• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número2"

Copied!
14
0
0

Texto

(1)

Exoti Solutions to the Solar Neutrino Anomaly

M. M.Guzzo

Institutode FsiaGlebWataghin

UniversidadeEstadual deCampinas,UNICAMP

13083-970, Campinas,SP,Brazil

Reeivedon19April,2001

Weanalyzethestatusoftheexotisolutionstothesolarneutrinoproblem,i.e.,thosesolutionsbased

onnewphenomenawhihare notthe usualneutrino osillationsindued by massesand mixing.

Thesesolutions arebasedondierentassumptions: a)resonant spin-avor preessioninduedby

non-vanishing neutrino magnetimoment, b) the existene of non-standard avor-hanging and

non-universalneutrinointerationsand)theviolationoftheequivalenepriniple. Weinvestigate

thequalityofthetprovidedbyeahoneofthesesolutionsnotonlytothetotalratemeasuredby

all solarneutrinoexperimentsbutalso totheday-night andseasonalvariationsofthe eventrate,

aswellasthereoileletronenergyspetrummeasuredbytheSuperKamiokandeollaboration.

I Introdution

Homestake [1℄, GALLEX/GNO [2℄, SAGE [3℄,

Kamiokande[4℄andSuperKamikande[5℄haveobserved

a solar neutrino ux whih is smaller than predited

by the standard solar models (SSM) [6, 7, 8, 9, 10℄.

This disrepany has been alled the solar neutrino

problem [11℄. Better statistis and alibration of

the pioneering experiments, as well as the rst

next-generation experiment SuperKamiokande, measuring

the solar neutrino spetrum and the event rate as a

funtion of the zenith angle with unpreedented

pre-ision, have provided a lot of new information about

thesolarneutrinoproblem[11℄. Onthetheoretialside

several substantial improvements have been made in

the SSM whih now inludes diusion of helium and

heavyelementsand updated low energy nulear ross

setionsrelevantto thesolarneutrinoprodution[12℄.

Furthermore, the SSM has reeived an important

in-dependentonrmationbytheexellentagreement

be-tween itspredited sound speedsand reent

helioseis-mologialobservations[7℄.

Inorder tounderstand the solarneutrinoanomaly

ithasbeensuggestedthatneutrinosareendowedwith

properties whih are notpresent in thestandard

ele-troweak theory [13℄. These new properties allow the

eletronneutrinostobeonvertedalongtheirwayfrom

theenterofthesuntothedetetorsonearthinto

dif-ferent neutrino avors, i.e. into muon, tau, or

possi-bly sterile [14℄ neutrinos. Thefat that theterrestrial

experimentsare lesssensitiveto theseneutrino avors

explainstheobservedlowerountingrates.

Several mehanisms anprovoke the eletron

neu-ourknowledge, themehanismsthat t thesolar

neu-trinodata anbelassiedin fouressentiallydierent

types:

The most famous solutions to the solar neutrino

anomaly assumethat neutrinosare massiveand there

is mixing in the lepton setor. Under this

irun-stane,neutrino avorosillationsan happenin

va-uum[15℄aswellasinmatterwhereitanberesonantly

enhaned [16, 17℄ (the Mikheyev-Smirnov-Wolfenstein

(MSW) eet). In both senarios solar eletron

neu-trinosanbeonvertedinto neutrinoofadierent

a-vor(muonortau)andonsequentlyexplainthedeit

ofobserved solarneutrino deitto the preditionsof

theSSM. Thesesolutionsarealled thestandard

solu-tionsto the solar neutrino problem and are verywell

desribedinreentreferenes[18℄, [19℄and[20℄.

In this review, we will not desribe the solutions

to the solar neutrino anomaly based onmass-indued

osillation phenomenon. We wil onentrateon more

exotisolutionlikethoseonedesribedbelow.

II Resonant spin-avor

phe-nomenon

Assuminganonvanishingtransition magnetimoment

ofneutrinos,ativesolarneutrinosinteratingwiththe

magnetield in theSun anbe spin-avor onverted

intosterilenoneletronneutrinos[21,22℄(ifweare

deal-ingwithDirapartiles)orintoativenoneletron

an-tineutrinos[23℄(iftheinvolvedpartilesareMajorana).

Inbothasestheresultingpartilesinteratwithsolar

(2)

nomenonanindueadepletioninthedetetablesolar

neutrinoux. Spin-avorpreessionofneutrinosanbe

resonantlyenhanedinmatter[24,25℄,inloseanalogy

with theMSW eet [16, 17℄. In this asethe

prees-sionstronglydepends ontheneutrinoenergyand

pro-vokesdierentsuppressionsforeahportionofthesolar

neutrinoenergyspetrum. ThereforeRSFP providesa

satisfatory desription [26, 27, 28, 29, 30, 31, 32℄ of

theatualexperimentalpanorama[1,2,3,4,5℄: all

ex-periments detet less than the theoretially predited

solar neutrinouxes [9, 10℄ and dierentsuppressions

are observed in eah experiment, suggesting that the

mehanismtooniliatetheoretialpreditionsand

ob-servationshastodierentiatethedierentpartsofthe

solarneutrinospetrum.

The time evolution of neutrinos interating with

a magneti eld B through a nonvanishing neutrino

magneti moment

in matter is governed by a

Shrodinger-likeequation[24, 25℄;

i d

dt

e

L

R

=

a

e

B

B

m 2

2E +a

e

L

R

;

(1)

where

e and

R

are ative eletron neutrinos and

muonantineutrinos,respetively,m 2

=m 2

m

2

e is

theirsquaredmassdiereneandEistheneutrino

en-ergy, a

e =G

F (2N

e N

n )=

p

2and a

=G

F N

n =

p

2,

with N

e and N

n

being eletron and neutron number

densities, respetively. In eq. (1) it is assumed that

neutrinos are Majorana partiles. Forthe Diraase,

thespin-avorpreessioninvolves

e $

s

,where

s is

asterile neutrinoanda

s =0.

In order to obtain the survival probability one

shouldintegratetheevolutionequations(1)with

vary-ing matter density in the Sun [11℄ for some assumed

proles of the magneti eld whih will be desribed

below. Usingthesolar neutrinoux in ref. [8℄, itwas

omputedinRef.[32℄theexpetedsolarneutrinoevent

rate in eah experiment, taking into aountthe

rele-vant absorption ross setions [11℄ for 71

Ga and 37

Cl

experimentsaswellasthesatteringrosssetionsfor

e

-e and

-e reations inludingalsotheeÆieny

funtion for the SuperKamiokande experiment in the

same way as in ref. [33℄. Note that in this analysis

it was alwaysadopted the solarmodelin ref. [8℄as a

refereneSSM.

It is obvious from theevolutionequations (1) that

the RSFP mehanism ruially depends on the solar

magneti eld prole along the neutrino trajetory.

In the analisys of Ref. [32℄ it was hosen several

dif-ferent proles whih over in general all the

previ-ously [27, 28, 29, 30, 31℄ analysed magneti proles

whihledtoasolutiontothesolarneutrinoanomaly. In

Fig.1,thesemagnetieldsarepresentedintheir

gen-eral aspets. TheonstantmagnetiproleB

1 (r)was

adoptedin referenes[29℄,whilethegeneralaspetsof

theprolesB

3

(r) andB

4

(r)havealreadyappearedin

refs. [28,30,27℄,and [31℄,respetively.

0.0

0.2

0.4

0.6

0.8

1.0

r/R

sun

B

1

(r)

B

2

(r)

B

3

(r)

B

4

(r)

<B>

2<B>

Magnetic Field Profiles

Figure1. Variousmagnetieldprolesusedinthiswork.

ForeaheldhBiisdenedastheaverageoftheeldover

theregionwhereB(r)isnotzero.

Note that lose to the solar surfae(r > 0:95R

)

themagnetieldwasswithedoforalltheproles.

2

isdenedasfollows,

2

= X

i;j (R

th

i R

obs

i )[

2

ij (tot)℄

1

(R th

j R

obs

j

); (2)

where(i;j)runthroughthree experiments,i.e., 71

Ga,

37

ClandSuperKamiokande,andthetotalerrormatrix

2

ij

(tot )andtheexpetedeventratesR

i

areomputed

asfollows. ItwasessentiallyusedtheproedureofRef.

[34℄ for the derivation of the error matrix and to

de-sribetheorrelationsoferrorsweusedin thiswork.

Inludingnowtheexperimentalobservationsonthe

solarneutrinosignalitispossibleto determinethe

re-gion in the m 2

hBi parameter spae whih leads

toaRSFPsolutiontothesolarneutrinoproblemfora

speiedondenelevel. Itispresentedthem 2

hBi

parameter region whih an aount for all the solar

neutrino data, at 90, 95 and 99%C. L. in Figs. 2(a),

(b),()and(d),forthemagnetiprolesB

1 (r),B

2 (r),

B

3

(r)andB

4

(r),respetively.

From Figs. 2 (a) to (d) one observes that a

solu-tionto thesolar neutrinoproblem anbefoundwhen

hBi >

few times10kGandm 2

istheorderof10 8

to10 7

eV 2

foranyofthemagnetiprolesusedinthis

work. Nevertheless,thequalityofthet,measuredby

theminimum 2

riterion,variesalot. Thepoorestt

is obtained when the ontinuously deaying magneti

eld proleB

4

isused, with 2

min

=6:1for one(three

data points-twofreeparameters)degreesoffreedom.

BettertsareobtainedwhentheB

1

(uniform)andB

2

(largetriangle)eldsareemployedshowing 2

min =2:0

and 1.8, respetively. And the best t appears when

thetriangulareld in thesolaronvetivezone, B

3 ,is

employed, witha rathersmall value 2

(3)

thisprole,wenotethat,asexpetedfromFig. 3()we

haveseveral loal best t pointsalso indiatedin Fig.

4()bytheopenirleswhoseorresponding 2

min are,

from lefttoright,2.3, 0.29and0.19.

10

100

<B> (kG)

10

-9

10

-8

10

-7

10

-6

m

2

(eV

2

)

90 % C.L.

95 % C.L.

99 % C. L.

(a)

200

10

100

<B> (kG)

10

-9

10

-8

10

-7

10

-6

m

2

(eV

2

)

90 % C.L.

95 % C.L.

99 % C. L.

(b)

200

0

50

100

150

200

<B> (kG)

10

-9

10

-8

10

-7

10

-6

m

2

(eV

2

)

90 % C.L.

95 % C. L.

99 % C. L.

(c)

10

100

<B> (kG)

10

-9

10

-8

10

-7

10

-6

m

2

(eV

2

)

90 % C.L.

95 % C.L.

99 % C.L.

(d)

200

Figure2. TheAllowedRSFPsolutiontothesolarneutrino

problem. The parameter regionallowed at 90, 95 and 99

%C.L.areshownin(a), (b),()and(d)forthemagneti

eld proles,B

1 ,B

2 ,B

3 and B

4

, respetively, skethedin

Fig. 1. We indiatebesttpointsbylled irles. In()

wealsoindiate,bytheopenirles,theloalbesttpoints

insideeahislanddelimitedby90%C.L.urves.

Thereason why averygood t is obtainedfor B

3

is that this prole an provide the required

suppres-sionpatternsofvarious neutrinoux impliedbylatest

the data [35℄asdisussed in ref. [30℄. Firstnote that

lowenergypp neutrinosarenotsosuppressedbeause

where the magneti eld is zero or small. However,

intermediateenergy 7

Beneutrinosanbestrongly

sup-pressed due to the rapid inrease of the eld at the

bottomoftheonvetivezonesinetheirresonane

po-sitionis inaslightlyouterregionthantheppone. On

the other hand, high energy 8

B neutrinos are

moder-atelysuppressed beausetheir resonanepositions are

losertothesolarsurfaethanthe 7

Beones,wherethe

eldisdereasing.

The best tted values of hBi and m 2

as well as

2

min

obtainedfromthesedierentprolesare

summa-rizedin TableI.

Prole hBi(kG) m 2

(10 8

eV 2

)

2

min

1 50.6(40.9) 3.5(2.3) 2.0 (6.2)

2 47.1(40.8) 6.1(4.6) 1.8 (5.7)

3 118(69.4) 1.5(1.2) 0.13(1.3)

4 82.9(81.6) 8.1(6.6) 6.1(11.4)

TABLEI.Thebestttedparametersand 2

min

forthe

Ma-joranaase. Diraase ispresentedintheparentheses.

The sameanalysis forthe Diraneutrino asewas

done. The orresponding plots for the allowed region

arenotshownheresinetheyarerathersimilartowhat

havebeen presentedabove, ifthe samemagnetield

proleis assumed. Instead, for thease ofDira

neu-trinos,weonly presentthe best tted parametersand

2

min

in the parentheses in Table I. We see from this

table that, the Dira ase always leads to a worse t

ifthe same magneti eld prole is assumed. To

un-derstandthis we should note that for the Dira ase,

e

'sareonvertedintotherighthandedmuon(ortau)

neutrino, whih do not ontribute to any of the solar

experimentsinludingthewaterCherenkovexperiment

[36℄. ThismakesitdiÆulttooniliatethedierene

betweentheSuperKamiokandeand 37

Cldata. In

on-trastintheMajoranaase,onvertedrighthanded

neu-trino

's do ontribute to the signalobserved in the

SuperKamiokandedetetor.

Let me now briey omment about the possibility

ofhavingsuhstrongmagnetield intheSun. While

thereisnogenerallyaeptedtheoryofsolarmagneti

eld,itispossibletoboundtheeldstrengthfromvery

generalarguments. Itanbeshown[11℄that the

mag-netieldlessthan10 6

kGinthesolaroreorlessthan

10 4

kGin the solaronvetivezone, will hardlyaet

the thermal struture and nulear reation proesses

well desribed by the standard solar model. These

values ome from the requirement that the magneti

pressureshouldbemuhsmallerthanthegaspressure,

andanberegardedasthemostgenerousupperlimits

of the magneti eld inside the Sun. More stringent

boundsonthemagnetieldintheonvetivezoneare

found in refs. [37, 38℄ where the disussion is based

onthenon-lineareetswhiheventuallypreventsthe

(4)

pro-required eld tensionneessary to preventa uid

ele-mentfromsinkingintoamagnetiallystratiedregion,

sothat themagneti ux would notbefurther

ampli-ed. By equating the magneti tensionto theenergy

exessofasinkingelementatthebottomofthe

onve-tive zone, Shmitt andRosner [37℄ obtained 10kG

asan upper bound for the magnetield, whih is of

theorderof themagnitudeweneedto haveagoodt

tothesolardatabyRSFPmehanismforthereferene

valueofmagnetimoment,

=10

11

B .

Finally, we briey disuss how the reoil eletron

energy spetra in the SuperKamiokande detetor will

beaeted bytheRSFPmehanism[39℄.

0.0

5.0

10.0

15.0

Neutrino Energy (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

Electron Neutrino Survival Probability

Profile 1

Profile 2

Profile 3

Profile 4

(a)

5.0

10.0

15.0

Electron Energy (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

Prediction/SSM

profile 1

profile 2

profile 3

profile 4

(b)

Figure 3. We plot in(a) eletronneutrino survival

prob-ability asafuntionof energywiththebest tted

param-eters for various eld proles. In (b) we plot reoil

ele-tronenergyspetraexpetedfromRSFPsenariousingour

best t parameters, divided by the SSM predition. The

SuperKamiokandedataare alsoshownbythe lledirles

witherrorbars. Thelast datapointinludesthe

ontribu-tionfromtheeletronswithenergylarger than14MeV.

In Fig. 3(a)weplot the eletron neutrinosurvival

probabilitiesasafuntionofneutrinoenergyusingthe

besttparameters. InFig.3(b)weplotthereoil

ele-expeted to beobserved in the SuperKamiokande

de-tetor,usingalsothebesttparametersasinFig.3(a).

In Fig. 3(b) we also plot the latest data from

Su-perKamiokande [5℄. As we an see from the plot the

observed data indiate some distortion mainly due to

thelastthreedatapointsinthehigherenergybins.We,

however, note from this plotthat it seemsdiÆult to

exlude, at thismoment, anyof ourpreditedspetra

expetedfromdierenteldproles,beauseofthe

ex-perimentalerrors. We haveto waitfor morestatistis

andmorearefulanalysisfrom theexperimentalgroup

beforedrawinganydeniteonlusion.

In onlusion, reanalysing the RSFP mehanism

as a solution to the solar neutrino problem in the

light of the latest experimental data as well as the

theoretial preditions, one nds that the quality of

the RSFPsolutionto the solarneutrino anomaly

ru-ially depends on the solar magneti eld

ongura-tionalongtheneutrinotrajetoryinsidetheSun. One

nds that the best t to the observed solar neutrino

data, whih seems to be even better than the usual

MSW solution asfarasthe totalrates areonerned,

is obtained if intensive magneti els in the

onve-tive zone is assumed, in agreement with the

onlu-sion found in ref. [30℄, whereas the linearly deaying

magneti eld gives the worst t. Note that the

re-quired magnitude of the free parameters involved in

the proess, i.e., the magneti eld strength

multi-pliedbytheneutrinomagnetimoment

hBiandthe

squared mass dierene m 2

, points to the same

or-der,

hBi fewtimes10 11

B

10 kGand m 2

fewtimes10 8

eV 2

,foranyoftheeldprolesassumed

in thiswork.

Ourignoraneabouttheproleaswellasthe

mag-nitude ofthesolarmagneti eldmakesthisapproah

to the solar neutrino observation less preditive than

itsalternativeapproahes[15,19,40℄. Neverthelessthe

preseneofthismehanismopenssomeinteresting

pos-sibilities.

Onepossibility is tolook foranytime variationof

thesolarneutrinosignal[41℄whihannotbeexpeted

inotheralternativesolutionsfoundinrefs. [15,19,40℄.

Any time variation of the solar neutrino signal whih

an be attributed to some time variation of the solar

magneti eld an be a good signature of this

meh-anism. Although SuperKamiokande has not yet

on-rmedanysignianttimevariationuptoexperimental

unertaintythispossibilityremains.

Anotherpossibility is to look for thesolar

e ux,

whih annot beproduedin the usualMSW or

va-uum osillation ase but an be produed in RSFP

mehanism if the avor mixing is inluded.

pro-dued by RSFP mehanism an be onverted into

e

by theusual vauumosillation. Ref. [42℄ suggeststo

observe(or to put upper bound of)

e

(5)

Su-energy solar neutrino experiment suh as Borexinoor

Hellaz.

We nally stress that RSFP mehanism an still

provideagoodsolutiontothesolarneutrinoproblem,

omparableinqualitytoMSWorJustSosolution,and

isnotexludedbythepresentsolarneutrinodata.

III Non-standard neutrino

in-terations

InhisseminalpaperWolfenstein[16℄observedthat

non-standardneutrinointerations(NSNI)withmatteran

also generate neutrino osillations. In partiular this

mehanism ould be relevant to solar neutrinos

inter-atingwiththedensesolarmatteralongtheirpathfrom

the ore of the sun to its surfae [44, 45, 46, 47, 48,

49, 50℄. In this ase the avor hanging neutrino

in-terations (FCNI) are responsible for the o-diagonal

elements in the neutrino propagation matrix (similar

to the m 2

sin 2

2 term induedby vauum mixing).

Formasslessneutrinosresonantlyenhanedonversions

an our due to an interplay between the standard

eletroweakneutrinointerationsandnon-universal

a-vor diagonal neutrino interations (FDNI) with

mat-ter [44,51℄.

Whilemanyextensionsofthestandardmodelallow

formassiveneutrinos,itisimportanttostressthatalso

manyNewPhysismodelspreditnewneutrino

inter-ations. Theminimalsupersymmetristandardmodel

withoutR -parityhasbeenevokedasanexpliitmodel

thatouldprovidetheFCNIandFDNIneededforthis

mehanism. Systemati studies of the data

demon-strated that resonantly enhaned osillations indued

by FCNI and FDNIformasslessneutrinos [45,49℄, or

FCNI in ombination with massive neutrinos [45, 50℄

ansolvethesolarneutrinoproblem.

Here we present the status of the solution to the

solar neutrino problem based on NSNI follwoing the

same steps of Ref. [40℄. We present a omprehensive

statistial analysis of this solution. Ouranalysis

om-prises boththemeasuredtotalratesofHomestake[1℄,

GALLEX[2℄,SAGE[3℄andSuperKamiokande[5℄and

the full SuperKamiokande data set (orresponding to

825eetivedaysofoperation)inludingthereoil

ele-tronspetrumand theday-nightasymmetry. Wehave

notinluded in our 2

analysis the seasonalvariation

butwewillommentonthiseet. Forthesolarinput

we take the solar neutrinouxes and their

unertain-tiesaspreditedinthestandardsolarmodelbyBahall

andPinsonneault(hereafterBP98SSM)[9℄. TheBP98

SSM inludeshelium and heavyelementsdiusion, as

wellasthenewreommendedvalue[12℄forthelow

en-ergy S-fator, S

17 = 19

+4

2

eV b. We also study the

dependeneoftheallowedparameterspaeonthehigh

energy 8

Bneutrinoux,byvaryingtheux

normaliza-tionasafreeparameter.

Wendthatnon-standardneutrinointerationsan

provideagoodttothesolarneutrinodataifthereare

ratherlargenon-universalFDNI(oforder 0:5G

F )and

smallFCNI(oforderafewtimes10 3

G

F

).

Neverthe-lessitisshowninRef.[40℄thatphenomenologial

on-traintsindiate thatFCNIouldonly belargeenough

to provide

e !

transitions, while

e !

transi-tionsarenotrelevantforthesolutionofthesolar

neu-trinoproblem,beauseofstrongexperimental bounds.

Large FDNI an only be indued by an intermediate

doubletofSU(2)

L

(a salaroravetorboson)orbya

neutralvetorsinglet. We onludethat the minimal

supersymmetrimodelwithbrokenR -parity[55℄isthe

favoritemodelforthissenario.

Anymodelbeyondthestandardeletroweaktheory

thatgivesrisetotheproesses

e

f !

`

f; (3)

f !

f; (4)

where (here and below) f = u;d;e and ` = ; and

=e;;, is potentially relevant forneutrino

osilla-tionsinthesun,sinetheseproessesmodifythe

ee-tivemassofneutrinospropagatingindensematter.

Theevolutionequationsformasslessneutrinosthat

interatwithmatterviathestandardweakinterations

andthenon-standardinterationsin(3)and(4)isgiven

by[44,45℄:

i d

dr

A

e (r)

A

` (r)

= p

2G

F

n

e

(r)

f

` n

f (r)

f

` n

f (r)

0 f

` n

f (r)

A

e (r)

A

` (r)

; (5)

d

whereA

e

(r)andA

`

(r)are,respetively,theprobability

amplitudestodeteta

e and

`

atpositionr. For

neu-trinosthathavebeenoherentlyproduedas

e in the

solaroreatpositionr ,theequationsin(5)aresubjet

totheboundaryonditionsA

e (r

0

)=1andA

` (r

0 )=0.

WhileW-exhangeof

e

withthebakgroundeletrons

(6)

am-plitude p 2G F n e

(r), the FCNI in (3) indue a avor

hanging forward sattering amplitude p 2G F f ` n f (r)

andthenon-universalFDNIareresponsibleforthe

a-vordiagonalentry p 2G F 0 f ` n f

(r)ineq.(5). Here

n f (r)= n n

(r)+2n

p

(r) f =u

2n

n (r)+n

p

(r) f =d

(6)

isthe respetivefermion numberdensity atposition r

in termsoftheproton [neutron℄numberdensity n

p (r) [n n (r)℄and "= f ` G f e` G F ;" 0 = 0 f ` G f `` G f ee G F ; (7)

desribe,respetively,therelativestrengthoftheFCNI

in (3), and thenew avordiagonal, but non-universal

interations in (4). G f

(; =e;;) denotesthe

eetiveouplingofthefour-fermionoperator

O f ( )(

ff): (8)

thatgivesrisetosuhinterations. TheLorentz

stru-ture of O f

depends on the New Physisthat indues

thisoperator.Operatorswhihinvolveonlyleft-handed

neutrinos(andwhihonservetotalleptonnumberL)

an be deomposed into a (V A)(V A) and

a (V A)(V +A) omponent. (Any single New

Physisontribution that isindued byhiral

intera-tions yieldsonly one of these twoomponents.) It is,

however, important to note that only the vetor part

ofthebakgroundfermionurrentaetstheneutrino

propagationforanunpolarizedmediumatrest[16,52℄.

Hene only the (V A)(V) part of O f

is relevant

forneutrinoosillationsinnormalmatter. One

meha-nismtoinduesuhoperatorsisduetotheexhangeof

heavybosons that appear in various extensions ofthe

standardmodel. Analternativemehanismariseswhen

extending the fermioni setorof the standard model

and is due to Z-indued avor-hanging neutral

ur-rents(FCNCs). Fora disussion of Z-indued FCNC

eetsonsolarneutrinos,seeRefs.[53,54℄.

Aresonaneourswhenthediagonalentriesofthe

evolutionmatrixineq.(5) oinideat somepointr

res

alongthetrajetoryoftheneutrino,leadingtothe

res-onaneondition 0 f ` n f (r res )=n

e (r

res

): (9)

AnimmediateonsequeneisthatnewFDNIforf =e

alone annot indue resonant neutrino avor

onver-sions.

As it was observed in Ref. [40℄ that only

e !

onversions are ompatible with the existing

phe-nomenologial onstraints on f ` and 0 f `

. We note

that in the minimal supersymmetri standard model

with broken R -parity[55℄ the relevantparametersare

givenby d = 0 331 0 131 4M 2 ~ b p 2G F ; 0 d = j 0 331 j 2 j 0 131 j 2 4M 2 ~ b p 2G F ; (10)

intermsofthetrilinearouplings 0

ijk

andthebottom

squarkmassM

~

b .

The neutrino evolution matrix in eq. (5) vanishes

in vauumand isnegligibly small for thematter

den-sities of the earth's atmosphere. Therefore the

prob-ability of nding an eletron neutrino arriving at the

detetorduringdaytimeiseasilyobtainedbyevolving

theequationsin(5)fromtheneutrinoprodutionpoint

to the solar surfae. Furthermore, typially there are

manyosillationsbetweentheneutrinoprodutionand

detetion point and aresonane. Therefore the phase

information before and after the resonaneis usually

lostafterintegrationovertheprodutionanddetetion

regionandonemayuselassialsurvivalprobabilities.

Thenatdaytimewehave[45℄

P day e!e =jA e (r s )j 2 ' 1 2 +( 1 2 P )os2

p m os2 s m ; (11) where r s

is the solar surfae position and in the

an-alyti expressionin eq. (11)wedenote by p m and s m ,

respetively,theeetive,matter-induedmixingatthe

neutrinoprodutionpointand atthesolarsurfae. In

terms of the New Physis parameters ", " 0

and the

fermiondensitiestheeetivemixingisgivenby[44,45℄

tan2 m = 2 f ` n f 0 f ` n f n e : (12)

Note that tan2

m = 2 e ` =( 0 e `

1) is onstant for

f = e. P

is the level rossing probability. The

ap-proximateLandau-Zenerexpressionis [44,45℄

P

=exp[ =2℄ (13)

with =4 p 2G F ( f ` = 0 f ` ) 2 0 f ` n e d dx n f ne res : (14)

Whenneutrinosarriveatthedetetorduringthenight,

amodiationofthesurvivalprobabilityhastobe

in-trodued sinethe non-standardneutrino interations

withtheterrestrialmattermayregenerateeletron

neu-trinosthat havebeentransformedin thesun.

Assum-ingthattheneutrinosreahtheEarthasaninoherent

(7)

survival probability during night-time an be written

as [56℄:

P night

e!e =

P day

e!e sin

2

s

m +P

2e (1 2P

day

e!e )

os2 s

m

:

(15)

HereP

2e

istheprobabilityofatransitionfromthestate

2

to theavor eigenstate

e

along the neutrino path

in theEarth.

For ouranalysis weassume a stepfuntion prole

for the Earth matter density, whih has been shown

to beagood approximationin otherontexts(seee.g.

Ref. [57℄ for areentanalysis of matter eets for

at-mospherineutrinos). Thentheearthmattereetson

the neutrino propagation orrespond to a parametri

resonaneandanbealulatedanalytially[25℄,

P

2e =sin

2

s

m +W

2

1 os2

s

m +W

1 W

3 sin2

s

m

; (16)

wheretheparametersW

1 andW

3

ontainallthe

infor-mationoftheEarthdensityandaredenedinRef.[25℄.

(The only dierene is that in our ase also the

o-diagonalelementoftheneutrinoevolutionmatrixvaries

when the neutrinopropagatesthrough theearth

mat-ter.)

Itisthisinterationwiththeterrestrialmatterthat

anprodueaday-nightvariationofthesolarneutrino

ux and, onsequently, a seasonal modulation of the

data. (Notethatthisseasonalvariationisofadierent

nature than the oneexpeted for vauum osillations

from thehangeofthebaselineduetotheeentriity

oftheearth'sorbitaroundthesun.)

Ourmaingoalistodeterminethevaluesof"and" 0

thatanexplaintheexperimentalobservationswithout

modifyingthestandardsolarmodelpreditions.

First we onsider the data on the total event rate

measuredbytheChlorine(Cl)experiment[1℄,the

Gal-lium (Ga) detetors GALLEX [2℄ and SAGE [3℄ and

the water Cherenkov experiment SuperKamiokande

(SK) [5℄. We ompute the allowed regions in

param-eterspaeaordingtotheBP98SSM[9℄andompare

the results with the regions obtained for an arbitrary

normalization f

B

of thehigh energy neutrino 8

B

neu-trinouxes.

Weusetheminimal 2

statistial treatmentof the

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ε

10

-3

10

-2

10

-1

10

0

ε

Ga + Cl + SK (Rates Only)

90 % C.L.

95 % C.L.

99 % C.L.

d-quark

(a)

8

B flux fixed to BP98 SSM

0.40 0.45

0.50

0.55 0.60

0.65

0.70

0.75

ε

10

-3

10

-2

10

-1

10

0

ε

Ga + Cl + SK (Rates Only)

90 % C.L.

95 % C.L.

99 % C.L.

d-quark

(b)

8

B flux free

Figure 4. Region of " = d

and "

0

= 0

d

whih an

ex-plainthetotalratesmeasuredbytheHomestake,GALLEX,

SAGEandSuperKamiokandesolarneutrinoexperimentsin

termsofnon-standardneutrinointerations withd-quarks.

(a)Thebest t (indiatedby the openirle) isobtained

for(";" 0

)=(0:0032;0:610)with 2

min

=2:44for 4 2=2

DOF.Aseond(loal) 2

minimum(indiatedbythesolid

square)is foundat (";" 0

) =(0:034;0:610) with 2

=2:63.

(b) Allowing for an arbitrary 8

B ux normalization fB,

the best t (indiated by the open irle) is obtained for

(";" 0

)=(0:022;0:590)and fB =1:36 with 2

min

=0:91for

4 3=1DOF.

InFig.4theallowedregionsintheparameterspae

of d

and

0 d

for neutrino sattering o d-quarks are

shown at 90, 95 and 99% ondene level (CL). In

Fig. 4a, the 8

B ux is xed by the BP98 SSM

pre-dition(f

B

=1). Thebest tpointofthis analysis is

foundat

d

=3:210 3

and

0 d

=0:61; (17)

with 2

min

= 2:44 for 4 2 = 2 degrees of freedom

(DOF). Allowing an arbitrary 8

B ux normalization,

a dierent best t point is obtained for ( d

;

0 d

) =

(2:210 2

;0:59) and f

B

= 1:36 with 2

min

= 0:91

for4 3=1DOF.Theresultofthisanalysisisshown

in Fig.4b. (Eetsdue to deviations of thehep

neu-trinouxfromthestandardsolarmodelpreditionare

(8)

0.36

0.38

0.40

0.42

0.44

0.46

0.48

ε

10

-4

10

-3

10

-2

10

-1

ε

Ga + Cl + SK (Rates Only)

90 % C.L.

95 % C.L.

99 % C.L.

u-quark

(a)

8

B flux fixed to BP98 SSM

0.36

0.38

0.40

0.42

0.44

0.46

0.48

ε

10

-4

10

-3

10

-2

10

-1

ε

Ga + Cl + SK (Rates Only)

90 % C.L.

95 % C.L.

99 % C.L.

u-quark

(b)

8

B flux free

Figure 5. Same as in Fig. 4 but for u-quarks. (a)

The bestt (indiatedby the openirle) is obtained for

(";" 0

) = (0:0013;0:430) with 2

min

= 2:75 for 4 2 = 2

DOF.Aseond(loal) 2

minimum(indiatedbythesolid

square)isfoundat(";" 0

)=(0:0083;0:425)with 2

=2:70.

(b) Allowing for an arbitrary 8

B ux normalization f

B ,

the best t (indiated by the open irle) is obtained for

(";" 0

)=(0:0058;0:425)andf

B

=1:34with 2

min

=0:96for

4 3=1DOF.

InFig.5theallowedregionsintheparameterspae

of u

and

0 u

for neutrino sattering o u-quarks are

shownat90,95and99% CL.InFig.5a,the 8

Buxis

xed bytheBP98 SSMpredition. Thebestt point

ofthisanalysisisfoundat

u

=1:3210 3

and

0 u

=0:43; (18)

with 2

min

=2:64fortwoDOF. Allowinganarbitrary

8

Buxnormalizationf

B

,adierentbesttpointis

ob-tainedfor( u

;

0 u

)=(5:810 3

;0:425)andf

B =1:34

with 2

min

=0:96foroneDOF.Theresultofthis

anal-ysisisshownin Fig.5b.

It isremarkablethat theneutrinoavoronversion

mehanism based on NSNI provides quite a good t

to the total ratesdespite the fat that theonversion

probabilities(11)and (15)do notdepend on the

neu-trino energy. This is unlike the ase of the vauum

and the MSW onversion mehanisms whih provide

theappropriateenergydependene toyield agoodt.

ForNSNI theonly way to distinguishbetween

neutri-nos of dierentenergies is viathe position of the

res-onane r

res

. Note that aording to eq. (9), r

res is

a funtion of " 0

only. In the Sun, n

e =n

f

(f = d;u)

is a smooth and monotoni funtion of the distane

fromthesolarenterr,allowingtouniquelydetermine

r for a given value of " 0

. Consequently, it follows

that aresonaneanonly ourif 0

d

2[0:50;0:77℄for

NSNI withd-quarks or 0

u

2[0:40;0:46℄for NSNIwith

u-quarks. Forbothasesthemajorpartofthese

inter-vals orrespondsto r

res <

0:2R

(R

beingthesolar

radius). For 0

d;u

withinthe90%CLregions(indiated

in Fig.4andFig.5) wendr

res

0:1 R

. Sine the

nulear reations that produe neutrinos with higher

energies in general take plae loser to the solar

en-ter (see hapter 6 of Ref. [11℄ for the various spatial

distributions of the neutrino prodution reations), a

resonanepositionlosetothesolarenterimpliesthat

predominantlythehighenergyneutrinosareonverted

byaresonanttransition. Forr

res

0:1R

pratially

all 8

B-neutrinos ross the resonanelayer, fewer 7

Be-neutrinospassthroughtheresonane,whilemostofthe

pp-neutrinosarenotbeaetedbytheresonanesine

their prodution region extends well beyond the

reso-nane layer. Therefore for most of theallowedregion

inFig.4andFig.5theorrespondingaveragesurvival

probabilityfulllthefollowingrelations:

hP( 8

B)i<hP( 7

Be)i<hP(pp)i: (19)

Wenotethattheaboverelationisstillvalidwhen

tak-ing into aount that a signiant fration of the pp

neutrinosrossestheresonanelayertwie, iftheyare

produed just outside resonane. This is { roughly

speaking { beause a

e

whih undergoes a resonant

avortransitionwhenenteringthesolarinterioratr

res

is reonverted into a

e

at the seondresonanewhen

itemergesagainfrom thesolarore. Inournumerial

alulationsweproperlytakeintoaounttheeetsof

suhdoubleresonanes.

Animmediateonsequeneoftherelationineq.(19)

is that as longas f

B

= 1 the NSNI solution predits

thatR

SK <R

Cl <R

Ga

,whihisinonsistentwiththe

observed hierarhy of the rates, R

Cl < R

SK < R

Ga ,

leading to a somewhat worse t than the standard

MSW solutions. However when treating f

B

as a free

parameter,forf

B

1:3 1:4theSKrateissuÆiently

enhanedtogivetheorretrelationbetweentherates.

Inthis asealsotheneutralurrentontributionfrom

;

e satteringisinreasedduetoalarger

; ux,

whihis onsistent withtheSuper-Kamiokande

obser-vations. Wendthatforthebesttpointsfor(";" 0

)in

Figs.4band5bandf

B

1:35thesurvivalprobability

for 8

B, 7

Be and pp-neutrinosare 0:24, 0:4 and 0:7,

respetively.

Next, we onsider the zenith angle dependene of

thesolarneutrinodataoftheSuperKamiokande

exper-iment. As mentioned above, NSNI with matter may

aet the neutrino propagation throughthe earth

re-sulting in a dierene between theevent rates during

day and night time. The data obtained by the

Su-perKamiokandeollaborationaredividedintovebins

ontainingtheeventsobservedatnightandonebinfor

(9)

averaged overthe period of SuperKamiokande

opera-tion: 403.2eetivedaysforthe dayeventsand421.5

eetive days for the night events. The experimental

results suggest an asymmetry between the total data

olleted during the day (D) and the total data

ob-servedduring thenight(N)[60℄:

A=2

N D

N+D

=0:0650:031(stat:)0:013(syst:):

(20)

Inordertotakeintoaounttheearthmattereet

wedene thea 2

-funtionthat haraterizesthe

de-viations ofthesixmeasured(Z obs

i

)from thepredited

(Z th

i

) values of the rate as a funtion of zenith angle

(seeRef. [40℄).

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ε

10

-3

10

-2

10

-1

10

0

ε

SK Zenith Angle Only

excluded at 99 % C.L.

95 % C.L.

90 % C.L.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ε

10

-3

10

-2

10

-1

10

0

ε

a) d-quark

0.36

0.38

0.40

0.42

0.44

0.46

ε

10

-3

10

-2

10

-1

10

0

ε

SK Zenith Angle Only

excluded at 99 % C.L.

95 % C.L.

90 % C.L.

0.36

0.38

0.40

0.42

0.44

0.46

ε

10

-3

10

-2

10

-1

10

0

ε

SK Zenith Angle Only

b) u-quark

Figure 6. Regionof"= d

and "

0

= 0d

whihisexluded

bydayandnightdata(ontainedin1+5bins)asmeasured

bytheSuperKamiokandesolarneutrinoexperimentinterms

ofnon-standardneutrinointerationswith(a)d-quarksand

(b) u-quarks. For d-quarks, thebest t (indiatedby the

open irle) is obtained for (";" 0

) = (0:251;0:620) and

Z

=0:819with 2

min

=1:10for6 3=3DOF.Aseond

(loal) 2

minimum(indiatedbythesolidsquared)isfound

at (";" 0

) =(0:0316;0:570)and

Z

=1:02 with 2

=5:20.

For u-quarks,the bestt(indiatedbythe openirle)is

obtained for (";" 0

) = (0:229;0:690) and

Z

= 0:685 with

2

min

=1:44for6 3=3DOF.

InFig.6weshowtheallowedregionsin the(";" 0

)

parameter spae for neutrino sattering o d- and

u-quarks, respetively. The ontours in Fig. 6

orre-spond to the allowed regions at 90, 95 and 99% CL.

The best t (indiatedby theopen irle) isobtained

for ( d

;

0 d

) = (0:251;0:62) and

Z

= 0:819 with

2

min

= 1:10 for neutrino sattering o d-quarks and

at ( u

; 0

u

) = (0:229;0:690) and

Z

= 0:685 with

2

min

=1:44forneutrinosattering ou-quarks

(hav-ing6 3=3DOFinbothases).

0.4

0.5

0.6

R/R

SSM

-1.0

cos(

Φ

Z

)

0.0

0.2

0.4

0.6

0.8

1.0

(

ε

,

ε

’)=(0.251,0.620)

(

ε,ε

’)=(0.018,0.585)

D

N1

N2

N3

N4

N5

a) d-quark

0.4

0.5

0.6

R/R

SSM

-1.0

cos(

Φ

Z

)

0.0

0.2

0.4

0.6

0.8

1.0

b) u-quark

(

ε

,

ε

’)=(0.091,0.430)

(

ε,ε

’)=(6.3x10

-3

,0.425)

D

N1

N2

N3

N4

N5

Figure7. Expetedzenith angle dependenewiththe our

besttvaluesof(";" 0

)determinedbytheSKZenithangle

onlyas wellas theombinedanalysisfor (a)d-quarks and

(b)u-quarks.

Finally,inFig.7weshowtheexpetedzenithangle

distributionsforSuperKamiokandeusing thevaluesof

(; 0

) determined by thebest t. Foromparison, we

alsopresentinthisguretheexpetedzenithangle

dis-tributionsfor thebest t valuesof (; 0

)found in the

ombinedanalysis (thatwillbedisussedlater).

We also onsider the measurements of the reoil

eletronspetrumbySuperKamiokande[60℄. Dataare

dividedinto 18bins. 17 ofthese bins haveawidth of

0.5MeVandaregroupedintotwobinsforasuperlow

energyanalysiswithenergiesbetween5.5MeVand6.5

MeVand15 binswithenergiesranging from 6.5MeV

(thelowenergylimit)to14MeV.Thelastbininludes

alltheeventswithenergieslargerthan14MeV.

Sinetheeletronneutrinosurvivalprobabilitydoes

not depend on the neutrino energy in the NSNI

se-nario,thespetraldistortionofthereoileletronsfrom

8

B neutrino due to the presene of a

;

omponent

in the neutrino ux is expeted to be very small [61℄

and therefore, even a relatively small spetral

distor-tion (suh as the one expeted in small mixing angle

MSWsolution)ouldruleoutthissolution.

The 2

-funtion that haraterizes the deviations

of the measured (S obs

i

) from the predited (S th

i )

val-uesforthe eletronreoilspetrumtherefore provides

(10)

present data to our senario we obtain 2

min

= 20:0

for 18 1=17 DOF, whih is still aeptable at the

27% CL.

Theearth matter eets on neutrino avor

transi-tions indue aseasonal variation of the data (beyond

theexpetedvariationofthesolarneutrinouxdueto

the eentriity of the earth's orbit) due to the

varia-tion ofthe day andnight timeduring the year. Sine

these variationsan be relevant to other neutrino

os-illation senarios [62℄, a positive signal ouldhelp to

distinguish the various solutions and it is worthwhile

to analyze theeets of suh avariation in the NSNI

senario.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ε

10

−3

10

−2

10

−1

10

0

ε

Ga + Cl + SK (Rates + Zenith + Spectrum)

90 % C.L.

95 % C.L.

99 % C.L.

d−quark

(a)

8

B flux fixed to BP98 SSM

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ε

10

−3

10

−2

10

−1

10

0

ε

Ga + Cl + SK (Rates + Zenith + Spectrum)

90 % C.L.

95 % C.L.

99 % C.L.

d−quark

(b)

8

B flux free

Figure 8. Theallowedregion for " = d

and "

0

= 0d

ob-tained by the ombined analysis using 4 rates +6 zenith

angle bins+ 18 spetrum bins for non-standard neutrino

interations with d-quarks. (a) Fixing fB = 1 the best

t (indiated by the open irle) is obtained for (";" 0

) =

(0:028;0:585) with 2

min

= 29:05 for 28 4 = 24 DOF.

There are two additional (loal) 2

minima at (";" 0

) =

(0:0033;0:610) with 2

= 29:40 (indiated by the solid

square)and (";" 0

)=(0:21;0:61)with 2

=33:1(indiated

by the ross). (b)Same as in(a) butallowing afree f

B .

The bestt (indiatedby the openirle) is obtained for

(";" 0

)=(0:018;0:585)andf

B

=1:38with 2

min

=26:62for

28 5=23DOF.

ThepresentSKsolarneutrinodatadonotprovide

anyonlusiveevidenein favorofsuhavariation. It

onlyindiatesthatthevariationmightbelargerfor

re-oileletronenergiesabove11.5MeV.Inoursenario,

however,wedonotexpetanyorrelationbetweenthe

seasonalvariationandthereoileletronenergies,sine

theeletronneutrinosurvivalprobabilitydoesnot

de-parametersthatleadstoaonsiderableseasonal

modu-lationforenergiesabove11.5MeVisdisfavoredbythe

data forlowerenergies. However,forthe rangeof

pa-rameters(";" 0

)that ansolvethesolarneutrino

prob-lem,earthregenerationeetsareneverstrongenough

to indue a signiant seasonalvariation. Hene

tak-ingintoaountthedataonseasonalvariationsneither

hanges the shapeof theallowed region, northe best

tpoints.

0.36

0.38

0.40

0.42

0.44

0.46

0.48

ε’

10

-4

10

-3

10

-2

10

-1

ε

Ga + Cl + SK (Rates+Zenith+Spectrum)

90 % C.L.

95 % C.L.

99 % C.L.

u-quark

a)

8

B flux fixed to BP98 SSM

0.36

0.38

0.40

0.42

0.44

0.46

0.48

ε

10

-4

10

-3

10

-2

10

-1

ε

90 % C.L.

95 % C.L.

99 % C.L.

b)

8

B flux free

u-quark

Ga+Cl+SK (Rates+Zenith+Spectrum)

Figure 9. Same as inFig. ?? butfor u-quarks. (a)

Fix-ing f

B

= 1 the best t (indiated by the open irle) is

obtainedfor (";" 0

)=(0:0083;0:425)with 2

min

=28:45for

28 4=24 DOF.A seond(loal) 2

minimumis found

at (";" 0

) = (0:0013;0:430) with 2

= 30:27 (indiated by

thesolidsquare)(b)Sameasin(a)butallowingafreefB.

The bestt (indiated by the openirle) is obtained for

(";" 0

)=(0:0063;0:426)and fB =1:34 with 2

min

=26:59

for28 5=23DOF.

Our nal result is the t derived from the

om-bined analysis of all presentlyavailable solar neutrino

data. In Fig. 8 and Fig. 9 we show the allowed

re-gionsfor( d

;

0 d

)and( u

;

0 u

),respetively,usingboth

the results from the total rates from the Chlorine,

GALLEX,SAGEandSuperKamiokandesolarneutrino

experiments together with the 6 bins from the

Su-perKamiokandezenithangledatadisussedpreviously.

Although addingthespetralinformationto our

anal-ysis does nothange the shape of allowed regions nor

thebestt points,itisinludedin ordertodetermine

the quality ofthe globalt. However, wedo nottake

(11)

Forneutrinosatteringo d-quarksthebestt for

theombineddataisobtainedfor

d

=0:028 and

0 d

=0:585 (21)

with 2

min

=29:05for28 4=24DOF,orresponding

to a solution at the 22% CL (see Fig. 8a). Allowing

f

B

6=1,thebesttisfoundat( d

;

0 d

)=(0:018;0:585)

and f

B

= 1:38 with 2

min

= 26:62 for 28 5 = 23

DOF, orrespondingto asolutionat the27% CL(see

Fig.8b). Forneutrino satteringou-quarksthe best

tfortheombineddataisobtainedfor

u

=0:0083 and

0 u

=0:425 (22)

with 2

min

=28:45 for 28 4 =24 DOF

orrespond-ing to a solution at the 24% CL (see Fig. 9a).

Al-lowingf

B

6=1, the best t is obtained for ( u

;

0 u

) =

(0:0063;0:426) and f

B

= 1:34with 2

min

= 26:59 for

28 5= 23 DOF, orresponding to a solution at the

27% CL (see Fig.9b). These resultshaveto be

om-pared with the t for standardmodel neutrinos, that

do not osillate(where theCL is smaller than 10 7

),

as well as to the standard solutionsof the solar

neu-trino problem in terms of usual neutrino osillations

(36%CL)[18,19℄.

Finally, in Fig.7 weshowthe expeted zenith

an-gle distributions for SuperKamiokande using the best

ttedvaluesof(; 0

)from theombinedanalysis.

Aordingtoour 2

analysisnon-standardneutrino

interations (NSNI) an provide a good t to the

so-lar neutrinodata provided that there are rather large

non-universalFDNI(oforder0:5G

F

)and smallFCNI

(oforder10 2

10 3

G

F

). Thetto theobserved

to-tal rate, day-nightasymmetry, seasonalvariationand

spetrum distortion of the reoil eletron spetrum is

omparableinqualitytotheoneforstandardneutrino

osillations.

From the model-independent analysis of Ref. [40℄

weleranthatNSNI induedbytheexhangeof heavy

bosons annot provide large enough

e

!

transi-tions, while

e

FCNI in priniple ould be

suÆ-iently strong. However, the urrent bounds will be

improved by the up-oming B-fatories, providing an

independent test of the NSNI solution. The required

largenon-universalFDNI(for

e

transitionsintoboth

and

) anbe ruled out by the upper bounds on

leptonuniversality,unlesstheyareinduedbyan

inter-mediatedoubletofSU(2)

L

(asalaroravetorboson)

or bya neutralvetorsinglet. For

e !

there

ex-ists abound due tothe limitonompositeness inthis

ase, butfor

e !

thereis nosigniantonstraint

at present.

Generiallyonlyveryfewmodels anfulll the

re-quirements needed for the solution disussed in this

paper: massless neutrinos, small FCNI and relatively

large non-universal FDNI. As for the vetor bosons

themost attrativesenario is to evokean additional

U(1)

B 3L

gauge symmetry (where B is the baryon

numberandL

denotesthetauleptonnumber),whih

would introdue anadditionalvetorsinglet that only

ouplestothethirdgenerationleptonsandquarks[63℄.

Among the attrative theories beyond the standard

modelwhereneutrinosarenaturallymasslessasaresult

of a proteting symmetry, are supersymmetri SU(5)

models[64℄ thatonserveB L,and theorieswithan

extendedgaugestruturesuhasSU(3)

C

SU(3)

L

U(1)

N

models [65℄,where a hiral symmetryprevents

the neutrino from getting a mass. These partiular

models,however,donotontributesigniantlytothe

spei interations we are interested in this paper.

SU(5)modelshavenegligibleNSNI sinetheyare

me-diatedbyvetorbosonswhihhavemassesattheGUT

sale. SU(3)

C

SU(3)

L

U(1)

N

models an provide

large

e and

0

e

, but thesemodelsdo notindue NSNI

withquarks. Fromeq. (9) it follows that noresonant

onversionanourinthis ase.

Therefore we onludethat the best andidate for

the senario we studied are supersymmetri models

withbrokenR -parity,wheretherelevantNSNIare

me-diated by a salar doublet, namely the \left-handed"

bottom squark. Although in this model neutrino

masses are not naturally proteted from aquiring a

mass, one may either evoke an additional symmetry

orassume that non-zeroneutrino masses are not in a

rangethatwouldspoilthesolutionintermsofthe

non-standardneutrinoosillations.

IV Violation of the equivalene

priniple

Letme brey mentionthat adierent solutionto the

solar neutrino anomaly based on the violation of the

equivalenepriniplewasreentlyrevisited[72℄. Inthis

ontext,neutrinomixing andavorosillationsare

in-duedby gravitationalfores. It isassumed that

neu-trinosofdiferentspeieswill inurdierenttimedelay

totheweak,statigravitationalledintheintervening

spae on their way from the sun to the earth. Their

motioninthisgravitationaleldisdesribedassuming

adierentneutrinogravitationalouplingforeah

neu-trinotype. In this way, weak intereating eigenstates

andgravitationalinteratingeigenstateswillberelated

byaunitarytransformationthat anbeparametrized,

assumingonlytwoneutrinoavors,byasingle

param-eter, the mixing angle

G

whih an leadto neutrino

osillations. Theevolutionequationsfor these avors,

whihareassumedtobedegenerateinmass,

propagat-ingthroughthegravitationalpotential(r)inabsene

(12)

i d

dt

e

x

=2E(r)

os2

G

sin2

G

sin2

G

os2

G

e

x

; (23)

d

where E istheneutrinoenergy,

x =

;

or

S

;

is the quantity whih measures the magnitude of the

violationof theequivalene prinipleand itis the

dif-ferene ofthe gravitationalouplingsbetweenthetwo

neutrinosinvolvednormalizedbythesum.

Case sin 2

2

G

jj f

B

2

min

Rates 1.0 1.71 x=1 1.49

Rates 1.0 1.70 0.81 0.32

Spetrum 0.98 1.00 0.80 15.8

Combined 1.0 1.65 0.82 22.0

TABLEII.Thebestttedparametersand 2

min forthe

violationoftheequivalenepriniplesenario.

Applying the same statistial treatment shown in

Ref. [34℄, the allowed region in the parameter spae

jjsin 2

2

G

determinedonlybytheratesisshown

inFig.10(a),whihwastakendiretlyfromRef. [72℄.

Itwasfoundthat,onsideringafreenormalization

fa-torf

B forthe

8

B neutrino ux, 2

mim

=0:32 for3-3

degrees of

10

−24

10

−23

10

−22

|

φ∆γ|

0.0

0.2

0.4

0.6

0.8

1.0

sin

2

2

θ

G

10

−26

10

−25

10

−24

10

−23

10

−22

|

φ∆γ|

0.0

0.2

0.4

0.6

0.8

1.0

sin

2

2

θ

G

10

−24

10

−23

|

φ∆γ|

90 % C.L.

95 % C.L.

99 %.C.L.

(b) SK Spectrum Only

Cl+Ga+SK

8

B flux free

8

B flux free

(c) Rates

8

B flux free

+ SK Spectrum

(a) Rates Only

Figure 10. Allowed parameter region for (a) the rates,

(b) SuperKamiokande spetrum, and () rates plus

Su-perkamiokandespetrumombined. Thebesttpointsare

indiatedbytherossesandtheloalbesttpointsinother

90%C.L.islandsareindiatedbytheopenirles.

freedom. Consideringaspetralshapeanalysis, 2

mim =

Fig.10(b). Finally, theombinedresult (rates

+spe-trum) is shown in Fig. 10(), whih provides 2

mim =

22.0 for 21-3 degrees of freedom. Details of this

pi-ture andthe valuesof thebest t points arefound in

TableII.

In onlusion, a solution to the solar neutrino

anomaly whih is oomparable in quality of the t to

theothersuggestedones,anbefoundbymeansofthe

violationoftheequivalenepriniple.

V Conlusion

Even though the onventional osillation mehanisms

an be onsidered the most plausible solutions to the

solarneutrinoproblem,itisimportanttorealizethatin

generalNewPhysisintheneutrinosetorinlude

neu-trinomassesandmixing,aswellasnewneutrino

inter-ationswhihangenerate,inpriniple,largeneutrino

magneti moment, neutrino avor-hangingand

non-universal proesses, violation of the equivalene

prin-iple. While it is diÆult to explain the atmospheri

neutrino problem [74℄ and the LSND anomalies [75℄

by these alternative mehanisms, we have shown in

this review that asolutionof thesolar neutrino

prob-lembasedonphenomenawhiharenottheonvention

mass-indued neutrino osillationsis still viable. The

ultimate goal is of ourse a diret experimental test

ofthesesolution. Theupomingsolarneutrino

experi-mentswillprovidealotofnewinformationwhih

hope-fully will reveal the true nature of the solar neutrino

problem.

Referenes

[1℄ T.B. Clevelandet al.(Homestake Collaboration),

As-trophys.J.496,505(1998).

[2℄ W. Hampel et al. (GALLEX Collaboration), Phys.

Lett.B447,127(1999).

[3℄ J.N.Abdurashitovetal.(SAGECollaboration),Phys.

Rev.C60,055801(1999).

[4℄ Y. Fukuda et al. (Kamiokande Collaboration), Phys.

Rev.Lett.77,1683 (1996).

[5℄ Y. Fukuda et al. (SuperKamiokande Collaboration),

Phys.Rev.Lett.82,1810 (1999).

(13)

[7℄ J.N. Bahall, M.H. Pinsonneault, S. Basu and J.

Christensen-Dalsgaard, Phys. Rev. Lett. 78, 171

(1997).

[8℄ J. N.Bahall, S.Basuand M.H.Pinsonneault, Phys.

Lett.B433,1(1998).

[9℄ J.N. Bahall, S. Basu and M.H. Pinsonneault, Phys.

Lett. B433, 1 (1998); see also J.N. Bahall's home

page, http://www.sns.ias.edu/

jnb.

[10℄ See also, J.N. Bahall and R.K. Ulrih, Rev. Mod.

Phys.60,297(1988); J.N. Bahalland M.H.

Pinson-neault, Rev. Mod. Phys. 64, 885 (1992); S.

Turk-Chiezeetal.,Astrophys.J.335,415(1988);S.

Turk-Chieze and I. Lopes, Astrophys. J. 408, 347 (1993);

V.Castellani,S.Degl'InnoentiandG.Fiorentini,

As-tron.Astrophys.271,601(1993);V.Castellanietal.,

Phys.Lett.B324,425(1994).

[11℄ J.N. Bahall, Neutrino Astrophysis, Cambridge

Uni-versityPress,1989.

[12℄ E.G. Adelberger et al., Rev. Mod. Phys. 70, 1265

(1998).

[13℄ For adetailedlistof thereferenes onthesesolutions

see: \Solar Neutrinos: The First Thirty Years", ed.

by R. Davis Jr. et al., Frontiers in Physis, Vol. 92,

Addison-Wesley,1994.

[14℄ Seeforexample:

D.O.CaldwellandR.N.Mohapatra,Phys.Rev.D48,

3259 (1993); J. T. Peltoniemi, D. Tommasini, and

J.W.F. Valle, Phys. Lett. B 298, 383 (1993); J.T.

Peltoniemi and J.W.F.Valle, Nul.Phys.B406,409

(1993); G.Dvaliand Y.Nir, JHEP 9810, 014(1998)

[hep-ph/9810257℄;G.M.Fuller,J.R.Primakand

Y.-Z. Qian, Phys. Rev.D52, 1288 (1995); J. J.

Gomez-Cadenasand M.C.Gonzalez-Garia, Zeit.furPhysik

C71,443(1996);N.OkadaandO.Yasuda,Int.J.Mod.

Phys.A12,3669(1997),andreferenestherein.

[15℄ V.N.GribovandB.M.Ponteorvo,Phys.Lett.B28,

493(1969).

[16℄ L.Wolfenstein,Phys.Rev.D17,2369(1978).

[17℄ S.P.MikheyevandA.Yu.Smirnov,Sov.J.Nul.Phys.

42,913(1985);NuovoCimentoC9,17(1986).

[18℄ J.N. Bahall, P.I.Krastev and A.Yu.Smirnov, Phys.

Rev. D58, 096016 (1998) [hep-ph/9807216℄; Phys.

Rev.D60,093001(1999)[hep-ph/9905220℄.

[19℄ M.C. Gonzalez-Garia, P.C. de Holanda, C. Pe~

na-Garay and J.W.F.Valle, Nul.Phys.B573 (2000) 3

[hep-ph/9906469℄.Holanda

[20℄ G.L.Fogli,E.Lisi,D.MontaninoandA.Palazzo,Phys.

Rev.D62(2000)0130032[hep-ph/9912231℄.

[21℄ A.Cisneros, Astrophys.SpaeSi. 10,87(1971).

[22℄ L. B.Okun,M. B.Voloshin,andM. I.Vysotsky,Sov.

Phys.JETP64,446(1986).

[23℄ J. Shehterand J.W. F.Valle, Phys.Rev.24,1883

(1981);ibid25,283(1982).

[24℄ C. S.Lim and W. J. Mariano, Phys. Rev.37, 1368

(1988).

[25℄ E.Kh.Akhmedov,Sov.J.Nul.Phys.48,382(1988);

[26℄ For reviews, see for e.g., J. Pulido, Phys. Rep 211,

167(1992); E. Kh. Akhmedov, talk presented at 4th

International Solar Neutrino Conferene, Heidelberg,

Germany, April 1997, hep-ph/9705451 and referenes

therein.

[27℄ E.Kh.Akhmedov,A.Lanza, andS.T.Petov, Phys.

Lett.B303,85(1993).

[28℄ P.I.Krastev,Phys.Lett.B303,75(1993).

[29℄ C.S. Lim and H. Nunokawa, Astropart. Phys. 4, 63

(1995).

[30℄ J.Pulido,Phys.Rev.D57,7108 (1998).

[31℄ B.C.Chauhan,U.C.PandeyandS.Dev,Mod.Phys.

Lett.A13,1163(1998).

[32℄ M.M.Guzzoand H. Nunokawa,Astrop. Phys.12, 87

(1999).

[33℄ J. N. Bahall, P. I. Krastev and E. Lisi, Phys. Rev.

C55,494(1997).

[34℄ G.L.FogliandE.Lisi,Astro.Part.Phys.3,185(1995).

[35℄ H. Minakata and H. Nunokawa, Phys. Rev. D59,

073004(1999),andreferenestherein fortheprevious

works.

[36℄ Notethat, stritlyspeaking, suhright handedmuon

(ortau)neutrinos anontributetowaterCherenkov

detetor though eletromagneti interationprovided

that

islargeenough.However, suhontributionis

smallenoughtobenegletedforthemagnetimoment

weareassuminginthiswork.

[37℄ J. Shmitt and R. Rosner, Astrophys. J. 265, 901

(1983).

[38℄ X.Shietal.,Comm.Nul.Part.Phys.21,151(1993).

[39℄ J.Pulido,hep-ph/9808319.

[40℄ S. Bergmann, M.M. Guzzo, P.C. de Holanda, P.

KrastevandH.Nunokawa,Phys.Rev.D(2000)073001

[hep-ph/0004049℄.

[41℄ M.M.Guzzo,N.ReggianiandJ.H.Colonia,Phys.Rev.

D56, 588 (1997); M. M. Guzzo, N. Reggiani, P. H.

Sakanaka,Phys.Lett.B357,602(1995).

[42℄ G.Fiorentini,M. MoretiandF.L.Villante, Phys.Lett.

B413,378(1997).

[43℄ S.Pastor, V.B.Semikoz and J.W.F.Valle, Phys.Lett.

B423,118(1998).

[44℄ M.M.Guzzo, A.MasieroandS.T.Petov,Phys.Lett.

B260,154(1991).

[45℄ V. Barger, R.J.N. Phillips and K. Whisnant, Phys.

Rev.D44,1629(1991).

[46℄ E.Roulet,Phys.Rev.D44,935(1991).

[47℄ S.Degl'InnoentiandB.Rii,Mod.Phys.Lett.A8,

471(1993).

[48℄ G.L.FogliandE.Lisi,AstropartilePhys.2,91(1994).

[49℄ P.I.KrastevandJ.N.Bahall,\FCNCsolutionstothe

solarneutrinoproblem",hep-ph/9703267.

(14)

[51℄ Resonant neutrino onversion indued by

non-orthogonal massless neutrinos was rst disussed by

J.W.F. ValleinPhys.Lett. B199,432 (1987).

How-everthis mehanism annot indue a large eet on

thesolarneutrinosduetothestringentonstraintson

themodelparameters.SeealsoRefs.[53,54 ℄.

[52℄ S.Bergmann,Y.Grossman andE. Nardi,Phys.Rev.

D60,093008(1999)[hep-ph/9903517℄.

[53℄ P. Langaker and D. London, Phys. Rev. D38, 886

(1988);ibid38,907(1988);H.Nunokawa,Y.-Z.Qian,

A. Rossi and J.W.F. Valle, Phys. Rev. D54, 4356

(1996)[hep-ph/9605301℄,andreferenestherein.

[54℄ S.Bergmann and A. Kagan, Nul.Phys. B538,368

(1999)[hep-ph/9803305℄.

[55℄ C.S.AulakhandN.R.Mohapatra,Phys.Lett. B119,

136(1983);F.Zwirner,Phys.Lett.B132,103(1983);

L.J. Hall and M. Suzuki, Nul. Phys. B231, 419

(1984); J. Ellis et al.,Phys.Lett. B150, 142(1985);

G.G. Ross and J.W.F. Valle, Phys.Lett. B151,375

(1985);R.BarbieriandA.Masiero,Phys.Lett.B267,

679(1986).

[56℄ S.P.MikheyevandA.Yu.Smirnov,Sov.Phys.Usp.30,

759(1987).

[57℄ M.FreundandT.Ohlsson,hep-ph/9909501.

[58℄ E.Kh.Akhmedov,Nul.Phys.B538,25(1999).

[59℄ G.L.Fogli,E.LisiandD.Montanino,Phys.Rev.D49,

3226(1994).

[60℄ Y.Suzuki,\SolarNeutrinos",talkgivenattheLepton

PhotonConferene,1999.

[61℄ See Fig. 8.2 of Ref. [11 ℄ for the reoil eletron

spe-trashape from 8

Bneutrinodueto

e e !

e e and

; e !

;

e sattering.

[62℄ P.C.de Holanda, C.Pe~na-Garay, M.C.Gonzalez-Garia

andJ.W.F.Valle,Phys.Rev.D60(1999)093010.

[63℄ E.MaandD.P.Roy,Phys.Rev.D58,095005(1998)

[hep-ph/9806210℄,E.Ma,Phys.Lett.B433,74(1998)

[hep-ph/9709474℄.

[64℄ L.J. Hall, V.A. Kosteleky, S. Raby, Nul. Phys.

BB267415(1986);Y.Okada,hep-ph/9809297.

[65℄ F.PisanoandV.Pleitez,Phys.Rev.D46,410(1992);

P.Frampton,Phys.Rev.Lett.69,2889(1992).

[66℄ E.G.Adelberger etal., astro-ph/9805121,Rev.Mod.

Phys.,70,1265 (1998).

[67℄ E.Roulet,Phys.Rev.D44,935(1991).

[68℄ Seefore.g,N.HataandP.Langaker,Phys.Rev.D56,

6107 (1997); G. L. Fogli, E. Lisi and D. Montanino,

Astropart. Phys. 9, 119 (1998); J. N. Bahall, P. I.

KrastevandA.Yu.Smirnov,inref.[18 ℄.

[69℄ H. Minakataand H. Nunokawa, Phys. Rev.Lett. 63,

121 (1989); A. B. Balantekin, P. J. Hathell and F.

Loreti,Phys.Rev.D41,3583(1990).H.Nunokawaand

H. Minakata, Phys. Lett. B314, 371 (1993); E. Kh.

Akhmedov, A. Lanza, and S.T. Petov, Phys. Lett.

B348,124(1995).

[70℄ C.Caso etal.,TheEuropeanPhysial Journal C3,1

(1998).

[71℄ We note, however, that the more stringent bound,

<310 12

B

, isobtained from theargument of

theoolingoftheredgiants,inG.Raelt,Phys.Rev.

Lett.64,2856 (1990).

[72℄ A.Gago,H.NunokawaandR.Z.Funhal,Phys.Rev.

Lett.84,4035 (2000).

[73℄ M.Gasperini,Phys.Rev.D38,2635(1988);39,3606

(1989).

[74℄ Forreentanalysis,seee.g.: M.C.Gonzalez-Garia,et

al., D 58, 033004 (1998); M.C. Gonzalez-Garia, H.

Nunokawa,O.L.G.Peres and J.W.F. Valle, B 543,3

(1999)[hep-ph/9807305℄;N.Fornengo,M.C.

Gonzalez-GariaandJ.W.F.Valle,hep-ph/0002147.

[75℄ C.Athanassopoulosetal.(LSNDCollaboration),Phys.

Rev.Lett.77,3082 (1996);Phys.Rev.Lett.81,1774

Imagem

Figure 1. Various magneti eld proles used in this work.
Figure 2. The Allowed RSFP solution to the solar neutrino
Figure 3. We plot in (a) eletron neutrino survival prob-
Figure 5. Same as in Fig. 4 but for u-quarks. (a)
+4

Referências

Documentos relacionados

a Ward identity for large gauge invariane whih will. relate dierent amplitudes muh like the

the low energy sattering of two fermions, in this theory, using a ut o (up to one loop), give the same results. as the alulation of the same quantities starting from the

toroidal ows indued by Alfv en waves on transport proesses in the edge of elongated tokamak..

the generalized GDH sum rule, whih are of interest to issues related to the spin of the proton as.. measured at high energies,

model: the presene of nonbaryoni \dark matter&#34; in galaxies.. Using Newton's law

Studies of blak hole formation from gravitational ollapse have revealed interesting non-linear.. phenomena at the threshold of blak

We onsider the saling behavior in the ritial domain of superondutors at zero external

trap and laser system being built in Rio, to trap and perform high resolution spetrosopy on.. old hydrogen, is presented along with a disussion on the tehniques and