• Nenhum resultado encontrado

The bending of two semi-infinite beams on the edge of elastic half-plane with flat punch

N/A
N/A
Protected

Academic year: 2017

Share "The bending of two semi-infinite beams on the edge of elastic half-plane with flat punch"

Copied!
9
0
0

Texto

(1)

Ա Ա Ա Ո Թ Ո Ա Ա Ա Ա Ա Ղ Ա

63, №4, 2010

539.3

. .

л ы л : , , ё ,

.

Key words: semi-infinite beam, punch, generalized functions, integral equations.

Ա . .

Ա

Ա

( – ) :

, :

( Ֆ II )

( ) :

:

, :

Aghayan K.L.

The bending of two semi-infinite beams on the edge of elastic half-plane with flat punch

The contact problem of bending of two semi-infinite beams (plates in the condition of cylindrical bending) free lying on the border of elastic half-plane is considered. The bending is carriying out by symmetrically located , with regard to beams, rigid, smooth punch with plane foundation in the framework of classical theory of beam bending. The problem solution is brought to the system of two integral equations concerning contact stresses under the punch ( Fredholm equation of II type with continuous kernel) and deformation of boundary points of half-plane between beams (singular equation with Cauchy kernel).The solution of given equations are brought to quasicomplete regular infinite system of linear algebraic equations. It is shown that in the boundary points of punch the concentrated force and concentrated moment are appeared.

, . И

, .

( II )

( ).

. ,

.

( ),

. И

ё

.

-

. Э

.

(2)

,

,

, . И

[1-5],

, , ,

. 1.

( ). ,

0

P

,

,

( .1). ,

(

x

(

b

,

a

) ( )

a

,

b

)

(

) (

)

(

x

,

a

a

,

)

(

).

,

.

. 1

( )

x

p

q

( )

x

,

( )

( )

( )

( )

( )

( )

( )

[

(

) (

)

]

( )

( )

( )

( )

( )

( )

( )

( ) (

) ( )

( )

( ) (

) ( )

( )

( )

( )

( )

( )

( )

x

q

x

q

x

q

x

q

b

x

x

q

x

q

a

x

x

q

x

q

x

q

x

N

x

p

b

x

a

x

x

P

x

P

x

P

x

P

b a

b

a a

a

± ±

± ±

± +

± +

=

±

ϑ

=

±

ϑ

=

+

=

±

ϑ

±

ϑ

=

+

=

,

,

,

(1.1)

( )

( )

( )

( )

( )

,

( )

( )

(

)

dw

W x

W

x

W

x

W

x

x b

dx

− + ±

=

+

= ϑ ± −

, (1.2)

( )

x

w

– ,

ϑ

( )

x

– . :

( )

( )

3

0 3

,

d W

D

N x

P x

x

dx

=

− ∞ < < ∞

(1.3)

0 0 0

E

J

D

=

– ,

E

0– ё ,

J

0– .

D

0

=

E

0

h

0

12

(

1

ν

02

)

(

h

0

,

ν

0– ё ).

, E ν

b

− −a a b

0 P y

x

0, 0

(3)

(1.3) :

0 0 0

0,

x a x a x a

W

=± ±

=

W

=± ±

=

W

′′

=± ±

=

W

0

x

(1.4)

(1.2)

, (1.4) (1.1), :

(

) (

)

(

) (

)

( )

( )

( )

( )

3

0 3

,

b b

b b

d W

D

Q

x b

x b

M

x b

x b

dx

q

x

q

x

x

=

δ − + δ +

+

δ + − δ −

+

+

+

− ∞ < < ∞

(1.5)

b

Q

M

b

x

= ±

b

:

2 2

0 2 0 2 0 0

0 0

0 0

,

b b

x b x b

x b x b

d W

d W

dW

dW

Q

D

D

M

D

D

dx

= +

dx

=− −

dx

= +

dx

= −

=

= −

=

=

(1.6)

, (1.5)

0

x b

W

=

. (1.7)

(1.5) (1.3),

( )

( )

( )

( )

( )

(

) (

)

(

) (

)

b b

p x

=

q

+

x

+

q

x

Q

δ − +δ +

x b

x b

+

M

δ + −δ −

x b

x b

, (1.8)

,

x

=

±

b

b

Q

M

b. , (1.8)

,

( )

x

(

x

(

b

a

) ( )

a

b

)

q

,

,

,

Q

b

b

M

,

[1,2].

,

q x

( )

,

Q

b

,

M

b

,

( )

x

p

(1.8).

.

[6]:

( )

v

( )

, 0

1

2

( )

V

x

d

x

q s ds

,

x

,

dx

E

s

x

ν

π

−∞

= −

=

− ∞ < < ∞

(1.9)

( )

,

0

v

x

– ,

Е

,

ν

– .

:

( )

( ) ( )

,

.

V

x

=

W

x

+

g

x

<

x

<

(1.10)

( )

x

V

(1.9),

W

( )

x

– (1.2),

( )

x

[

(

x

a

) (

x

a

)

]

( )

x

g

=

ϑ

+

ϑ

V

(1.11)

(1.5), (1.9) (1.10) ,

:

( ) ( )

3

( )

( )

( )

( )

( )

( )

0

2

sin

2

cos

b b

b b

D

− σ

i

W

σ =

M

σ

b

σ +

Q

b

σ −

q

σ −

q

σ

(1.12)

( )

(

2

)

1

(

( )

( )

( )

( )

)

V

σ = −

2 1

− ν

E i

sgn

σ

q

a

σ +

q

a

σ

(1.13)

( )

σ

=

W

( ) ( )

σ

+

g

σ

(4)

f

( )

f x e dx

( )

i x

,

σ

−∞

σ =

− ∞ < σ < ∞

. (1.12) (1.13) (1.14),

(

)

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

3

* 3

2

cos

sin

,

a a

b b

q

q

Q

b

M

b

q

q

i

g

− +

λ + σ

σ +

σ = λ

σ +

σ

σ +

σ +

σ + λ σ

σ

(1.15)

( )a

( )

( )b

( )

( )

( )

q

±

σ =

q

±

σ +

q

±

σ

.

,

(

2

)

3

(

2

)

*

(

2

)

0 0 0

6

E

1

E h

1

;

E

2 1

λ =

− ν

− ν

λ =

− ν

. (1.16)

(1.15) (1.11),

( )

( )

( )

( )

( )

( )

( )

( )

(

)

(

) ( )

(

)

(

)

(

)

(

)

*

1

,

a a

c a

s b c c

a

b c c

q

x

q

x

q

s

q

s K

x

s ds

K

s

x g s ds

M

K

x b

K

x b

s

x

Q

K

x b

K

x b

x

− − +

−∞

+

= λ

+

λ

+

+ λ

+ −

+

π

− +

+

− ∞ < < ∞

(1.17)

( )

( )

3

( )

( )

3

0 0

cos

sin

1

,

c s

x d

x d

K

x

K

x

σ

σ

σ

σ

=

= −λ

π

λ + σ

λ + σ

(1.18)

И ё

(

q

( ) ( )

x

=

q

x

)

,

( )

a

b

x

,

q

( )a

( )

x

=

q

( )+

( )

x

(1.17),

II

q

( )+

( )

x

:

( )

( )

( )

( )

( )

( ) ( )

( )

( )

*

2 1

1

,

,

,

b a

a a

b b

q

x

R x s q

s ds

K t x

g t dt

t

x

M f

x

Q f x

a

x

b

+ +

λ

= λ

+

+

π

+ λ

< <

(1.19)

( )

(

)

(

)

( )

(

)

( )

( )

( )

(

)

(

)

1 2

,

;

,

,

,

,

.

c c s

c c

R x s

K

x

s

K

x

s

K t x

K t

x

f x

R x b

f

x

K

x b

K

x b

=

− +

+

=

=

=

− −

+

(1.20)

,

x

∈ −

(

a a

,

)

,

q

( )−a

( )

x

=

q

( )a

( )

x

0

, (1.17)

( )

( )

( )

( ) ( )

( )

( )

*

1 2

1

,

,

0,

b a

a a

b b

R x s q

s ds

K t x

g s ds

t

x

Q f x

M f

x

a

x

a

+

λ

λ

+

+

π

+ λ

=

− < <

(1.21)

( ) ( ) ( )

x

s

K

t

x

f

x

R

,

,

,

,

1

f

2

( )

x

(1.20).

(1.19) (1.2) ,

(5)

( )

( )

0

2

2

b b

a

Q

=

P

q

+

x dx

, b

(

)

( )b

( )

b

M

x b q

x dx

=

(1.22)

,

(1.19) ( II ) (1.21) (

) (1.22).

(1.19) (1.21)

q

+

( )

x

g

( )

x

,

( )

( )

x

q

b (1.17),

x

(

+

b

,

)

.

2. (1.19)–(1.22) .

(

)

1

,

1

,

x

= α +

x

a

t

=

at

α =

b a

π

(2.1)

(

x

1

t

1 )

( )

( ) ( )

( )

( )

( )

1 *

1 1 1 1

0 1

1 1

1

,

,

1

,

0

q x

R x s q s ds

aK t x

t

x

g t dt

F x

x

π

λ

− λα

+

+

×

π

− α −

×

=

< < π

(2.2)

( ) ( )

( )

( )

( )

1 *

2 1 2

0 1

1 2

1

,

,

,

1

1

R

x s q s ds

aK

t x

t

x

g t dt

F x

x

π

λ

λα

+

+

×

π

×

=

− < <

(2.3)

q x

1

( )

=

q

( )+

(

α

x

+

a

)

,

g t

1

( )

=

g at

( )

( )

(

)

( )

(

)

1

,

,

,

1

,

,

R x s

=

R

α + α +

x

a

s

a

K t x

=

K

α α +

t

x

a

( )

(

)

( )

(

)

2

,

,

,

2

,

,

R

x s

=

R ax

α +

s

a

K

t x

=

K at ax

(2.4)

( )

(

)

(

)

( )

( )

( )

1 b 1 b 2

,

2 b 1 b 2

F x

= λ

Q f

α +

x

a

+ λ

M f

α +

x

a

F x

= λ

Q f

α + λ

x

M f

α

x

И [7,8]

( )

( ) (

)

1 2

q

+

x

x a

x

a

+

0

,

( )

(

)

1 2

2 2

V

x

a

x

x

±

a

0

, (2.5) (2.2) (2.3)

( )

1 2 1

1 0 0 1

1

2

n

cos

, 0

, 0

1 2

n

q x

A x

a

n a

nx

x

∞ ε −

=

=

+

+

< < π

< ε <

(2.6)

( )

2

(

)

( )

1 2 2

1 2 1 2

1

1

,

1

1, 0

1 2

n n

n

g t

n

b

t

T

t

t

−ε

− =

=

− < <

< ε <

(2.7)

{ } { }

= ∞

=0 1 0

0

,

B

,

a

n n

,

b

n n

A

, ,

( )

cos

(

arccos

) (

0,1, 2,...

)

k

T

x

=

k

x

k

=

– II .

( )

1

F x

(2.2)

[ ]

0,

π

. ,

(2.6) (2.7) (2.2)

( )

(

)

( )

(

2

)

(

)

1

1

2 2

1

1

1

1

,

1,

0,1, 2,...

1

1

n n

n

x

x

T s

ds

x

n

s

x

s

x

+

− −

= −

>

=

π

, (2.8)

(6)

2 * 0 1

2

n n

A

a

n

b

∞ −ε

=

= λ

α

. (2.9)

(2.6) (2.7) (2.2) (2.3) ,

{ }

∞ =0 n n

a

{ }

b

nn=1

:

( ) ( ) ( )

( ) ( ) ( )

11 12 1

0 1

21 22 2

1 1

,

0,1, 2,...

,

1, 2,...

k kn n kn n k

n n

k

kn n kn n k

n n

a

R

a

R

b

c

k

b

R

a

R

b

c

k

∞ ∞ = = ∞ ∞ = =

+

+

=

=

+

+

=

=

(2.10)

( )

( )

( )

(

)

( )

(

)

( )

( )

(

)

( )

( )

( ) 2 2 2 2 11 1 0 0 2 * 2 12 1 1 0 1 * 1 2 2

1 2 1

2

0 1

1

21 2

2 2 2

*

1 0

22

2

cos

,

cos

2

1

1

1

1

cos

2

1

cos

,

1

2

1

,

cos

2

on kn k n kn k n k

kn k on n

kn

R

kxdx R x s

nsds

R

x

x

kxdx

n

a

kxdx K t x

t

T

t dt

n

R

k

x U

x dx R

x s

nsds

k

R

a

π π π ε π − − ε − π ε − − ε

δ −

λα

=

π

ρ

λ

=

α +

− − α −

+

π

ρ

λ

+

π

ρ

αλ

=

ρ δ −

λ

= −

( )

( )

(

)

( )

2 1 1 1 2 2 2

2 2 2 2 1

1 1

1

x U

n

x dx K

t x

,

1

t

T

n

t dt

n

− − − ε − −

(2.11) ( )

( )

( )

( ) 2

( )

( )

( )

1 0 1

1 0

0 0

1

2 2 2

0 2 2 2

*

1 0

,

2

2

cos

0,

,

2

1

1,

k k k n

R x s

A

c

F x

a A

ds

kxdx

k

x

s

R

x s

k

c

A

ds

F x

x U

x dx k

s

π π π ε − −

=

− λ

= ∞

πρ

=

λα

= ∞

λ

(2.12)

δ

ik– ,

( )

(

)

(

) (

)

1

sin

arccos

sin arccos

1, 2,...

k

U

x

=

k

x

x

k

=

,

1

a

α = α

, 1

0 k

k

k

ε

ρ =

+ δ

. (2.13)

, (2.10)

{

}

=0

cos

nx

n

( )

0,

π

{

1

( )

}

1 n n

U

x

=

(

1,1

)

(

)

1 2 2

1

x

,

(2.8).

(2.10) ,

( )12 kn

R

(2.11)

( )

( )

2

(

)

(

)

2 1 2 * 12 1 2 1

1

cos

1

2

,

1

n b a kn

t

t

k

t

R

dt

a

n

t

ε

β −

λ β

= −

β = α

π

.

(7)

( )

( )

( )

(

)

(

( )

)

2

* *

12 2 1 2 1

1

0

2

2

1

, ch

2

1

n n

kn

R

e

ds

e

n

n

n

χ

− − − − χ

ε ε

λ β

λ β

=

χ = β

π

π

. (2.14)

(2.10) [5,9] ,

, , (2.10), ,

(

0

)

λ

< < ∞

λ

.

(2.10) (1.22), (1.23) (2.9),

{ } { }

a

n n 0

,

b

n n 1

,

Q M

b

,

b

∞ ∞

= =

A

0. И

, (1.8),

– (2.6) (1.17).

x

, (1.15) ,

x

→ ∞

:

( )

(

)

(

)

( )

( )

( )

(

)

4 2 6 8

0 2

6

60

2

4

2

,

2

,

0, 2

b b b

b j j

a

q x

Q

T x

bM

b Q

T x

O x

T

s q

s ds

j

− − −

+

= −

+

+

λ

+

+

πλ

πλ

=

=

(2.15)

И (2.15) ,

x

-. И (2.15)

Q

b

,

M

b

q

( )+

( )

x

.

3. ,

a

=

0

, . .

, ( ),

, .

, (1.19),

( )

1

( ) ( )

( )

2

( ) (

)

0

,

b b

0

1

Q M

Q

M

q x

K x s q s ds

f

x

f

x

x

b

b

=

+

+

< <

(3.1)

( )

( ) ( )

3

0

cos

cos

2

,

x

s

K x s

d

σ

σ

λ

=

σ

π

λ + σ

( )

( )

( )

( ) ( )

3

0

sin

cos

2

,1 ,

Q M

x

f

x

K x

f

x

d

σ

σ

σ

λ

=

=

σ

π

λ + σ

. (3.2)

b

Q

M

b (1.22) :

(

)

(

(

)

)

(

)

(

)

(

)

(

)

( ) ( )

( )

(

)

* * *

0 2 2 2 1 3 1 2 2

2 1 0

0

1 1

* 1

0 0

1

_

3

2

1

1

2

,

2

,

1, 2

b M

b b

j j j j j

Q P

A

B

I

B

A

I

B

A

I

M

bP

B

B Q P

A

I

x q

x dx

B

q

x dx

B

j

= +

+

+ +

+

+

=

− +

=

=

=

( )

2

( )

(

)

( )

( )

*

1 3

0

cos

sin

2

cos

I

x

x d

σ

σ − λ

σ

=

σ

σ

(8)

( )

( )

( )

*

2 3

0

1 sin 2

cos 2

I

x

d

+

σ − σ

σ

λ

=

σ

π

λ + σ

( )

(

( )

)

( )

(

)

2 *

3 3 3 2

0

sin 2

6 cos

I

x

d

σ

σ

σ

λ ⎢

=

+

σ

π

σ λ + σ

λ + σ

( )

1

q x

– (3.1)

b Q

−1 b

=

1,

M

a

=

0

,

q

2

( )

x

0

a

Q

=

,

b M

−2 b

=

1

. И (3.1), (3.1),

x

1

.

.2 ,

Q

b

M

b

λ

.

-0,2 0,2 0,6 1 1,4

0 0,5 1 1,5 2 2,5 3

.2

λ

0.5 1 5 10 30 100 500

b

Q

0.3232 0.2999 0.2674 0.2564 0.2584 0.2657 0.2763

b

M

0.2283 0.1781 0.1226 0.0976 0.0755 0.0542 0.0331

,

λ

, . .

,

Q

b ,

,

M

b . И

,

„ ” .

( )

0 bq x

P

x

500

λ =

100

λ =

10

λ =

0.5

(9)

И

1. . . , .

//И . . 1965. .5. №4. .782-785.

2. . ., .И., . . . // . 1969. №1. .167-171.

3. . ., . .

. // . 1975. .39.

.5.

4. . ., . .

, – . / .:

. – – – . И . . И .- . - , 1972.

5. . ., . .

. .: , 1983. 488 .

6. И. . . .– .: , 1949.

7. Э. . И ,

. //И . . . 1993. .46. №3-4. .20–30.

8. . ., Э. .

. //И . . . 2008. .61. №4. .5–19.

9. . . ,

.// . 1972. №5. .34-45.

и :

и – . - . ,

И ,

: 0019, -19, . , 24

E-mail: karo-aga@mechins.sci.am

Referências

Documentos relacionados

Modeling of hypoeutectic alloys solidification is a complex problem, because increase of solid phase fraction is triggered by constitution of two structures: In

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

O conhecimento dos processos que regulam a estabilização da matéria orgânica do solo (MOS) é necessário para predizer as alterações nos estoques de C com

The structure of the remelting zone of the steel C90 steel be- fore conventional tempering consitute cells, dendritic cells, sur- rounded with the cementite, inside of

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados