• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número2"

Copied!
7
0
0

Texto

(1)

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Comparison

and

evaluation

of

two

methods

for

the

pesticide

residue

analysis

of

organophosphates

in

yerba

mate

Lucía

Pareja

a

,

Silvina

Niell

a

,

Zisis

Vryzas

b,1

,

Joaquín

González

c

,

María

Verónica

Cesio

a,c

,

Euphemia

P.

Mourkidou

b

,

Horacio

Heinzen

a,c,∗

aPoloAgroalimentarioyAgroindustrial,DepartamentodeQuímicadelLitoral,CentroUniversitariodePaysandú,UniversidaddelaRepública,EstaciónExperimentalMarioCassinoni,

Ruta3,Km363,Paysandú,Uruguay

bAristotleUniversityofThessaloniki,PesticideScienceLaboratory,P.O.Box1678,54124Thessaloniki,Greece

cFarmacognosiayProductosNaturales,DepartamentodeQuímicaOrgánica,FacultaddeQuímica,UdelaR,GeneralFlores2124,11800Montevideo,Uruguay

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16July2014 Accepted2February2015 Availableonline21March2015

Keywords:

Yerbamate Pesticideresidues QuEChERS MAE GC–FPD

a

b

s

t

r

a

c

t

MicrowaveAssistedExtractionandamodifiedCEN-QuEChERSmethodologywereevaluatedas extrac-tionandcleanupproceduresforthesimultaneousanalysisof42organophosphatepesticidesinyerba mate(Ilexparaguaiensis).Theobtainedextractswereanalyzedbygaschromatographyusingaflame photometricdetector.Linearity,recoverypercentages,relativestandarddeviations,detectionand quan-tificationlimitsandmatrixeffectsweredeterminedaccordingtoDG-SANCOguidelinesforbothmethods. At0.2and0.5mg/kgtheevaluatedmethodsshowedpercentagesrecoveriesbetween70and120%for mostoftheanalytes.UsingMicrowaveAssistedExtractionmethodology,33pesticideresiduescouldbe properlyanalyzedwhereasonly27couldbedeterminedwiththeproposedmodifiedQuEChERS.All rel-ativestandarddeviationwerebelow18%exceptforomethoateanddisulfotonsulfonewhenevaluated bythemodifiedQuEChERS.Thelimitsofdetectioninbothmethodologieswere0.2mg/kgformostof theanalyzedcompounds.TheaveragedetectionlimitforQuEChERSwas0.04mg/kg.For19ofthe ana-lytesdeterminedthroughMicrowaveAssistedExtractionthelowestvalidatedlevelwere0.004mg/kg. Signalsuppression/enhancementwasobservedformostofthepesticides,thusmatrix-matched calibra-tioncurveswereusedforquantification.TheMicrowaveAssistedExtractionandQuEChERSprocedures studiedcoulddetecttheorganophosphatepesticidesabovetheMRLfixedfor“mate”bytheEuropean Union.Theyhavebeensuccessfullyappliedforthedeterminationoforganophosphatepesticideresidues incommercialsamplesandthepositiveswereconfirmedthroughGC–(ITD)-MS.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

IlexparaguariensisA.St.-Hil.,Aquifoliaceae,isanativetreefrom theRiodelaPlatabasininSouthAmerica.Ithasbeencultivated sincecolonialtimes.Nowadays,300,000tonsofprocessedleaves

areconsumedeach year,which areusedtoprepareaninfusion

calledMate,thenationalbeverageofUruguay,Argentina,southern Brazil,andParaguay.Theartofmatedrinkinghasbeendescribed

∗ Correspondingauthorat: PoloAgroalimentarioy Agroindustrial, Departa-mentodeQuímicadelLitoral,CentroUniversitariodePaysandú,Universidadde laRepública,EstaciónExperimentalMarioCassinoni,Ruta3,Km363,Paysandú, Uruguay.

E-mail:heinzen@fq.edu.uy(H.Heinzen).

1Presentaddress:DemocritusUniversityofThrace,FacultyofAgricultural

Devel-opment,LaboratoryofAgriculturalPharmacology&Ecotoxicology,193,Pantazidou str.68200,N.Orestiada,Greece.

byPérezParadaetal.(2010),Jacquesetal.(2007)andVázquez

andMoyna(1986).Thistraditionalbeverageisreputedtohavea

characteristicbittertasteandhepatoprotective,choleretic, hypoc-holesteremic, antioxidant, antirheumatic, diuretic and lipolitic properties(Filipetal.,2001).

Asanyothercrop,yerbamateisattackedduringfarmingby pests,especially mites,leaf-eatingbeetlesand caterpillars forc-ing theuseof organophosphate insecticides, that left pesticide residues.AsyerbamatehasbeenbeingsoldsteadilyinEuropealone orincombinationwithotherherbsasenergyteaorasaweight reductionaid(Andradeetal.,2012;Hecketal.,2007)the Euro-peanUnionhasestablishedMRLofpesticideresiduesontheleaves

(EuropeanCommission,2005).

Yerbamateisacomplexmatrixforpesticideresiduesanalysis dueitschemicalcomposition(naturalpigments,lipids,vitamins andsecondarymetabolites:polyphenols,saponins,andxanthines likecaffeineand theobromine)(Hecketal., 2007;Vázquez and

http://dx.doi.org/10.1016/j.bjp.2015.02.001

(2)

Moyna, 1986), and only few studieshave beenreported(Pérez

Parada et al., 2010; Jacques et al., 2006). Particularly, caffeine

andsaponinsareco-extractedwithpesticidesastheyhave sim-ilar physicochemical properties. Large amounts of caffeine and saponinscontaminatetheinjectorandthedetectoroftheGC sys-tem,interferingwiththedeterminationofpesticideresidues(Xu

etal.,2011;PérezParadaetal.,2010).Thegaschromatographic

separation of pesticides has been reviewed. Several analytical

strategies and column types have been proposed for pesticide

residueanalysisinmatricessuchastea,tobaccoandherbs(Liuand

Min,2012;Khanetal.,2014).

Theactualtrendforpesticideresiduesdeterminationattrace levelsseeksforvalidatedanalyticalmethodswithshorteranalysis timeandhighersamplethroughput(Chenetal.,2011).Considering matea“tea-like”matrix,thereareseveralmethodologiesreported fortheanalysisofpesticideresiduesinmadetea,teainfusionand spentleaves.Thesemethodsinclude,forexample,extractionwith differentsolventslikeethylacetate(EtOAc),cyclohexaneor ace-tonitrile,combinedwithdifferentcleanupprocedures;suchasgel permeation,andsolidphasecleanup,eitherdispersiveorusing car-tridges,followedbyliquidorgaschromatographyanalysis,coupled tomassdetectors(Huangetal.,2007,2009;Kanraretal.,2010).

Lozanoetal.(2012)andCajkaetal.(2012),describedthe

applica-tionofamodifiedQuEChERSforthedeterminationofpesticides indifferenttypesofteas.TheQuEChERSapproachisavery flex-ibleoneasitisatemplate toadapt theprocedureaccordingto analyteproperties,matrixcomposition,equipmentandanalytical techniquesavailableinthelaboratory(Anastassiadesetal.,2003). QuEChERSbasedmethodshavebeenusedtoassesfoodsafetyand environmentalsustainability.SeveralreportsonQuEChERS appli-cationsinherbshavebeendevelopedbuttherearenoreportson QuEChERSfortheanalysisofpesticideresiduesinyerbamateleaves

(Sadowska-Rocieketal.,2013;Attallahetal.,2012;Lozanoetal.,

2012;Chenetal.,2011,2012a,b;Nguyenetal.,2010;Haywardetal.,

2013).

Some other methodologies employing pressurized liquid

extraction,dispersiveliquid–liquidmicroextractionanddispersive solidphaseextractionhavebeendescribedintheliteratureforthe analysisofpesticideresiduesintea(Nguyenetal.,2010;Moinfar

etal.,2009;Choetal.,2008).Microwaveassistedextraction(MAE)

hasbeenassayedasextractionandclean upprocedurein food

matrices(Vryzasetal.,2007;Papadakisetal.,2006;Vryzasetal., 2002),butthereisnoreportforMAEinherbalteas.Itsmain advan-tagesarelowsolventconsumption,shortextractiontime,andhigh levelof automationwithhighextractionefficiency(Niell etal.,

2011;Papadakisetal.,2006).

ThepresentworkcomparesMAEandQuEChERSperformance

forpesticideresiduesanalysisofyerbamateleaves.

Materialsandmethods

Analyticalstandards andpesticidegrade solventswerefrom

Promochem(Wesel,Germany),Riedel-deHáën(Seelze,Germany)

and Merck (Darmstadt, Germany). Anhydrous magnesium

sul-phate(MgSO4), Graphitized CarbonBlack (GCB) and ENVI-carb

SPE, cartridge and PSA (primary–secondary amine) were from

Sigma–Aldrich(Madrid,Spain).Sep-Paksilicacartridgeswerefrom WatersCorporation(Milford,MA,USA),PSAsodiumcitratedibasic sesquihydrateandsodiumcitratetribasicdihydrateweresupplied fromSupelco(Bellefonte,PA,USA).

Stocksolutionsofindividualanalytesat1mg/mlwereprepared

in EtOAc; three mixed standard stock solutions were prepared

and seriallydilutedwithEtOAc toproducea series ofworking standard solutions of 0.001–20mg/l. The latter solutions were usedfortheconstructionofcalibrationcurvesandthepreparation

of the fortified samples. Stock solutions were stored in deep

freeze(−23◦C),whiletheworkingstandardsolutionswerestored

refrigerated and renewed at weekly intervals. Matrix-matched

calibrationsolutions(0.05–4␮g/ml)wereprepareddrying0.2ml

yerbamate extractundera N2 streamand fortifiedwith0.2ml workingstandardsolutionsofpesticidesatvariousconcentrations. Thesematrix-matchedsolutionswereusedtopreparecalibration curves,toevaluatethelinearrange,andtocalculaterecoveries.

Apparatus

TheMSP1000laboratorymicrowavesystem(CEM,Matthews,

NC)equippedwith12vesselcarouselwithtemperatureand

pres-sure sensors, operated in the closed mode was used for the

microwaveassistedextraction(MAE)ofyerbamateleaves. PTFE-linedextractionvesselswereused.

PesticideresiduesanalysiswasperformedinaThermoFisher Scientific,modelFinniganTraceGC(Rodano,Milan,Italy),gas chro-matographequippedwithaflamephotometricdetector(FPD),an

autosampler(modelAS3000), and aProgrammed Temperature

Vaporizer(PTV)(initialtemperaturewas60◦C(holdfor1.5min)

thenincreasedto220◦Cattherateof5C/sfor35min).TheGC

ovenhadtwocapillarycolumnsintandem(BP-1,10m,ID0.53mm, 2.65␮m filmthickness respectively) from Agilent Technologies

(Avondale,PH,USA).Thedetectorandinjectortemperatureswere at300and220◦C,respectively.Heliumwasusedascarriergasat

a constant flowrate of7ml/min. For FPDoperationthe

hydro-gen flow was setat 90ml/min and theair one at 115ml/min.

Heliumwasusedasthedetectormakeupgasat30ml/min.The

temperatureprogramoftheGCovenwas:initialT50◦C(holdfor

1min),increasedto170◦Cat16C/min,rampedto220Catthe

rateof6◦C/min(holdfor1min),increasedto240Cattherateof

4◦C/min,finallyto280Cattherateof5C/min(holdfor10min)

andreturnedtoinitialconditionsin5min.Totalruntime40.8min. Theinjectionvolumewas2␮l.Thesoftwareforthecontrolofthe

GC–FPDwasChromCard,ThermoFinnigan(Rodano,Milan,Italy). Residueconfirmationinrealsampleanalysiswereperformedin aTrace2000GCequippedwithaThermoQuestautosampler(model AS2000),asplit/splitlessinjectorconnectedwiththeGCQplus ion-trapmassspectrometer(Thermoquest,Austin,TX,USA),operating ineitherMSnorSIMmodes,injecting2

␮lofthetestedsolutions.

TheoperationconditionsoftheGCQPlusMS systemwere: the

injectorin splitlessmodeunderisothermalconditionsat220◦C

andthesplitvalvewasopened1minaftertheinjection.Gas chro-matographywascarriedoutonDB-5MS(J&WScientific)0.25␮m,

30m×0.25mmwitha1m×0.25mmi.d.guardcolumnof

deacti-vatedfusedsilica(Alltech,Augsburg,Germany).Oventemperature gradientwasprogrammedasfollows:theinitialtemperaturewas 50◦Cfor1min,andincreasedto120Cattherateof22.5C/min,

rampedto250◦Cat3C/minfor1minandthenincreasedto285C

attherateof15◦C/minwhichwasheldfor10minandreturned

totheinitialconditionsin5min.Heliumwasthecarriergasata flowrateof1ml/min.TheMSsystemwasoperatedintheelectron impactionizationwithpositivepolarityionmode. Theemission currentwas250mA,themultipliervoltagewas1700Vandafull

scanrangewassetto50–500amuwithmaximumiontime25ms,

10microscansandAGCtargetvalueof50.Thetransferlineand themanifoldtemperatureweresetat285and220◦C,respectively.

AnalyteswereidentifiedbycomparingtheirEImassspectrawith home-madelibraries.

Extractionprocedures

MAE

Drymateleaves(5g)wereweighedandputintothe

(3)

vesselandshakedvigorouslybyhandfor30s.Setsof12vessels weremicrowaveextractedaccordingtothefollowingoperational

parameters;magnetronpower800W,maximumpressure100psi,

heatedto80◦Cin10minandmaintainedfor15min.

Afterremovingthevesselsfromthemicrowaveoven,theywere cooledatroomtemperature.Theextractfromeachvesselwas fil-teredundervacuumandrinsedwith15mlMeCN.A15mlaliquot wastransferredtoatubecontaining1mltolueneandevaporated untildrynessunderN2stream.Samplecleanupconsistedintwo stepsfollowingamodificationofthemethoddescribedin2003by Haibetal.First,thedryextractwasre-dissolvedin1mlofMeCN andloadedintoa690mgsilicacartridgefollowedbytheaddition of0.5mloftoluene.Thetargetcompoundswereelutedwith3ml ofanacetone–toluene(8:2)mixture.The3mleluatewasloaded intoa500mgENVI-carbcartridgeandelutedwith3mlofacetone. Eachcartridgewaspre-conditionedwith5mlofacetone.Thefinal eluatewascollected,thesolventevaporatedandtheresiduewas dissolvedin200␮lofEtOAcforGC–FPDanalysis.

QuEChERS

The employed procedure was a modification of the citrate

bufferedQuEChERSmethodCEN15662(www.cen.eu),(Payáetal.,

2007;Anastassiadesetal.,2010).Arepresentative2gsamplewas

weighed in a 50ml PTFE centrifugation tube. Afterwards, 10g

ofchopped ice and 10ml of MeCNwere addedinto each tube

(Haywardetal.,2013;Rajskietal.,2013).Then4gofMgSO4,1gof

NaCl,0.5gofsodiumcitratedibasicsesquihydrateand1gofsodium citratetribasicdihydratewereadded.Thetubewashandshaken for4minandcentrifuged,10minat3000×g.Forthecleanupstep,

a6mlaliquotoftheextractwastransferredtoa15mlPTFE cen-trifugationtubecontaining855mgofMgSO4,150mgofPSAand 45mgofGCB.Thistubewasshakenfor20susingavortexand cen-trifugedfor10minat3000×g.Afterthat40␮lof5%formicacidin

MeCNwereaddedto4mlofextractanda1mlaliquotwas trans-ferredtoa5mlconictubeandevaporatedundernitrogenstream untildryness.Finally,theextractwasdissolvedin200␮lofEtOAc

forGC–FPDanalysis.

Resultsanddiscussion

Extractionandcleanupoptimization

The analysisof pesticide residues using microwave assisted extractionsystems requirethe optimizationof different opera-tionalparameterssuchasmagnetronpower,temperature,pressure andextractiontime.Theoptimumconditionsfortheextractionof pesticidesbyMAEindifferentmatriceswereselectedtakinginto considerationpreviousreports(Nielletal.,2011;Vryzasetal.,2002,

2007;Papadakisetal.,2006;VryzasandPapadopoulou-Mourkidou,

2002). QuEChERSand MAEprotocolsyielded highly pigmented

extractsandGCBwasused intheclean upsteptoremove the

co-extractedchlorophyll.However,theamountofGCBusedwas

abalancebetweentherecoveriesofthestudiedpesticidesandthe pigmentremoval.IntheMAEprotocol,anENVICARBcartridgewas used,accordingtothemethodproposedbyHaywardetal.forherbs,

whereasQuEChERSusedGCBandPSAinadispersivemode.

Nev-ertheless,PSAwasnotemployedinMAEmethod,aspolyphenols

andshikimicacidanalogs suchaschlorogenicacidpresentinI. paraguaiensiscouldbeanalyteprotectantsforthemostlabile pes-ticidesbyinteractingwiththesilvnolfreeOHintheglasslinerasit hasbeenestablishedintheliterature(Anastassiadesetal.,2003).

Methodsperformanceandvalidation

Allvalidationprocedureswereperformedusingacommercial

yerba mate sample labeled as organic, which was previously

80

70

60

50

40

30

20

10

0 14

22

> 50% 25-50% < 25%

ME QuECHERS ME MAE

% pesticides 19 19

67 59

Fig.1.CalculatedmatrixeffectsofMAEandQuEChERSmethod.Matrixeffect (%)=(1−(slopematrix/slopesolvent))×100.

analyzedinordertodeterminethepre-existentpesticideresidues content.

Themethodefficiency,expressedasrecoveryratesandrelative standarddeviation(%RSD)ofthetestedpesticides,wasdetermined attwofortificationslevels:0.2and0.5mg/kginspikedsamplesof yerbamate,asitisshowninTable1.

Among the 42 pesticides included in the analytical method

phorate,fenthion,terbufos,fenamiphos,andmetamidofosexhibit recoverieslowerthan50%forbothmethodsandcannotbe

deter-minedaccordingtoDG-SANCOguidelines(EuropeanCommission

DG-SANCO,2014).Theremaininganalytespresenteddifferences

intherecoveryresultsforbothmethods.ParticularlywithMAE extraction,fensulfothionwasnotdetectedatanyfortificationlevel,

whiledichlorvos,phosphamidonanddimefoxpresented

recover-iesbetween19and63%at0.2mg/kg.QuEChERSmethodpresented lowrecoveriesforomethoateat0.2mg/kg,prothiofosatboth lev-elsandchlorpyrifospresentedrecoveriesof65and59%at0.2and 0.5mg/kgrespectively.

Theselowrecoveriescouldbeduetothepossiblevolatilization ordegradationduringGCdetermination(Ingelseetal.,2001)ordue tothelossesduringtheconcentrationprocess.Itwasobservedthat mostofthepesticidesshowinglowrecoveriesarevolatileandhave thesmallestretentiontimes(Table1).ConcerningtheQuEChERS methodmostofthepesticideswithlowrecoverieselutedinthe middleofthechromatogramandaftercaffeine.

AsitisshowninFig.1,QuEChERSmethodshowedlowermatrix

effectthan MAE.Signalenhancement wasobserved for 41 and

33%ofthestudiedpesticidesinMAEandQuEChERS,respectively.

Particularly mevinphos showed 75% of signal enhancement in

QuEChERSmethod,thiscouldleadtooverquantification,aspointed

out by theDG-SANCO guidelines, explaining thehighrecovery

observed.

Matrix-matchedcalibration curves werelinear in the range 0.05–4␮g/mlwithcorrelationcoefficients(r2)higherthan0.99in

mostcases.Onlydichlorvospresentedlinearityproblemsin QuECh-ERSandthiscouldbeattributedtoitshighvolatilityandthermal lability.TheseproblemswerenotobservedinMAE,supportingthe hypothesisoftheanalyteprotectanteffectofmatepolyphenols.

Thelimitsofdetection(LOD),rangedfrom0.004to1mg/kg. TheLOQ,determinedasestablishedinDG-SANCOguidelinesisthe lowestconcentrationoftheanalytethathasbeenvalidatedwith acceptableaccuracybyapplyingthecompleteanalyticalmethod, rangedfrom0.1to0.2mg/kgformostoftheevaluatedpesticides. However,consideringtheLOQastheLOD×10,28/33pesticides

presenteda LOQbelow0.2mg/kginMAEand 11/27in

QuECh-ERS. Somepesticidessuch asphenthoate, prothiofos,parathion

ethyl,omethoate,dimefoxandchlorpyrifosinQuEChERSmethod

(4)

Table1

(%)RecoveryratesandrespectiveRSDobtainedforMAEandQuEChERSmethodat0.2and0.5mg/kgspikinglevels(pesticideswithacceptablerecoveriestooneatleastof thetestedmethodswereonlyincluded).

Pesticide commonname

Stock mix

RT (min)

Spikinglevel (mg/kg)

MAE QuEChERS

Recovery(%) RSD(%) Recovery(%) RSD(%)

Acephate I 11.59 0.20.5 8492 43 7077 49

Bromophos

methyl III 21.98

0.2 97 11 75 11

0.5 93 6 65 11

Cadusafos III 15.85 0.20.5 8480 114 9991 49

Chlorfenvinphos I 22.68 0.20.5 8994 53 9374 124

Chlorpyrifos III 21.19 0.2 86 11 65 4

0.5 82 5 59 13

Chlorpyrifos

methyl II 19.29

0.2 90 6 76 8

0.5 89 10 73 6

Diazinon I 17.48 0.20.5 9188 14 7776 154

Dichlorvos II 9.55 0.2 63 16 99 4

0.5 67 15 109 10

Dimefox II 7.38 0.2 50 15 85 6

0.5 53 14 113 14

Dimethoate II 16.13 0.20.5 112109 63 10796 148

Disulfoton

sulfoxide III 10.50

0.2 91 9 117 12

0.5 90 4 117 9

Disulfotonsulfone I 23.47 0.2 105 2 119 5

0.5 110 1 95 21

Ethion III 26.64 0.2 103 9 76 3

0.5 101 4 65 16

Ethoprophos II 14.91 0.20.5 100101 64 7890 69

Fenchlorphos II 19.96 0.2 95 5 70 4

0.5 91 9 67 6

Fenitrothion III 19.99 0.2 118 11 99 5

0.5 111 3 91 13

Fonofos III 17.26 0.20.5 8680 124 8576 114

Fensulfothion II 26.67 0.2 ND ND 82 17

0.5 ND ND 89 9

Heptenophos III 13.78 0.2 90 12 119 4

0.5 85 5 116 7

Malathion II 20.52 0.20.5 10499 38 8088 39

Mecarbam III 22.49 0.20.5 10097 103 10293 124

Methidathion II 23.28 0.2 107 7 102 10

0.5 103 9 98 7

Mevinphos III 11.69 0.2 88 13 131 3

0.5 83 6 134 4

Omethoate II 13.98 0.20.5 9379 1216 4981 1825

Parathion

ethyl II 21.16

0.2 103 4 61 5

0.5 96 9 74 9

Parathionmethyl III 19.14 0.2 118 12 116 3

0.5 117 1 100 11

Phenthoate II 22.76 0.20.5 109101 38 6676 38

Phosphamidon I 6.24 0.20.5 1922 1210 8780 78

Pirimiphosmethyl I 20.30 0.2 100 18 74 6

0.5 91 4 64 14

Profenofos III 24.74 0.20.5 118113 134 8877 147

Prothiofos II 24.83 0.20.5 9994 59 4350 75

Quinalphos III 22.70 0.2 89 11 93 5

0.5 86 6 85 12

Terbufossulfone II 22.30 0.2 106 3 88 2

0.5 101 8 86 11

Thionazin II 14.41 0.20.5 9796 74 7894 106

Tolclofosmethyl I 19.50 0.2 88 2 75 4

0.5 89 3 64 12

Triazophos I 26.73 0.2 98 6 114 3

0.5 104 3 80 14

(5)

Table2

Limitsofdetection(LOD)andlimitsofquantification(LOQ)inmg/kginGC/FPD.

Pesticidecommonname MAEmg/kg QuEChERSmg/kg MRL(EU)mg/kg

LOD LOD×10/LOQ LOD (LOD×10/LOQ

1.Acephate 0.01 0.1/0.2 0.05 0.5/0.2 0.05

2.Bromophosethyl 0.004 0.04/0.2 0.05 0.5/0.2 0.1

3.Cadusafos 0.004 0.04/0.2 0.01 0.1/0.2 0.01

4.Chlorfenvinphos 0.01 0.1/0.2 0.05 0.5/0.2 0.05

5.Chlorpyrifos 0.004 0.04/0.2 0.1 1.0/1.0 0.5

6.Chlorpyrifosmethyl 0.004 0.04/0.2 0.05 0.5/0.2 0.1

7.Diazinon 0.004 0.04/0.2 0.01 0.1/0.2 0.05

8.Dichlorvos 0.01 0.1/0.5 0.05 0.5/0.2 0.02

9.Dimefox 0.05 0.5/1.0 0.05 0.5/0.2 0.01

10.Dimethoate 0.05 0.5/0.2 0.05 0.5/0.2 0.1

11.Disulfotonsulfoxide 0.01 0.1/0.2 0.05 0.5/0.2

0.05

12.Disulfotonsulfone 0.004 0.04/0.2 0.01 0.1/0.2

13.Ethion 0.004 0.04/0.2 0.05 0.5/0.2 0.05

14.Ethoprophos 0.004 0.04/0.2 0.01 0.1/0.2 0.02

15.Fenchlorphos 0.05 0.5/0.2 0.05 0.5/0.2 0.1

16.Fenitrothion 0.01 0.1/0.2 0.05 0.5/0.2 0.05

17.Fonofos 0.004 0.04/0.2 0.01 0.1/0.2 0.01

18.Fensulfothion 1.0 1.0/1.0 0.05 0.5/0.2 0.01

19.Heptenophos 0.004 0.04/0.2 0.01 0.1/0.2 0.01

20.Malathion 0.05 0.5/0.2 0.05 0.5/0.2 0.02

21.Mecarbam 0.01 0.1/0.2 0.05 0.5/0.2 0.1

22.Methidathion 0.004 0.04/0.2 0.05 0.5/0.2 0.1

23.Mevinphos 0.004 0.04/0.2 0.01 0.1/0.2 0.02

24.Omethoate 0.01 0.1/0.2 0.05 0.5/0.5 0.05

25.Parathionethyl 0.01 0.1/0.2 0.05 0.5/0.5 0.1

26.Parathionmethyl 0.004 0.04/0.2 0.01 0.1/0.2 0.05

27.Phenthoate 0.01 0.1/0.2 0.05 0.5/0.5 0.01

28.Phosphamidon 0.01 0.1/1.0 0.05 0.5/0.2 0.02

29.Pirimiphosmethyl 0.004 0.04/0.2 0.01 0.1/0.2 0.3

30.Profenofos 0.01 0.1/0.2 0.05 0.5/0.2 0.1

31.Prothiofos 0.01 0.1/0.2 0.05 0.5/1.0 0.01

32.Quinalphos 0.004 0.04/0.2 0.01 0.1/0.2 0.1

33.Terbufossulfone 0.004 0.04/0.2 0.01 0.1/0.2 0.01

34.Thionazin 0.004 0.04/0.2 0.01 0.1/0.2 0.01

35.Tolclofosmethyl 0.05 0.5/0.2 0.05 0.5/0.2 0.1

36.Triazophos 0.004 0.04/0.2 0.05 0.5/0.2 0.02

37.Trichlorfon 0.004 0.04/0.2 0.01 0.1/0.2 0.05

methodshowedLOQhigherthan0.2mg/kg.astheycouldnotbe validatedwithacceptableaccuracyatthislevel(Table2).

Chromatographicanalysis

Twomegaborecolumnsintandemwereusedinordertoachieve

adequatechromatographicseparation. Megaborecolumns

(typi-cally10m×0.53mm)areadvantageouscomparedtonarrow-or

micro-borecolumnswhenextractsof“difficult”matriceshavetobe analyzedsincemegaborecolumnscanprovidehighloadabilityas filmsupto5␮m(Cajkaetal.,2008;Ravindraetal.,2008.).Theuseof

twomegaborecolumnsintandem(20m×0.53mm×2.65␮m)can

alsoimprovethechromatographicseparationofpesticideswith similarproperties,akeypointwhentheGCisnotconnectedwith aMSdetector(MastovskaandLehotay,2003).Therefore,the selec-tionofacolumnwithhighinternaldiameter(0.53mm)andfilm thickness(2.65␮m)ensurebetterperformancein sampleswith

highmatrixeffect.Alongoventemperaturegradientwasselected (runtime40.8min)toimprovethechromatographicresolutionof theanalyteswhicharedifficulttoresolveundertypicalGC con-ditions.TheOPpesticidesincludedintheanalyticalmethodwere separatedinthreestocksolutionsbasedontheretentiontimeof eachanalyte(Table1).Separationoftargetcompoundswas per-formedinordertoavoidco-elutionofsomepesticides.Fig.2shows thechromatogramobtainedfortheanalysisoffortifiedyerbamate

sampleswithMixIat0.1mg/kgwithbothMAEandQuEChERS

methodsbyGC–FPD.

Asitispresentedinthechromatograms(Fig.2),thereisapeak withretentiontimearound20mincorrespondingtocaffeine.The

cleanupofbothmethodsisnotenoughtoremoveallthecaffeine, althoughMAEcleanupismoreefficientthanQuEChERS.

Realsampleanalysis

Inordertochecktheperformanceof themethodnine

com-mercialsampleswereanalyzed.Thesampleswereextractedusing bothvalidatedmethodsandanalyzedbyGC/FPDandthepositive findingswereconfirmedbyGC/MS.

Acephate, ethoprophos, chlorpyrifos, and cadusafos were

detected in commercial samples and their concentrations are

showninTable3.However,onlychlorpyrifosshowed concentra-tionsabovetheLOQofMAEmethodinfivesamplesandbelowthe correspondingMRL(EuropeanCommission,2005,2014).

MAEandQuEChERScomparison

TheanalyticalresultsofrealsamplesshowninTable3indicate that,undertheexperimentalconditionsemployedinthepresent

communication, MAE provides betterextractability of incurred

residuespresentinrealsamplesasitdetectsnotonlymore pes-ticidesbutalsotheresidueconcentrationsfoundarehigherthan QuEChERS.

Thereasonoftheseresultscouldbebasedintheefficiencyof microwaveenergy,whichishigherthanmanualagitationforthe extractionoftheresiduesfromthematrix.

Concerning matrix effect MAE presented more compounds

(6)

3.500

3.000

2.500

2.000

1.500

1.000

500

0

0 10

1

2 3 4 5

6 7

8

9 10

11

A

B

20 30 40

3.500

3.000

2.500

2.000

1.500

1.000

500

0

0 10

1

2 3 4 5

6 7

8

9 10

11

20 30 40

Fig.2. ChromatogramsoffortifiedmatesampleswithMixIat0.1mg/kgbyGC–FPD.MAE(A)andQuEChERS(B)methods.1:trichlorfon;2:phosphamidon;3:acephate;4: phorate;5:diazinon;6:tolclofosmethyl;7:pirimiphosmethyl;8:fenthion;9:chlorfenvinphos;10:disulfutonsulfone;11:triazophos.

Table3

Pesticides(mg/kg)detectedbyGC–FPDandconfirmedbyGC–MSinrealsamples.ND:notdetected.

Realsample Acephate Ethoprophos Chlorpyrifos Cadusafos

MAE/QuEChERS MAE/QuEChERS MAE/QuEChERS MAE/QuEChERS

1 <LOQ/ND <LOQ/ND ND ND

2 ND ND 0.3/<LOQ ND

3 ND ND <LOQ/ND ND

4 ND ND ND ND

5 ND ND <LOQ/ND ND

6 ND ND 0.2/<LOQ ND

7 ND ND 0.4/<LOQ ND

8 ND ND 0.2/ND <LOQ/ND

9 ND ND 0.2/ND <LOQ/ND

moreeffectiveavoidingtheextractionofcaffeine,whichisthemain detectedinterference.

Ingeneral,MAEmethodensuredlowertosimilarLODforall pes-ticidesexceptforfensulfothion,comparedwithQuEChERSmethod, whiletheLOQ(lowestvalidatedlevel)for28 pesticidesinboth methodsweresimilar.IfLOQarecalculatedasLOD×10,13 pesti-cidescouldbeassessedforMRLcompliancewithMAEmethodand threepesticideswithQuEChERS.

Comparingtheaccuracyandprecisionofbothmethods,MAE presentedbetterperformancethanQuEChERS,sincetherecoveries of33pesticideswerewithintherange70–118%withRSDsfrom1 to18%.QuEChERSmethodpresentedrecoveryratesbetween70 and120%andRSDsintherange3–21%for27pesticides,atthe lowestspikinglevel.Someoftheobtainedresultsinthisstudywith QuEChERSmethodweresimilartothosereportedbyLozanoetal.

(2012),indifferenttypesofteausingGC-QqQ/MS.

QuEChERSmethodologyissimple,cheap,practicallyno glass-wareis needed,and it ismore environmentally friendlyasthe solventconsumptionislowerthanMAE.

MAEpresentedgoodperformance,itallowsthesimultaneous extractionof10samples,buttheequipmentrequiredisnotoften availableinthelaboratories.

Thepresentstudydemonstratedthatalthoughbothmethods

aresuitablefortheanalysisofpesticideresiduesinyerbamate,MAE presentedabetterperformanceundertheexperimentalconditions tested.

Yerbamateisconsumeddailybyalmost50millionpeoplebut therearefewdataontheliteratureconcerningthepersistenceof pesticideresiduesintheprocessedleaves.Thisworkmighthelp

togathertheinformationneededtoperformstudiesonpesticide residueexposureofthepopulationduetoyerbamateintake.

Authors’contributions

JG,SNandLPperformedthelaboratorywork,dataand chro-matographicanalysis.HHandZVranthefirsttrialexperiments withMAE.ZVanalyzedtherealsamplesintheGC–(ITD)-MS,LP,ZV andSNdraftedthepaper.VC,LPandHHgavetheworksconceptual frame,participated intheresultsdiscussionandthemanuscript finalwriting.ZVandEPMsupervisedthelaboratoryworkandZV contributedtocriticalreadingofthemanuscript.

Conflictofinterest

Theauthorshavenoconflictofinteresttodeclare.

Acknowledgment

TheauthorsgratefullyacknowledgetheEuropeanCommission

(Alfa II Programme B-Project EUROLANTRAP, No.

AML/B7-311/97/0666/II0461-FA-FCD-FI).

References

(7)

Anastassiades,M.,Hepperle,J.,Roux,D.,Sigalov,I.,Mack,D.,2010.Extractability ofincurredresiduesusingQuEChERS.EuropeanPesticideResidueWorkshop. EPRW,Strasbourg,France.

Andrade,F.,deAlbuquerque,C.A.C.,Maraschin,M.,daSilva,E.L.,2012.Safety assess-mentofyerbamate(llexparaquariensis)driedextract:resultsofacuteand90 dayssubchronictoxicitystudiesinratsandrabbits.FoodChem.Toxicol.50, 328–334.

Attallah,E.R.,Barakat,D.A.,Maatook,G.R.,Badawy,H.A.,2012.Validationofaquick andeasy(QuEChERS)methodforthedeterminationofpesticidesresiduein driedherbs.J.FoodAgric.Environ.10,755–762.

Cajka,T.,Sandy,C.,Bachanova,V.,Drabova,L.,Kalachova,K.,Pulkrabova,J.,Hajslova, J.,2012.Streamliningsamplepreparationandgaschromatography–tandem massspectrometryanalysisofmultiplepesticideresiduesintea.Anal.Chim. Acta743,51–60.

Cajka,T.,Hajslova,J.,Lacina,O.,Mastovska,K.,Lehotay,S.J.,2008.Rapidanalysisof multiplepesticideresiduesinfruit-basedbabyfoodusingprogrammed temper-aturevaporiserinjection–low-pressuregaschromatography–high-resolution time-of-flightmassspectrometry.J.Chromatogr.A1186,281–294.

Chen,G.,Cao,P.,Liu,R.,2011.Amulti-residuemethodforfastdeterminationof pesticideinteabyultraperformanceliquidchromatography–electrospray tan-demmassspectrometrycombinedwithmodifiedQuEChERSsamplepreparation procedure.FoodChem.125,1406–1411.

Chen,Y.,Al-Taher,F.,Juskelis,R.,Wong,J.W.,Zhang,K.,Hayward,D.G., Zweigen-baum,J.,Stevens,J.,Cappozzo,J.,2012a.Multiresiduepesticideanalysisofdried botanicaldietarysupplementsusinganautomateddispersiveSPEcleanupfor QuEChERSandhigh-performanceliquidchromatography–tandemmass spec-trometry.J.Agric.FoodChem.60,9991–9999.

Chen,L.,Songa,F.,Liua,Z.,Zhenga,Z.,Xinga,J.,Liua,S.,2012b.Multi-residuemethod forfastdeterminationofpesticideresiduesinplantsusedintraditionalChinese medicinebyultra-high-performanceliquidchromatographycoupledtotandem massspectrometry.J.Chromatogr.A1225,132–140.

Cho,S.,AbdEl-Aty,A.M.,Choi,J.,Jeong,Y.,Shin,H.,Chang,B.,Lee,C.,Shim,J.,2008.

Effectivenessofpressurizedliquidextractionandsolventextractionforthe simultaneousquantificationof14pesticideresiduesinGreenteausingGC.J. Sep.Sci.31,1750–1760.

EuropeanCommission,2005.Regulation(EC)No.396/2005oftheEuropean Par-liamentandoftheCouncilof23February2005onmaximunresiduelevelsof pesticidesinoronfoodandfeedofplantandanimaloriginandamendingCouncil Directive91/414/EEC.Off.J.Eur.Union,1–16.

EuropeanCommission DG-SANCO,2014. Method validationand quality con-trolproceduresforpesticide residueanalysisinfoodandfeed.Document SANCO/12571/2013,1January.

EU-MRLs Database. http://ec.europa.eu/sancopesticides/public/?event= commodity.resultat(accessedJune2014).

Filip,R.,Lopez,P.,Giberti,G.,Coussio,J.,Ferraro,G.,2001.Phenoliccompoundsin sevenSouthAmericanIlexSpecies.Fitoterapia72,774–778.

Haib,J.,Hofer,I.,Renaud,J.M.,2003.Analysisofmultiplepesticideresiduesintobacco usingpressurizedliquidextraction,automatedsolid-phaseextractioncleanup andgaschromatography–tandemmassspectrometry.J.Chromatogr.A1020, 173–187.

Hayward,D.,Wong,J.W.,Shi,F.,Zhang,K.,Lee,N.S.,DiBenedetto,L.,Hengel,M., 2013.Multiresiduepesticideanalysisofbotanicaldietarysupplementsusing salt-outacetonitrileextraction,solid-phaseextractioncleanupcolumn,and gaschromatography–triplequadrupolemassspectrometry.Anal.Chem.85, 4686–4693.

Heck,C.I.,deMejia,E.G.,2007.Yerbamatetea(Ilexparaguariensis):acomprehensive reviewonchemistry,health,implications,andtechnologicalconsiderations.J. FoodSci.72,R138–R148.

Huang,Z.,Li,Y.,Chen,B.,Yao,S.,2007.Simultaneousdeterminationof102 pes-ticideresiduesinChineseteasbygaschromatography–massspectrometry.J. Chromatogr.B853,154–162.

Huang,Z.,Zhang,Y.,Wang,L.,Ding,L.,Wang,M.,Yan,H.,Li,Y.,Zhu,S.,2009. Simul-taneousdeterminationof103pesticideresiduesinteasamplesbyLC–MS/MS. J.Sep.Sci.32,1294–1301.

Ingelse,A.B.,vanDam,C.J.R.,Vreeken,J.R.,Mol,G.J.H.,2001.Determinationofpolar organophosphoruspesticidesinaqueoussamplesbydirectinjectionusingliquid chromatography–tandemmassspectrometry.J.Chromatogr.A918,67–78.

Jacques,R.A.,dosSantosFreitas,L.,FloresPeres,V.,Dariva,C.,Oliveira,J.V.,Camarão, E.B.,2006.Chemicalcompositionofmatetealeaves(Ilexparaguariensis):astudy ofextractionmethods.J.Sep.Sci.29,2780–2784.

Jacques,R.A.,Santos,J.G.,Dariva, C.,Oliveira, J.V.,Camarão,E.B.,2007.GC/MS characterizationofmatetealeavesextractsobtainedfromhigh-pressureCO2

extraction.J.Supercrit.Fluids40,354–359.

Kanrar,B.,Mandal,S.,Bhattacharyya,A.,2010.Validationanduncertainty analy-sisofamultiresiduemethodfor42pesticidesinmadetea,teainfusionand spentleavesusingethylacetateextractionandliquidchromatographymass spectrometry.J.Chromatogr.A1217,1926–1933.

Lozano, A., Rajski, Ł., Belmonte-Valles, N., Uclés, A., Uclés, S., Mezcua, M., Fernández-Alba,A.R.,2012.Pesticideanalysisinteasandchamomileby liq-uidchromatographyandgaschromatographytandemmassspectrometryusing amodifiedQuEChERSmethod:validationandpilotsurveyinrealsamples.J. Chromatogr.A1268,109–122.

Khan,Z.S.,Ghosh,R.K.,Girame,R.,Utture,S.C.,Gadgil,M.,Banerjee,K.,Reddy, D.D.,Johnson,N.,2014.Optimizationofasamplepreparationmethodfor mul-tiresidueanalysisofpesticidesintobaccobysingleandmulti-dimensionalgas chromatography–massspectrometry.J.Chromatogr.A1343,200–206.

Liu, D.,Min,S.,2012. Rapidanalysisof organochlorineandpyrethroid pesti-cides inteasamples by directlysuspended dropletmicroextractionusing a gas chromatography–electron capture detector. J. Chromatogr. A 1235, 166–173.

Mastovska, K., Lehotay, S.J., 2003. Practical approaches to fast gas chromatography–massspectrometry.J.Chromatogr.A1000,153–180.

Moinfar,S.,Hosseini,M.M.,2009.Developmentofdispersiveliquid–liquid microex-tractionmethodfortheanalysisoforganophosphoruspesticidesintea.J.Hazard. Mater.169,907–911.

Nguyen,T.D.,Lee,K.J.,Lee,M.H.,Lee,G.H.,2010.Amultiresiduemethodforthe determinationof234pesticidesinKoreanherbsusinggaschromatographymass spectrometry.Microchem.J95,43–49.

Niell,S.,Pareja,L.,González,G.,González,J.,Vryzas,Z.,Cesio,M.V., Papadopoulou-Mourkidou,E.,Heinzen,H.,2011.Simpledeterminationof40organophosphate pesticidesinrawwoolusingmicrowave-assistedextractionandGC–FPD anal-ysis.J.Agric.FoodChem.59,7601–7608.

Papadakis,E.,Vryzas,Z.,Papadopoulou-Mourkidou,E.,2006.Rapidmethodforthe determinationof16organochlorinepesticidesinsesameseedsby microwave-assisted extractionand analysisof extractsby gas chromatography–mass spectrometry.J.Chromatogr.A1127,6–11.

Payá,P.,Anastassiades,M.,Mack,D.,Sigalova,I.,Tasdelen,B.,Oliva,J.,Barba,A.,2007.

AnalysisofpesticideresiduesusingtheQuickEasyCheapEffectiveRuggedand Safe(QuEChERS)pesticidemultiresiduemethodincombinationwithgasand liquidchromatographyandtandemmassspectrometricdetection.Anal.Bioanal. Chem.389,1697–1714.

PérezParada,A.,González,J.,Pareja,L.,GeisAsteggiante,L.,Colazzo,M.,Niell,S., Besil,N.,González,G.,Cesio,V.,Heinzen,H.,2010.Transferofpesticidestothe brewduringmatedrinkingprocessandtheirrelationshipwithphysicochemical properties.J.Environ.Sci.HealthB45,1–8.

Rajski,L.,Lozano,A.,Belmonte-Valles,N.,Uclés,A.,Uclés,S.,Mezcua,M., Fernandez-Alba,A.R.,2013.Comparisonofthreemultiresiduemethodstoanalysepesticides ingreenteawithliquidandgaschromatography/tandemmassspectrometry. Analyst138,921–931.

Ravindra,K.,Dirtu,A.C.,Covaci,A.,2008.Low-pressuregaschromatography:recent trendsanddevelopments.TrendsAnal.Chem.27,291–303.

Sadowska-Rociek,A.,Surma,M.,Cie´slik,E.,2013.ApplicationofQuEChERSmethod forsimultaneousdeterminationofpesticideresiduesandPAHsinfreshherbs. Bull.Environ.Contam.Toxicol.90,508–513.

Vázquez,A.,Moyna,P.,1986.Studiesonmatedrinking.J.Ethnopharmacol.18, 267–272.

Vryzas,Z.,Papadakis,E.N.,Papadopoulou-Mourkidou,E.,2002.Microwave-assisted extraction(MAE)-acidhydrolysis ofdithiocarbamatesfor traceanalysisin tobaccoandpeaches.J.Agric.FoodChem.50,2220–2226.

Vryzas, Z., Papadopoulou-Mourkidou, E., 2002. Determination of triazine and chloroacetanilideherbicidesinsoilsbymicrowave-assistedextraction(MAE) coupledtogaschromatographicanalysiswitheitherGC–NPDorGC–MS.J.Agric. FoodChem.50,5026–5033.

Vryzas, Z.,Tsaboula, A., Papadopoulou-Mourkidou, E., 2007.Determination of alachlor,metolachlor,andtheir acidicmetabolites insoils by microwave-assistedextraction(MAE)combinedwithsolidphaseextraction(SPE)coupled withGC–MSandHPLC–UVanalysis.J.Sep.Sci.30,2529–2538,www.cen.eu

Imagem

Fig. 1. Calculated matrix effects of MAE and QuEChERS method. Matrix effect (%) = (1 − (slope matrix/slope solvent)) × 100.
Fig. 2. Chromatograms of fortified mate samples with Mix I at 0.1 mg/kg by GC–FPD. MAE (A) and QuEChERS (B) methods

Referências

Documentos relacionados

Development and optimisation of an on-line solid phase extraction coupled to ultra-high-performance liquid chroma- tography – tandem mass spectrometry methodology for the

natural and synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction and liquid chromatography – tandem mass

Na produção de sementes as características avaliadas foram: tempo para florescimento, número de ramificações por planta, comprimento de síliquas, número de síliquas por

• Adaptação do sistema aos interesses do utilizador que poderão variar ao longo do tempo O website será composto por duas páginas: uma com um conjunto de notícias, provenientes

An analytical method using solid-phase extraction and liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) was developed

A rapid and efficient method based on the integration of pressurized solvent extraction (PSE) with solid phase extraction (SPE) cleanup and gas chromatography system with

A method for the determination of irgarol and diuron using C18 solid-phase extraction (SPE) and liquid chromatography with electrospray interface tandem mass spectrometry

A fast and sensitive method using high performance liquid chromatography-fluorescence detection (HPLC-FD) and ultra-high performance liquid chromatography tandem mass