• Nenhum resultado encontrado

Optical properties of LFZ grown β-Ga2O3:Eu3+ fibres

N/A
N/A
Protected

Academic year: 2021

Share "Optical properties of LFZ grown β-Ga2O3:Eu3+ fibres"

Copied!
5
0
0

Texto

(1)

AppliedSurfaceSciencexxx (2011) xxx–xxx

ContentslistsavailableatScienceDirect

Applied

Surface

Science

jo u rn a l h om epa g e :w w w . e l s e v i e r . c o m / l o ca t e / a p s u s c

Optical

properties

of

LFZ

grown

␤-Ga

2

O

3

:Eu

3+

fibres

N.F.

Santos

a

,

J.

Rodrigues

a

,

A.J.S.

Fernandes

a

,

L.C.

Alves

b

,

E.

Alves

b

,

F.M.

Costa

a

,

T.

Monteiro

a,∗

aDepartamentodeFísica,I3N,UniversidadedeAveiro,CampusUniversitáriodeSantiago,3810-193Aveiro,Portugal bInstitutoTecnológicoeNuclear,2686-953Sacavém,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received29April2011

Receivedinrevisedform1July2011 Accepted14July2011 Available online xxx Keywords: LFZ Ga2O3 Eu PL PLE

a

b

s

t

r

a

c

t

Duetotheirrelevanceforelectronicandoptoelectronicapplications,transparentconductiveoxides(TCO)

havebeenextensivelystudiedinthelastdecades.Amongthem,monoclinic␤-Ga2O3iswellknownbyits

largedirectbandgapof∼4.9eVbeingconsideredadeepUVTCOsuitableforoperationinshortwavelength

optoelectronicdevices.Thewidebandgapof␤-Ga2O3isalsoappropriatefortheincorporationofseveral

electronicenergylevelssuchasthoseassociatedwiththeintra-4fnconfigurationofrareearthions.Among

these,Eu3+ions(4f6)arewidelyusedasaredemittingprobesbothinorganicandinorganiccompounds.In

thiswork,undopedandEu2O3doped(0.1and3.0mol%)Ga2O3crystallinefibresweregrownbythelaser

floatingzoneapproach.Allfibreswerefoundtostabilizeinthemonoclinic␤-Ga2O3structurewhilefor

theheavilydopedfibrestheX-raydiffractionpatternsshow,inadditionacubiceuropiumgalliumgarnet

phase,Eu3Ga5O12.ThespectroscopicpropertiesoftheundopedandEudopedfibreswereanalysedby

Ramanspectroscopy,lowtemperaturephotoluminescence(PL)andphotoluminescenceexcitation(PLE).

TheEu3+luminescenceismainlyoriginatedinthegarnet,fromwheredifferenteuropiumsitelocations

canbeinferred.ThespectralanalysisindicatesthatatleastoneofthecentrescorrespondstoEu3+ions

indodecahedralsitesymmetry.Forthelightlydopedsamples,thespectralshapeandintensityratioof

the5D

0→7FJtransitionsistotallydifferentfromthoseonEu3Ga5O12,suggestingthattheemittingions

areplacedinlowsymmetrysitesinthe␤-Ga2O3host.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

␤-Ga2O3isawellknownwidebandgapsemiconductorwith

reportedbandgapenergyatroomtemperature(RT)near4.9eV [1–4].TheRTthermodynamicallystablemonocliniccrystalhascell dimensionsa=1.223nm,b=0.304nm,c=0.580nmandˇ=103.7◦ [3,4].The materialbelongs toa C2/m space groupand theGa3+

ionsmayoccupytetrahedraloroctahedralcrystallographicsites [4,5].Thematerialexhibitsisolatorbehaviourorn-type conductiv-itygenerallyattributedtoanionoxygenvacancies,theresistivity beingstronglydependentontheatmospheregrowthconditions [6].However,thisbecame controversialsincerecently theoreti-cal studies[7] pointed that oxygenvacanciesgiverise todeep donors,withactivationenergiesaround1.0eV,andsocannotbe responsiblefortheunintentionaln-typeconductivityobservedin thisoxide.Duetotheabove-mentionedelectricalconductivityand hightransparency,␤-Ga2O3hasbeenfrequentlyexploitedfor

sev-eralelectronicandoptoelectronicapplicationsincludingelectrodes asatransparentconductiveoxide(TCO)[3,4].Forsuchpurposes, information aboutthe opticallyactivedefects and theirenergy

∗ Correspondingauthor.Tel.:+351234370824;fax:+351234378197. E-mailaddress:tita@ua.pt(T.Monteiro).

distributioninsidethewidebandgaphostconstitutesone impor-tantissue.Underabovebandgapexcitation,ultraviolet,blueand greenbroadluminescencebandspeakednear3.4,2.95and2.48eV havebeenreportedinundopedanddoped␤-Ga2O3 single

crys-tals[8–10].Theultravioletemissionhasbeenfoundtobesample independent,whiledeeplevelrecombinationhasbeenfoundto bedependentonthechemicalnatureoftheimpuritiesandtheir content[10].Particularly,theultravioletrecombinationhasbeen attributedtointrinsicluminescenceandthebluebandhasbeen assignedtoadonor–acceptorgallium–oxygenvacancypair recom-bination[9,10].

Furthermore,thewidebandgapof␤-Ga2O3makesthisTCOa

suitablehostforphosphorapplications[11–22].Asanexample, highluminancewasobtainedinthin-filmelectroluminescent dis-playswhengallium oxideis activatedwitheuropiumions[12]. However,due topoorcrystallization ofthegallium oxidefilms [13–15],therareearthionemissionlinesareverybroadand lit-tle isknown aboutthemechanisms behindthe intraionic Eu3+

luminescenceinthecrystallineGa2O3environment.Morerecently,

nanostructured␤-Ga2O3hasbeensynthesizedbydifferentroutes

andintentionallyactivatedwithrareearthionsfornanophosphor applications[17–22].Asforthethinfilms[13–15],largefullwidth athalfmaximumofthemain5D

0,1→7FJtransitionsoftheEu3+ions

inthenanopowders[18,20]contrastwiththeexpectedsharplines

0169-4332/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.apsusc.2011.07.069

(2)

ARTICLE IN PRESS

GModel

APSUSC-22175; No.ofPages5

2 N.F.Santosetal./AppliedSurfaceSciencexxx (2011) xxx–xxx

Fig.1.Typicalvisualappearanceofthe(a)(top)undopedand(bottom)0.1mol%europiumdopedfibresgrownat30mmh−1.SEMmicrographsofthe(b)undopedfibreand europiumdopedfibreswith(c)0.1mol%and(d)3mol%grownat30mmh−1.

fortheemittingionsincrystallineenvironments,fromwherethe identificationofthenumberofemittingEucentresandsite symme-trycouldbeexploredviatheStarklevelsplittingduetothecrystal fieldeffect.AlthoughtheEu3+emissionhasbeenreportedforthin

filmsandnanopowders[11–22],informationontherareearthion spectroscopicpropertiesinbulk␤-Ga2O3remainsscarceand

con-stitutesanimportantissuetoclarifytheionpropertiesinsidethis TCOmaterial.

Inthepresentwork,undopedandEudoped␤-Ga2O3fibreswere

grownbylaserfloatingzone(LFZ).Thesampleswerecharacterized inwhatconcernstheirmorphologyandstructure(SEM/EDS,PIXE, XRD,Ramanspectroscopy),andtheirresultinglowtemperature optical properties (photoluminescence and photoluminescence excitation).Theobservedopticalcentresarediscussedwithrespect totheirpossiblephaseoriginandsitesymmetry.

2. Experimentaldetails

The␤-Ga2O3crystallinefibresweregrownbytheLFZtechnique,

usingrodprecursorsfor bothfeedandseedmaterialsprepared bycoldextrusion.Theserodswereobtainedbyusinggallium(III) oxide(AlfaAesar)powdersfortheundopedsamplesandadding 0.1%and3.0mol%Eu2O3(Aldrich)forthedopedones.The

pow-dersweremixedwithpolyvinylalcohol(PVA0.1g/ml,Merck)in ordertoobtainaslurrythatwasfurtherextrudedintocylindrical rodswithdiametersof1.75mm.

TheLFZequipment comprises a 200W CO2 laser (Spectron)

coupledtoareflectiveopticalset-upproducingacircular crown-shapedlaserbeaminordertoobtainafloatingzoneconfiguration witha uniformradialheating.Crystallinefibres withdiameters of 1–2mm were grown at 10 and 30mmh−1 in air at atmo-spheric pressure. Fibre microstructure and phase development werecharacterizedbySEM(HitachiS4100)withenergy disper-sivespectroscopy(SEM/EDS)onpolishedsurfacesoflongitudinal fibresections.Additionally,inordertoobtaininformationonthe europiumdistributioninthefibres,particle-inducedX-ray

emis-sion(PIXE)wasperformedusinga2.0MeV1Hmicrobeamanda

10-mm2 Si(Li)detectorwitharesolutionof145eVanda5-mm

Bewindow. Thestructuralcharacterization wasmadebyX-ray diffraction(XRD)experiments(PANalyticalX’PertPRO)andRaman spectroscopy.Thelatterwereperformedatroomtemperature(RT) inbackscatteringconfigurationwithultravioletexcitationbyusing the325nmlineofacwHe–Cdlaser(KimmonIKSeries)inaHoriba Jobin Yvon HR800systemand the532nmline froma Ventus-LP-50085(MaterialLaserQuantum)laserinaJobinYvonT64000 instrument.

SteadystatePLmeasurementswerecarriedoutat14Kusing a1000WXearclampcoupledtoamonochromatorasexcitation source.TheluminescencewasdispersedbyaSpex1704 monochro-mator(1m, 1200mm−1)and detectedby a cooledHamamatsu R928photomultiplier.For thePLexcitation(PLE)measurements theemissionmonochromatorwassetattheEu3+emissionlines,

theexcitationwavelengthhavingbeenscannedupto240nm.The spectrawerecorrectedtothelampandoptics.

3. Resultsanddiscussion

The visual appearance of the undoped and Eu doped gal-lium oxidefibres are shown in Fig.1a. The undopedfibre was foundtobe transparentwhile the Eu dopedsamples exhibit a grey colour.The morphologicalanalysis ofthefibres longitudi-nalsections(Fig.1b–d)reveals,fortheundopedfibre,anuniform surfacewithoutgrainboundariesorsecondphases(Fig.1b) regard-less thepulling rate(10and 30mmh−1).In opposition,doping inducespolycrystallinenatureinbothlightly(0.1mol%)and heav-ily(3.0mol%)dopedsamples.However,theheavilydopedfibres showevidenceofasecondphaseplacedatthegrainboundaries (lightgreycontrast),whilethelightlydopedfibrespresent poly-crystallinemorphologywithgooduniformityevidencinghowever dispersedprecipitates.TheSEMimagesofdopedfibres(Fig.1d) showevidentgrainboundaryfeaturesalignedwiththefibreaxis asaresultofdirectionalsolidificationcharacteristicofthelaser

(3)

N.F.Santosetal./AppliedSurfaceSciencexxx (2011) xxx–xxx 3

Fig.2.SEMmicrographs(a,c)andEDSmaps(b,d)ofthefibresgrownat30mmh−1lightlydoped(a,b)andheavilydoped(c,d).

floatingzonegrowthtechnique.Theadditionalcontrastedregions inheavilydopedfibresareduetolocalEurichercrystallinephases ascorroboratedbyPIXE(notshown),EDS(Fig.2),XRD(Fig.3)and Raman(Fig.4)analysis.ThepeakpositionsoftheXRDpatternsof undopedandlightlydopedfibresaftermilledintopowdersarein goodagreementwiththeexpectedreflectionsfromthemonoclinic ␤-Ga2O3crystallinestructure.Fortheheavilydopedfibres,besides

the␤-Ga2O3crystallinestructure,anadditionalcrystallinephase

wasdetectedcorrespondingtothepresenceofeuropiumgallium garnet,Eu3Ga5O12.Thisadditionalcrystallinephasecorresponds

totheclearregionsinSEMwithhighereuropiumcontent.Since thisphasecouldnotbedetectedinthelightlydopedsamples,one caninferthattheamountofEuinthesefibresisstillscarceto pro-motethedevelopmentofthegarnetphase.Althougheuropiumrich precipitateswereobservedbySEM/EDS(Fig.2aandb)mostofthe europiumionsremaindispersedinthegalliumoxidematrix.

The Raman active modes were observed for the LFZ fibres, eitherwithvisible(Fig.4a andb)and ultraviolet(Fig.4c) exci-tation.ThemeasuredvibrationalfrequenciesindicatedinTable1

Fig.3.XRDpatternsfortheundopedanddoped(0.1and3mol%Eu2O3)fibres grownat30mmh−1.

forboththeundopedandlightlydopedfibres,correspondwellto theonesof the␤-Ga2O3 host[23,24].TheobservedRaman

fre-quenciesareclassifiedinthreegroupsofvibrationsrelatedwith librationsandtranslations(lowfrequencymodesupto∼200cm−1) of tetrahedra–octahedra chains, vibrations of deformed Ga2O6

octahedra (mid frequency modes within 310–480cm−1) and stretching/bendingoftheGa2O4tethaedra(highfrequencymodes:

550–770cm−1)[23,24]. TheRamanspectraoftheundopedand lightlydoped fibresare comparable as shownin spectra1 and 2, respectively (Fig.4a).For theheavily dopedfibre (spectrum 3),additionalmodesat 261cm−1 and 279cm−1 wereidentified correspondingtotheeuropiumgalliumgarnetphaseEu3Ga5O12,

depictedintheexpandedregionobtainedwithvisibleexcitation (Fig.4b)[25].TheaboveinformationissummarizedinTable1.The visibleRamanspectrawereacquiredwiththesamplesoriented bothparallelyandnormallytothepolarizationplaneofthelaser

100 200 300 400 3) 2) 1) 346 320 199 168 144 111; 114 a) Raman shift (cm-1) λ = 532 nm; RT 400 600 800 3) 1) Intensity (arb. units) c) λ = 325 nm; RT 764 658 629 475 416 346 320 260 280 300 3) 2) 1) b) 279 261

Fig.4.(a)Ramanspectraobtainedwithvisibleexcitation(532nm)fortheundoped, lightlydopedandheavilydopedfibres,spectrum1,2and3,respectively.Thedashed lineinspectrum3correspondstodifferentsampleorientation(parallelandnormal totheplaneofpolarization).(b)ExpandedregionoftheRamanspectraobtained withvisibleexcitation.(c)UV(325nm)Ramanspectraforthesamesetofsamples.

(4)

ARTICLE IN PRESS

GModel

APSUSC-22175; No.ofPages5

4 N.F.Santosetal./AppliedSurfaceSciencexxx (2011) xxx–xxx

Table1

RamanfrequenciesofundopedandEu-doped␤-Ga2O3fibres.TheadditionalmodesdetectedfortheEu-dopedfibresareidentifiedbyanasterisk(*).

Presentwork(cm−1) Ga2O3 Eu3Ga5O12

Dohyetal.[23](cm−1) Raoetal.[24](cm−1) Modeassignments[23] Middletonetal.[25](cm−1) Modeassignments[25]

111 111 Ag 114(*) 114 Bg 113 Eg 144 147 144 Bg 144 Eg 159 T2g 168 169 169 Ag 170 T2g 180 T2g 199 199 200 Ag 233 T2g 239 T2g 261(*) 262 Eg 279(*) 273 T2g 291 Eg 309 T2g 320 318 317 Ag 346 346 344 Ag 346 A1g 353 Bg 367 T2g 407 T2g 416 415 416 Ag 415 Eg 475 475 472 Ag,Bg 507 T2g 523 A1g 580 T2g 595 T2g 629 628 629 Ag 651 Bg 658 657 654 Ag 674 Eg 736 A1g 764 763 767 Ag

incidence.Thechangesintheintensityratiosofthevibrational fre-quenciesduetolocalpolarizationeffects(dashedlinedspectra3) indicateastronganisotropy,confirmingthetexturednatureofthe fibres[23].

Fig.5showsthelowtemperatureluminescencespectraofthe undopedandEudopedfibrestakenat14K.Excitingtheundoped samplewithphotonsof260nm(4.77eV),theemissionis domi-natedbyabroadultravioletbandpeakedat377nmoverlapped byminorluminescencebandsnear438nmand526nm(Fig.5a). This luminescence spectrum is very similar to that previously reportedbyZhangetal.[26]in␤-Ga2O3singlecrystalsgrownby

thesameLFZtechnique.ForEudopedfibres(Fig.5b)the character-isticorange/redluminescenceduetothetransitionsbetweenthe

5D

0and 7FJmultipletswasdetected.For heavilydopedsamples

grownat10mmh−1 (spectrum1)containingthetwocrystalline phases(␤-Ga2O3andEu3Ga5O12),welldefinedsharplines(∼1nm

offullwidthathalfmaximum)aredetectedat591nm,592nm and595nm(spectrum1)originatedfromthelevelofthe5D

0state

andterminatingonthecrystalfieldsplitstatesofthe7F

1manifold.

Thismagneticdipoleemissionisthemostintenseoneandforthe hypersensitive5D

0→7F2transitiononlyonelinewasfoundpeaked

at∼610nm.Theheavilydopedfibresgrownatafasterpullingrate (30mmh−1)exhibitadistinctbehaviouroftheEu3+luminescence

(spectrum2).Here,thesamelinespreviouslydetectedare over-lappedwiththeinhomogeneousbroaden5D

0→7F1,2transitions

likelyduetoEu3+ionsindifferentenvironments.Additionally,the

integratedintensityratiobetweenthe5D

0→7F2 and 5D0→7F1

transitionsincreases,suggestingthattheeuropiumionsareplaced inlowersymmetrysitesasalsoindicatedbythepresenceofthe

5D

0→7F0line.Theformerspectrumwellmatchestheoneobserved

fortheionsinsidethecubicEu3Ga5O12asreportedbyVanderZiel

andVanUitert[27].Inthiscase,thesplittingoftheJ=1stateinthree componentsandtheabsenceofforbidden5D

0→7F0transitionis

inlinewiththeexpectedresultsfortheionsindodecahedralsites withD2localsymmetry[28,29].Moreover,rareearth(RE)ionsin

RE3Ga5O12hostsareknowntooccupymulti-siteswiththeREions

innon-regularsitesduetodistortionsoflocalsymmetry[27–30]. ThesimilarityoftheobtainedspectrafortheheavilydopedLFZ grownsampleseitherat10mmh−1 or30mmh−1(spectra1and 2)withthoseobtainedbyDaldossoetal.[29]fornanocrystalline Gd3Ga5O12alsodopedwitheuropiumions,suggestthatthemain

emittingeuropiumionsarelocatedintheeuropiumgalliumgarnet crystallinephase.Ontheotherhand,forthelightlydopedfibres,for whichnoEu3Ga5O12crystallinephasewasdetectedeitherbyXRD

andRamanspectroscopy,noticedspectralchangesoftheintraionic luminescence(spectrum3)were identified,suggesting thatthe mainemissionisoriginatedfromEu3+ionsin␤-Ga

2O3host.The

presenceofthe5D

0→7F0,1,2transitionsandtheirintensityratios

indicatethat the europium ionsare placed in lower symmetry sites.Theinhomogeneousbroadeningofthelinesobservedforthis lightlydopedfibre,isconsistentwiththepresenceoftheEu3+ions

inlowsymmetrysiteswithaninhomogeneousenvironment, prob-ablyduetothefibrepolycrystallinestructure.

The identification of the different Eu3+ centres was further

assessedbylowtemperaturePLEandwavelengthdependentPL measurements.PLEallows identifyingtheexcitation population mechanismswhichgiverisetoeuropiumluminescenceindoped fibres.ThenormalizedPLEspectramonitoredatthe5D

0→7F2

tran-sitionareshownin Fig.5c.Thespectrawerenormalizedtothe broadultravioletexcitationband,fromwherealltheEu-centres arepreferentiallypopulated.Additionally,allthecentrescouldbe excitedviatheupperenergeticlevelsoftheEu3+ionswhichexhibit

slightwavelengthdeviationsasexpectedfordifferenteuropium environments.Spectra2inFig.5ballowtotheidentificationthat distinctEucentrescouldbepreferentiallyexcitedwithphotons withdifferentwavelengths.

(5)

N.F.Santosetal./AppliedSurfaceSciencexxx (2011) xxx–xxx 5

700 650 600 550 500 450 400 350 300

Intensity (arb. units)

Wavelength (nm) a) 630 620 610 600 590 580 14K, PLE 3) c) b) 3) 2) 5 D2 7 F0

7 F2 7 F0 7 F1 5 D0

Normal iz e d intensi ty 14K, PL 450 400 350 300 250 2) 1) 5 H3 5 D4 5 GJ 5 L6 5 D 3 (x10) Wavelength (nm) 1)

Fig.5. 14KPLspectraexcitedwith260nmphotonsofthe(a)undopedfibregrownat 30mmh−1,(b)heavilydopedfibregrownat10mmh−1(spectrum1)and30mmh−1 (spectrum2,redline).Thebluelineinspectrum2wasobtainedunderresonant excitationat390nm,correspondingtoaPLEmaximumassignedtothe7F

0→5L6 transition.Spectrum3correspondstothelightlydopedfibregrownat30mmh−1. (c)14KPLEspectraofthesamefibresmonitoredonthe5D

0→7F2transition.

4. Conclusions

Undoped␤-Ga2O3 LFZgrownfibres andintentionallydoped

with 0.1 and 3mol% of europium were produced at two dif-ferent pullingrates(10 and30mmh−1).Thestructuralanalysis using XRD and Raman measurements indicate that, regardless thepullingrate,onlythe␤-Ga2O3crystallinephaseispresentin

theundopedandlightlydopedsamples.Forheavilydoped sam-ples, an additional Eu3Ga5O12 crystalline phase was identified.

SEM/EDSandPIXEanalysisshowthateuropiumrichregionsare presentinthelatterfibres,correspondingtotheeuropiumgallium garnetphase. LowtemperaturePL measurementsfor the heav-ilydopedsamplesevidencethatmostoftheemittingeuropium ions are in the garnet structure in different local site symme-tries and/or environments. Sharp Eu3+ lines were assigned to

europium ions in dodecahedral symmetry and other two cen-treswere visualizedwith theions in lowersite symmetry. On the other hand, for lightly doped samples,the intraionic lines areinhomogeneouslybroaderwithaspectralshapeofthe emit-tingionsdifferentthanthoseobservedfortheeuropiumgallium garnetphase. TheEu3+ luminescencefromtheionsin ␤-Ga

2O3

hostis characterizedby the presenceof the 5D

0→7F0,1,2

tran-sitions,suggesting that theions are placed in lower symmetry sites.

Acknowledgement

The authors acknowledge FCT for the financial funding fromPTDC/CTM/66195/2006projectandPTDC/CTM/100756/2008 projects.

References

[1] H.H.Tippins,Opticalabsorptionandphotoconductivityinthebandedgeof ␤-Ga2O3,Phys.Rev.A140(1965)316–319.

[2] M.Passlack,E.F.Schubert,W.S.Hobson,M.Hong,N.Moriya,S.N.G.Chu,K. Kon-stadinidis,J.P.Mannaerts,M.L.Schnoes,G.J.Zydzik,Ga2O3filmsforelectronic andoptoelectronicapplications,J.Appl.Phys.77(1995)686–693.

[3]N.Ueda,H.Hosono,R.Waseda,H.Kawazoe,Anisotropyofelectricalandoptical propertiesin␤-Ga2O3singlecrystals,Appl.Phys.Lett.71(1997)933–935. [4]M.Mohamed,C.Janowitz,I.Unger,R.Manzke,Z.Galazka,R.Uecker,R.Fornari,

J.R.Weber,J.B.Varley,C.G.VandeWalle,Theelectronicstructureof␤-Ga2O3, Appl.Phys.Lett.97(2010)211903(1)–211903(3).

[5] S.Geller,Crystalstructureof␤-Ga2O3,J.Chem.Phys.33(1960)676–684. [6] M.R.Lorenz,J.F.Woods,R.J.Gambino,Someelectricalpropertiesofthe

semi-conductor␤-Ga2O3,J.Phys.Chem.Sol.28(1967)403–404.

[7]J.B.Varley,J.R.Weber,A.Janotti,C.G.VandeWalle,Oxygenvacanciesanddonor impuritiesin␤-Ga2O3,Appl.Phys.Lett.97(2010)142106(1)–142106(3). [8]G.Blasse,A.Bril,Someobservationsontheluminescenceof␤-Ga2O3,J.Phys.

Chem.Sol.31(1970)707–711.

[9]T.Harwig,F.Kellendonk,S.Slappendel,Theultravioletluminescenceof ␤-galliumsesquioxide,J.Phys.Chem.Sol.39(1978)675–680.

[10]L.Binet,D.Gourier,Originoftheblueluminescenceof␤-Ga2O3,J.Phys.Chem. Sol.59(1998)1241–1249.

[11]T.Xiao,A.H.Kitai,G.Liu,A.Nakua,J.Barbier,Thinfilmelectroluminescencein highlyanisotropicoxidematerials,Appl.Phys.Lett.72(1998)3356–3358. [12]T.Miyata,T.Nakatani,T.Minami,Galliumoxideashostmaterialformulticolor

emittingphosphors,J.Lumin.87–89(2000)1183–1185.

[13]J.Hao,M.Cocivera,Opticalandluminescentpropertiesofundopedand rare-earth-dopedGa2O3thinfilmsdepositedbyspraypyrolysis,J.Phys.D:Appl. Phys.35(2002)433–438.

[14] P.Wellenius,E.R.Smith,S.M.LeBoeuf,H.O.Everitt,J.F.Muth,Optimal composi-tionofeuropiumgalliumoxidethinfilmsfordeviceapplications,J.Appl.Phys. 107(2010)103111(1)–103111(5).

[15]J.Hao,Z.Lou,I.Renaud,M.Cocivera,Electroluminescenceofeuropium-doped galliumoxidethinfilms,ThinSolidFilm467(2004)182–185.

[16] P.Gollakota,A.Dhawan,P.Wellenius,L.M.Lunardi,J.F.Mutha,Y.N.Saripalli, H.Y.Peng,H.O.Everitt,OpticalcharacterizationofEu-doped␤-Ga2O3thinfilms, Appl.Phys.Lett.88(2006)221906(1)–221906(3).

[17] P.Wellenius,A.Suresh,J.V.Foreman,H.O.Everitt,J.F.Muth,Avisible transpar-entelectroluminescenteuropiumdopedgalliumoxidedevice,Mater.Sci.Eng. B146(2008)252–255.

[18]J.S.Kim,H.E.Kim,H.L.Park,G.C.Kim,Luminescenceintensityandcolorpurity enhancementinnanostructured␤-Ga2O3:Eu3+phosphors,Sol.St.Commun. 132(2004)459–463.

[19]E.Nogales,J.Á.García,B.Méndez,J.Piqueras,Dopedgalliumoxidenanowires withwaveguidingbehavior,Appl.Phys.Lett.91(2007)133108(1)–133108(3). [20] H.Xie,L.Chen,Y.Liu,K.Huang,Preparationandphotoluminescenceproperties ofEu-doped␣-and␤-Ga2O3phosphors,Sol.St.Commun.141(2007)12–16. [21]E.Nogales,B.Méndez,J.Piqueras,J.A.Garcia,Europiumdopedgalliumoxide

nanostructuresforroomtemperatureluminescentphotonicdevices, Nano-technology20(2009)115201(1)–115201(5).

[22]H.Zhu,R.Li,W.Luoab,X.Chen,Eu3+-doped␤-Ga

2O3nanophosphors:annealing effect,electronicstructureandopticalspectroscopy,Phys,Chem.Chem.Phys. 13(2011)4411–4419.

[23] D.Dohy,G.Lucazeau,Ramanspectraandvalenceforcefieldofsingle-crystalline ␤Ga2O3,J.Sol.St.Chem.45(1982)180–192.

[24]R.Rao,A.M.Rao,B.Xu,J.Dong,S.Sharma,M.K.Sunkara,BlueshiftedRaman scatteringanditscorrelationwiththe[110]growthdirectioningalliumoxide nanowires,J.Appl.Phys.98(2005)094312(1)–094312(5).

[25]R.C.Middleton,D.V.S.Muthu,M.B.Kruger,High-pressurespectroscopicstudies ofeuropiumgalliumandgadoliniumaluminumgarnets,Sol.St.Commun.148 (2008)310–313.

[26]J.Zhang,B.Li,C.Xia,G.Pei,Q.Deng,Z.Yang,W.Xu,H.Shi,F.Wu,Y.Wu,J.Xu, Growthandspectralcharacterizationof␤-Ga2O3singlecrystals,J.Phys.Chem. Sol.67(2006)2448–2451.

[27]J.P.VanderZiel,L.G.VanUitert,OpticalemissionspectrumofCr3+-Eu3+pairs ineuropiumgalliumgarnet,Phys.Rev.186(1969)332–339.

[28]L.C.Courrol,L.Gomes,A.Brenier,C.Pédrini,C.Madej,G.Boulon,Optical detec-tionofEu3sitesinGd

3Ga5O12:Eu3,Rad.Eff.Def.Sol.:Inc.Plas.Sci.Plas.Tech. 135(1995)81–84.

[29]M.Daldosso,D.Falcomer,A.Speghini,P.Ghigna,M.Bettinelli,Synthesis,EXAFS investigationandopticalspectroscopyofnanocrystallineGd3Ga5O12doped withLn3+ions(Ln=Eu,Pr),Opt.Mater.30(2008)1162–1167.

[30]V.Lupei,RE3+emissioningarnets:multisites,energytransferandquantum efficiency,Opt.Mater.19(2002)95–107.

Referências

Documentos relacionados

(a) Raman spectrum of plumbotsumite (upper spectrum) over the 100– 4000 cm 1 spectral range and (b) infrared spectrum of plumbotsumite (lower.. spectrum) over the 500–4000 cm 1

Rodrigues 2008 discute a ética desse processo de apropriação ressaltando que tanto uma abordagem quanto a outra podem ter efeitos imprevisíveis, uma vez que a tradução

objetivo contribuir al debate ético sobre la viven- cia de los dependientes de drogas psicoactivas en estas unidades, seleccionando algunos principios y referencias

Detailed optical properties were evaluated using UV-Vis spectroscopy, and photoluminescence (PL) emission spectra of doped and undoped CT were employed to examine the

Figure 2. a) Cyclic behaviors of the cells with the nanowires from p type lightly boron doped, p type highly boron doped and n type highly arsenic doped wafers with resistivities

Na área urbana da bacia selecionada foram mapeadas três encostas com ocorrência de escorregamentos sendo estas denominadas de Salinas do Sacavém, Vila Embratel – Rua 15 e

Figure 3a shows the room-temperature optical absorption spectra of undoped and flower-like Mn-doped CeO 2 photocatalyst.. The absorbance spectra for 1 % Mn-doped CeO 2

Francisco Ferrer y Guardia, foi um pensador anarquista, criador da Escola Moderna. Nascido em 10 de janeiro de 1859 em Barcelona, foi talvez o único educador condenado