

,

   

x

,

y

0

(1.1)

 

 

 

0

,

,

1,

0,

,

j

j j

x a

j j j

w x y

G

y

y

L

x

j

n

w a

y

w

y

y

L

 

 

 





(1.2)

 

 

1

0

1

,

( , )

0,

(

)

k k

n

k y

k

x

x

w x y

x

y

x



 

 

(

k

1,

n

1)

(1.3)

(1) (2)

,

,

0,

j j j j k k k

L

l

 

y

l

x

a

 

y

c

 

x

b

[3-5]

 

 

 

( )

( ) ( ) ( ) ( )

0

( , )

1

k

x k

k c

s k

k k k k

y s s c s s

T

w x y

q

s

s ds

x

h G

h G

 

(1.4)

,

1,

1

k

x



k

n

.

,

w x y

– , ,

,

j

 

y

j

- ,

w

j

 

y

j

-,

k

 

x

– ,

,

q

s( )k

 

x

– , . ,

(1.2).

(1.1) – (1.3),

 

x

, . . ё

,

. ,

. (1.1) – (1.3)

.

(1.1), (1.2),

w

,

y

(4)

2

2 2

1

,

,

( )

( )

k

,

0

n

i a

k k

k

d w

y

w

y

i g y

f

y e

y

y

 

 

,

 

,

i x

w

y

w x y e dx



, (1.5)

 

0,

0,

k k k

g

y

w a

y

w a

y

(1.6)

 

1

 

 

k k k

f

y

y

y

G

 

 

(1.7)

k

- .

(1.3) :

 

0

,

1

y

dw

y

dy

G

 

(1.8)

,

f

k

 

y

,

g

k

 

y

 

x

, (1.5),

(1.8)

y

 

,

1 0

1

,

(

)

sgn

( )

( )

2

2

( ),

0

k

n

y y i a

k k

k

y

i

w

y

e

e

g

f

e

d

e

y

G

      

 

 

 

 



(1.9)

, :

 

 

0

k k

g

y

f

y

,

y

L

k,

k

1,

n

(1.10)

, (1.9) (1.1) –

(1.3)

 

 

2

 

2

 

2

2

 

1

1

,

2

k

n

k k

k

k L k k

x a

x a

w x y

g

d

x

a

y

x a

y

  

 

  

  

 

2

2

 

2

2

 

1

1

1

1

ln

ln

2

k

n

k

k L k k

f

d

x

a

y

x a

y

  

 

  

  

 

2 2 2

1

ln

const

2

y

t dt

G

t

x

y



(1.11)

,

g

j

 

y

f

j

 

y

, (1.11),

, ё , ,

. , ,

, . . , ,

(1.2),

n

2

n

.

, , , (1.2)

y

,

(5)

 

 

2 2

0

1

1

1

1

1

( )

2

2

j j

j

j j

x a L j

a

t

w

g

dt

f

y

t dt

x

y

y

G

a

t

y

  





 

1

1

(1

)

( , )

( )

( , )

( )

,

2

k

n

ik jk k jk k j

k L

K

y g

R

y f

d

y

L

 

 

 

(1.12)

 

 

0

1

1

1

1

2

2

j j

j j

L x a

w

g

y

f

d

y

 

y

y

 

  

 

 

( ) 1

1

(1

)

( , )

( )

2

k

n

jk jk k

k L

R

y g

d

 

  

( )

2 2

1

( )

( )

,

jk k j

j

y

d

K

f

d

y

L

G

a

y

 



  



 

(1.13)

2

2

2

2

,

jk

j k j k

y

y

K

y

y

a

a

y

a

a

 

 

 

 

(1.14)

2

2

2

2

,

j k j k

jk

j k j k

a

a

a

a

R

y

y

a

a

y

a

a





(1.15)

 

k k

g

t

dg

dt

,

ij – .

, (1.12) (1.13) ,

1 / (

 

y

)

.

, (1.12), (1.13), (1.2),

, , ,

2

n

. ,

ё ё

, , ,

-, .

, (1.11) (1.12) (1.13)

, ё

. , :

ё ; ё ,

; ё .

2. .

, .

(1.4) .

x

, , (1.11), :

2 2

1 0

( , )

1

( )

(

)

k

n

k k

y L k

w x y

g

x

 

a

x

 

 

(6)

2 2

( )

1

( )

,

(

)

j j k k k

t

a

x

f

d

dt

a

x

G

t

x

 

 

(2.1)

( )

j

x

– ,

(

1, 2,...,

1)

j

j

n

.

(2.1) (1.4) , ,

. , 1,

, .

,

(

n

2),

(1.2) ( . 1), (1.12) (2.1)

( ), (

1, 2)

k

g t

k

1

( )

x

.

1 1 2

1 1

1 12 2

2 2 1

( )

1

1

1

1

1

( )

( , )

( )

(

)

2

L L

a

t

t

dt

g t dt

K

t y g t dt

a

t

y

G

t

y

t

y

 

2 1 1 12 2

( )

( )

1

1

( , ) ( ) ,

2

L

y

y

R

t y f t dt

G

  

 

(1) (2) 1

(

1 1

)

y

 

l

 

y

l

(2.2)

 

1 1 2

2 1

21 1 2 2

2

( )

1

1

1

1

1

( , ) ( )

(

)

2

L

2

L

a

t

t

dt

K

t y g t dt

g t dt

a

t

y

G

t

y

t

y

 

 

 

   

1 2 2 21 1

1

1

,

2

2

L

y

y

R

t y f t dt

G

  

 

(1) (2) 2

(

2 2

)

y

 

l

 

y

l

(2.3)

  

 

 

1

2 2

1 2 2 2 2

1 1

1

k k

k k

k

k L k k L k

t

t g

t dt

x

a

x t

dt

f

t dt

t

x

G

t

a

x

x a

t

  

 

 

   1

1

1

1 1 1

c s

s s

T

x t q

t dt

h G

  

x

 

1

c

1

 

x

b

1

(2.4)

   1 1 1

G h G

s s

  

,

q

 s1

 

t

– ,

,

f

k

 

t

– , (1.7),

K

ij

 

t y

,

,

 

,

ij

R

t y

(1.14), (1.15).

(2.2)-(2.4) ё

 

 

 

1 1

1 1

1

s c b

s ds

q

s ds T

T

 

,

 

0

j

j L

g

s ds

. (2.5)

,

– . ,

, . .

l

k 1

0

,

(7)

3. ы ,

,

( . 2). ,

 1

0

j

l

,

l

 j2

l

,

j

1, 2

,

a

2

  

a

a

1,

c

1

 

c

,

b

c

,

0,

 

 

xz

a

y

a

y

P y

 

  

 

,

  

xz

a

0,

y

 

a

 

y

Q y

 

,

0,

 

 

xz

a

y

a

y

Q y

 

 

, xz

a

0,

y

a

 

y

P y

 

 

 

,

 1

 

 

0

s

q

x

q

x

,

q

0

 

x

q

0

 

x

,

T

c

 

T

c

T

0,

Oy

, ,

g y

 

g

1

 

y

 

g

2

 

y

.

.2

, (2.2) - (2.4),

 

1

x

g y

 

:

  

 

1 2 2 2 2

0

1

c l

c

x s

s ds

g

d

s x

a

x

a x

  

 

  

  

2

2

 

  

0    1 1

2 2

0

l c

a

c s s

T

a

x

a

x

R

d

x s q

s ds

h G

a

x

a x

    

  

  

  

c

x

c

(3.1)

  

2 1 2 2

2 2

2

 

0

1

1

4

4

c l

c

a t

t

t

y

t

y

dt

g t dt

t

y

t

y

a t

y

a

t

y

a

t

y

 

 

 

2

2

 

 

2 2

0

4

4

2

l

a

a

R

t dt

R

y

a

t

y

a

t

y

 

 

 

0

 

y

l

(3.2)

 

1

 

 

R

y

P y

Q y

G

;          1 1

s s

G

h G

  

 

(2.5)

a



a

 a

  a

 

a

a

c c

l O

y

x z

 

0

q x

c

T

c

(8)

 

0

 

2

0

c c

c c

s ds

q

x dx

T

 

. (3.3)

(3.1),

(3.2) (3.3), .

,

. .2 ,

: 1)

c

a

– ; 2)

c

 

a

0

– ; 3)

c

 

a

0

,

, ,

. .

[12,13],

g y

 

y

l

0

y

.

, ,

 

x

g y

 

. ,

   

c

c

Gg

 

0

   

,

y

l

-

g y

 

.

(3.1), (3.2) (3.3), ё

( 1,1),

[14].

Ч ,

c

a

c

 

a

0

, ,

,

ё , . .

P t

( )

Q t

( )

0;

T

c

0,

0

/

1,

q

G

 

0.5

.

.3 .4

c

a

( .3, 4),

0

c

 

a

– ( .5, 6). .3 5

, . 4 6 –

2 /

c l

 

, . .

. .1

III

K

. А

,

-1.0 -0.5 0.5 1.0

0.05 0.10 0.15 0.20

G

 4



2



2 3

 0.2

-1.0 -0.5 0.5 1.0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1 g

0.2

 2 3

 2

(9)

.5 .6

1.

K

III

4 2 0.67 0.2

c

a

-0.0974 -0.0796 -0.0504 -0.0285

c

a

-0.1504 -0.1241 -0.102 -0.0883

.

,

, ,

.

,

.

.

.

А А

1. Greif R., Sanders J.L. (Jr.) The effect of a stringer on the stress in a cracked sheet. //Trans. ASME, Ser. E: J. appl. Mech., 32 (1965), pp. 59–66.

2. А . . ,

. // .: «

». : : А А , 1985, .26 – 32.

3. Э. .

. // . . . :

. , 1986, № 5, .130 – 140.

4. . . ,

. // .: «

ё ». : . А А . 1993, .129 – 143.

5. А . ., . . ,

.// .: «

ё ». : . А А . 1993, .42 – 47.

6. . .

. // . . .:

«А ». 2012, .74 – 78.

-1.0 -0.5 0.5 1.0

0.02 0.04 0.06 0.08 0.10

G

 4



2



2 3

 0.2 -1.0 -0.5 0.5 1.0

-0.20

-0.15

-0.10

-0.05 g

4   2

 

2 3   0.2

(10)

7. А . . . // . «

ё ». 2012, .42-47. 8. А . ., А. . ё

- . // .

. .: «А », – 2015,

.38 – 42.

9. А . ., . ., А . . А ё

. // А

А . . 2009. .62. №4. .16 – 22.

10. . .

. // . . .: «А », – 2015, .204 – 208.

11. . .

. //

А А . . 2014. .67. № 3. .3 – 16.

12. А . . .

// . 1968. .32. . 4. .632 – 646. 13. . 2. .: , 1975. 763 . 14. А. .

. // . А

А . . 2000. .53. № 3. .12-19.

:

А , .- . ,

А А .

.: (+37491)485-566; E-mail: karo.aghayan@gmail.com

, А А .

.: (+37477)789-264; E-mail: vahe-zaqaryan@mail.ru

Referências

Documentos relacionados

solution of interested variables is helpful to the improvement of the model and the explain-ability of the solution. A lot of trial-and-error to obtain the desired solution

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

A dose exata para o tratamento do Beribéri não está determinada, nossa paciente apresentou melhora total do quadro, inclusive com reversão da disfunção ventricular

The exat solution of the asymmetri exlusion problem with rst- and sond-lass partiles

Leprosy is not a disease apart, since in the countries where it is endemic it is a general public health problem, one to be considered along with the others present in the

Corpo em alumínio injetado e tampa em chapa de aço Nesta outra solução, temos um corpo em alumínio injetado (1) e posteriormente maquinado conforme especificação

The resulting multilayer problem for the coefficients of the eigenfunction series expansion of the approximate solution is then solved in the Laplace space.. Again, the approximation

At the first stage of the measurements results analysis, the gear wheel cast surface image was compared with the casting mould 3D-CAD model (fig.. Next, the measurements results