• Nenhum resultado encontrado

Hennc, José Luis da Conceic¸ão-Silvab, Marina Kimiko Kadowakib, Rita de Cássia Garcia Simãob

N/A
N/A
Protected

Academic year: 2019

Share "Hennc, José Luis da Conceic¸ão-Silvab, Marina Kimiko Kadowakib, Rita de Cássia Garcia Simãob"

Copied!
11
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Industrial

Microbiology

High

levels

of

-xylosidase

in

Thermomyces

lanuginosus

:

potential

use

for

saccharification

Juliana

Moc¸o

Corrêa

a,

,

Divair

Christi

a

,

Carla

Lieko

Della

Torre

b

,

Caroline

Henn

c

,

José

Luis

da

Conceic¸ão-Silva

b

,

Marina

Kimiko

Kadowaki

b

,

Rita

de

Cássia

Garcia

Simão

b

aCentrodeCiênciasExataseTecnológicas

bCentrodeCiênciasMédicaseFarmacêuticas,UNIOESTE,Cascavel,PR,Brazil cCentralHidrelétricadeItaipu,ItaipuBinacional,FozdoIguac¸u,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5November2015 Accepted20February2016 Availableonline27April2016 AssociateEditor:SolangeInes Mussatto

Keywords:

Experimentaldesign Saccharification ␤-Xylosidase

Thermomyceslanuginosus AtlanticForest

a

b

s

t

r

a

c

t

AnewstrainofThermomyceslanuginosuswasisolatedfromtheAtlanticForestbiome,and its␤-xylosidasesoptimizationinresponsetoagro-industrialresidueswasperformed.Using statisticalapproachasastrategyforoptimization,theinductionof␤-xylosidasesactivity wasevaluatedinresidualcornstraw,andimprovedsothattheoptimumconditionachieved high␤-xylosidasesactivities1003U/mL.Accordingourknown,thisstudyisthefirsttoshow sohighlevelsof␤-xylosidasesactivitiesinduction.Inaddition,theapplicationofan experi-mentaldesignwiththismicroorganismtoinduce␤-xylosidaseshasnotbeenreporteduntil thepresentwork.TheoptimalconditionsforthecrudeenzymeextractwerepH5.5and60◦

C showingbetterthermostabilityat55◦C.Thesaccharificationabilityof-xylosidaseinthe

presenceofhemicelluloseobtainedfromcornstrawrawandxylanfrombeechwood sub-stratesshowedaxylo-oligosaccharidetoxyloseconversionyieldof80and50%,respectively, at50◦C.Ourdatastronglyindicatedthatthe

␤-xylosidasesactivitieswasnotsubjectedtothe effectsofpotentialenzymeinhibitorsoftenproducedduringfermentationprocess.These datasuggesttheapplicationofthisenzymestudiedforsaccharificationofhemicellulose, anabundantresidueintheAmericancontinents,thusprovidinganinterestingalternative forfuturetestsforenergyproduction.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction

Thermomyceslanuginosus,previouslyknownasHumicola lanug-inosa, is a thermophilic fungus widely distributed and

Correspondingauthor.

E-mail:julianacb6974@hotmail.com(J.M.Corrêa).

frequently isolated from organic waste.1 Several strains of

Themomyces lanuginosus have been shown to be potential producersofenzymeswithdifferentapplications.2–4 In gen-eral,microbialenzymeshavereceivedattentionduetobeing

http://dx.doi.org/10.1016/j.bjm.2016.04.028

(2)

precursorstoclean technologyfortheproductionof indus-trialandcommerciallyimportantcompoundsusingresidual biomassassubstrates.

Thebiomasspresentinagro-industrial residuesis com-posedofhemicellulose,andtheenzymaticdepolymerization ofits structure is commercially interesting due to its soft conditionandnoformationoftoxiccompoundsduringthe degradationoftheproducts.Thecompletedeconstructionof the hemicellulose structure requires the synergistic action of several enzymes, including xylanases (EC 3.2.1.8) and ␤-xylosidases (EC 3.2.1.37). ␤-Xylosidase cleaves ␤ -1,4-xylo-oligosaccharides releasedby xylanasesproducing xylose, a monosaccharidethatcanbeusedbydifferentmicroorganisms intheprocessofsaccharificationandproductioncompounds ofthebiotechnologicalapplication.1,5

Currently,marketanalysesindicatethatglobalmaize pro-ductionisabundant,andtheUSisthelargestproducerofthe cropfollowedbyArgentinaandBraziltotalingapproximately 53.2milliontonsperharvest.Cornismainlyusedforanimal feedproductionbutisalsousedtoalesserextentforthe pro-ductionofoils,floursandbreakfastcereals.Thus,theresidual biomassofthecrop,suchasstrawandcorncobs,shouldbe consideredfortheproductionofenergyandotherproductsof biotechnologicalinterest.1,2

Brazilianindicesrelatedtocorncropsshowthatonly5%of productionisintendedforhumanconsumption.Theresidues fromtheprocessingofthiscropmakeup58%oftheproduced biomass,andthisportion isstillneglected andcould alter-nativelycontributeasasourceofrenewableenergysourcesto generatewealthandtominimizetheaccumulationofresidues thatcanbeharmfultotheenvironment.1,2

Inthepresentreport,anisolatefromtheBrazilianAtlantic Forestbiome was optimized forthe production total of␤ -xylosidases.Theoptimizedenzymecrudeextractwasused for testing the saccharification of xylan from beechwood andhemicellulosederivedfromcornstrawemphasizingthe potentialbiotechnologicalrolefortheenzyme.

Materials

and

methods

Isolation,identificationandmaintenanceofculture

ThefunguscatalogedundertheIDofPC-7S-1-Twasisolated fromasoilsampleobtainedfromtheAtlanticForestbiome ofthe BeautifulViewRefuge (latitude 24◦5516′′ S and lon-gitude53◦5435′′W)FozdoIguac¸u,Paraná,Brazil(collection authorizedbyItaipuBi-national).Theisolatewassubjectedto morphologicalidentificationfollowedbymolecular identifica-tionbynucleotidesequenceanalysisoftheITSregionofDNA correspondingtotherRNAofthemicroorganism.This analy-siswasperformedattheLaboratoryofMolecularBiochemistry attheStateUniversityofWestParaná(Brazil)byextractingthe totalDNAofthefungusfollowedbyreplicationofthetarget ampliconusingspecificprimers.Theampliconsobtainedwere sequencedbythesequencing serviceprovidedbyHELIXXA (Sequencing Service, Brazil), and the sequences obtained were analyzed using sequence alignment tools (Blast-n from the National Center for Biotechnology Information; NCBI).

ThegeneratedsequencewasdepositedinGenBankunder theaccessnumberKJ934703.1.Inbothanalysesusedto iden-tifythefungus,theisolatewasclassifiedasbelongingtotheT. lanuginosusspecies.Themicroorganismwasgrownat42◦Cfor 7daysintubescontainingsolidPDAmedium(20%potato infu-sion(w/v),1.5%dextrose(w/v)and1.5%agar(w/v))andwas subsequentlystoredunderrefrigerationat4◦Cwithperiodic maintenanceevery30days.

Preparationofagro-industrialresiduesandplantbiomass

Thefollowingcarbonsourcestestedforuseintheexperiments offungalgrowthandinductionof␤-xylosidasesenzyme activ-itieswereselectedaccordingtoavailability:cornstraw,orange peels,bananapeelsandpassionfruitpeels.Theplantbiomass residues weredriedat70◦Cfor24hfollowedbytrituration (SL30slicerWilley)usinga20meshsieve, andtheresidues werethenstoredinglassvialsatroomtemperature.

CultivationconditionsofT.lanuginosus

Newlygrownfungalconidiawereusedtopreparea suspen-sion (1×105conidiamL−1)insterilewater, whichwas then inoculatedinto25mLofmineralmedium(distilledwater,0.3g ofNaNO3,0.1gofK2HPO4,0.05gofMgSO4·7H2O,0.05gofKCl,

0.001gofFeSO4·7H2O,and0.1gofyeastextract;pH6.0)

supple-mentedwith1%(w/v)differentselectedcarbonsources.The submergedfermentation(SMF)cultivationswereperformed twodifferentwaysasfollows:stationaryliquidandagitated liquid(150rpm)at42◦Cfor7daysinbiologicalduplicates.The carbonsourcemosteffectiveininducingthehighestenzyme activitywasusedforfurtheroptimizationexperiments.

Theenzymeproductionwasmonitored,bycollectingthe mycelialcellsofT.lanuginosusbyvacuumfiltrationofthe cul-turetosterileWhatmanpaper.Theobtainedmycelialcells werefrozen,andtheywerethenmaceratedwith1gofglass beads,resuspendedin5mLofice-colddistilledwaterand cen-trifugedat8000×gand4◦Cfor5min.Thesupernatantwas collectedandusedintheanalyticaltests.

Determinationoffungalbiomass

Thesamplesusedforthedeterminationofbiomasswere fil-tered through5␮mfilterpaper (Whatman®), driedfor48h at105◦C and weighed onan analytical balance.Theassay formeasurethefungalbiomasswasconductedusinga con-trol fordetermination ofbiomass.In thecontrol flaskwas addedtheresidueintheabsenceofinoculum.Thebiomass wasquantifiedbythedifferenceofweightobtainedinthetest experimentscontainingresidueandfungus,and,thecontrol containingonlytheresidue.

(3)

Table1–LevelsoffactorsusedinCCRD.

Factorsa 1.68 1 0 1 +1.68

F1 0.04g

(0.2%)

0.125g (0.5%)

0.25g (1%)

0.375g (1.5%)

0.46g (2%)

F2 23◦C 28C 35C 42C 46C

F3 0.005g

(0.01%)

0.025g (0.05%)

0.0525g (0.2%)

0.0807g (0.3%)

0.1g (0.4%)

a F1,cornstraw;F2,temperature;F3,yeastextract.

ofcornstrawwith0.0525gofyeastextractasacentralpoint asthiswasdefinedastheoptimalconditionfor␤-xylosidases activitiesinpreliminarytests.

Thevalueswere then addedtothe central pointofthe design,and the influenceoftemperatures between23 and 46◦Cwasalsoincludedinthetests(Table1).Statistical analy-siswasperformedtoobtainthelineareffects,andthemodel wasadjustedaccordingtoEq.(1)todescribetheresponse sur-face.

ˆ y=b0+

3

i=1 biFi+

3

i,j=1

bijFiFj (1)

Itwasused Derringer’s6 desirability functionacriterion decision-makingmethodproposedbyDerringerandSuichin 1980.Thisisthemostcurrentandfrequentlyusedtechnology forresponseoptimization.Theprocedureinvolvesthe trans-formationofindividualresponsetoadesirabilityfunction(di), definedasadimensionlesspartialdesirabilityfunctionthat variesfrom0(consideredacompletelyundesirableresponse) to1(consideredafullydesiredresponse).

ˇ-Xylosidasesactivitiesandproteindetermination

The␤-xylosidaseactivitywasdeterminedusing0.5mLofp -nitrophenyl-␤-d-xylo-pyranoside (pNPX) at a concentration

of10mM in50mM sodiumphosphate buffer (pH6.0) with 0.05mLofthecrudeenzymeextract(withorwithout dilu-tion),whichwasincubatedforaperiodof10–60minat50◦C inawaterbath.Thereactionwasstoppedwithasaturated solutionofsodiumtetraborate.Thesampleswereanalyzedby spectrophotometerreadingat410nmusingp-nitrophenol (0–0.6␮mol/mL)forthestandardcurve.Oneunitofenzyme activity was defined as the amount ofenzyme capable of releasingone␮molofp-nitrophenolperminuteofreaction. Theproteinconcentration wasdetermined bythe Bradford methodusingbovineserumalbuminasthestandard.

The enzymatic activity was expressed in U/mL of the homogenateorinspecificenzymaticactivity(U/mg)that cor-respondtotheenzymaticactivityobtainedbymgofthetotal proteinproducedinthecell.

Influenceofthetestconditionsontheproductionof

ˇ-xylosidase

AftergrowthofT.lanuginosuscellsindifferenttestconditions, itwaspossibletodefineparameterstobeconsideredinthe

experimentaldesignaswellasthecarbonsource,typeofcrop andtheoptimalproductiontimefor␤-xylosidasesactivities.

InfluenceofpHandtemperatureonintracellular

ˇ-xylosidasesactivities

Theintracellular␤-xylosidaseactivitywasanalyzedfor vari-ationsindifferentpHconditions(McIlvainebufferpH5–7.5). Toanalyze theeffectoftemperature,theoptimumpHwas maintained,andthecrudeextractcontainingtheenzymewas incubatedattemperaturesrangingfrom50to70◦Cin incre-mentsof5◦.TheconditionsforoptimumpHandtemperature wereusedforanalysisofthermostabilityinthe3optimal tem-peratureconditionsdisplayed.

Pretreatmentforhemicelluloseextractionfromcornstraw

Samplesofcornstrawwereplacedinsealedtubescontaining 0.35goffreshcornstrawwith10mLofdeionizedwater,and thesampleswereplacedinablockdigesterfor1hat200◦C. Thesampleswerethen immediatelyplacedinanicebath. Afterseparationofthesolidfromtheliquidphase,theliquid portion containingthehemicellulosewasprecipitatedwith absoluteethanol(three-foldthevolume)for48h.Theobtained precipitatewasrecoveredbyfiltrationandthendriedat37◦C foraperiodof3days.

Enzymatichydrolysisofxyloseandeffectonˇ-xylosidases

activities

(4)

withoutenzyme,and2–incubationofDNScontainingthe crude extract of enzymes without addition of hemicellu-lose from corn straw or xylan. Reducing sugars present in boththexylanfrombeechwoodandhemicellulosefromcorn strawweremeasuredbeforestartingthehydrolysis,andthe values obtained were used to present normalized results. Samplesobtainedaftertheenzymaticsaccharificationwere subjectedtothinlayerchromatographytoevaluatethe con-versionofthexylo-oligosaccharidestoxylosebyT.lanuginosus

␤-xylosidase.Inparallel,theresidualxylosewasdetermined inthehemicellulosesamplesat12husingtheMegazyme®kit. Theinfluenceofxyloseon␤-xylosidasesactivitieswasalso investigatedbyincubatingthecrudeintracellularextract con-taining␤-xylosidaseswithxyloseatthelevelsdetectedinthe saccharificationprocess.

TLCsilicaproductofthehydrolysis

Analysisofhydrolysisproductsformedfrom thecombined actionoftheenzymes,namelyxylanase (extracellular)and ␤-xylosidases (intracellularcrude extract), ofT. lanuginosus wasperformedbyascendingthin layerchromatographyon 10cm×10cm silica (Alufolien DC-Kieselgel60 without flu-orescent indicator, Merck®). The hydrolysis products were collected atbothtemperatures and atdifferent times. The productswerethenboiledfor10minandfrozen.Thexylose standard (Sigma®) (2mg/mL; 5L) and xylobiose/xylotriose standard (Megazime®) (3mg/mL; 4L) (Sigma®) and each

sample(4␮L)wereaddedtothesilica.Theplatewasresolved twicewithamixtureofbutanol,pyridineanddistilledwater (7:3:1,v/v/v).Disclosureofthehydrolysisproductswas per-formedusingasolutionof0.3%orcinol(w/v)sulfuricacidin methanol(1:9).Subsequently,theplatewasplacedinanoven at100◦Cuntilthexylo-oligosaccharidedegradationproducts weregenerated.

Results

Determinationofoptimalconditionsforˇ-xylosidases

production

The T. lanuginosus fungus was grown under different con-ditions(typeofresidue,cultivationandincubationtime)to determine the optimal conditionsfor the productionof ␤ -xylosidases with high activity. The plant biomass residue thatledtohigherenzymaticactivityofT.lanuginosuswas1% cornstraw(w/v)ascomparedtotheotherresidues,namely 1% orange peel (w/v), 1% passion fruit peel (w/v) and 1% bananapeel(w/v).Withbothsteadycultivationandagitated cultivation, corn straw was the highest inducer of intra-cellular␤-xylosidasesleadingtoamaximum productionof 214U/mL after5daysofcultivationunder shaking(Fig.1A and B) The agitatedcultivation using corn straw was also the most effective for the production ofmycelial biomass (Fig.1C).

140

210 180 150 120 90 60 30 0

a

c

0.25

0.20

0.15

0.10

Biomass (mg)

0.05

0.00

SMF SSF

Cultivation

b

120 100 80 60

β

-Xylosidase activity (U/mL) β-Xylosidase activity (U/mL)

40 20 0

0 1 2 3 4

Time (days) Time (days)

5 6 7 0 1 2 3 4 5 6 7

Banana peel Corn straw

Banana peel Corn straw Orange peel

Passion fruit peel

Orange peel Passion fruit peel

Fig.1–(A)␤-xylosidasesactivitiesinthecrudeextractofThermomyceslanuginosusafter7daysofcultivationinmineral mediumsupplementedwith1%ofvariousagro-industrialresiduesasacarbonsourceat42◦Candatstationaryconditions.

(B)Productionoftheintracellular␤-xylosidasesenzymeofT.lanuginosusduring7daysinculturecontainingmineral mediumsupplementedwith1%ofagro-industrialresiduesasacarbonsourceat42◦Candagitationat150rpm.(C)

(5)

Experimentaldesign

Theparametersforenzymeproductionwiththeoptimal con-ditionswereappliedtothe CCRDexperimentaldesignasa waytofurtherimprovetheyieldsofenzymaticactivity.The experimentaldesignwasbasedonthreedifferentfactorsas follows:concentration of residue as a carbon source(corn straw),temperatureandconcentrationofyeastextract (nitro-gensource)during5daysinSMFcultureunderagitationat 150rpm.The23experimentalmatrixconsistedofthree cen-tralpointsandsixaxialpointswherethetwofactorscombined withthree levels totaling 17 tests. Weselected the combi-nationof0.25gofcornstraw with0.0525gofyeastextract asacentralpointasthiswastheoptimumconditionfound forthe activityofintracellular␤-xylosidases inpreliminary tests(Fig.1).Therefore,thesevalueswereaddedtothecentral pointofthedesign.Theeffectoftemperaturewasalso com-binedinthetestsusingtemperaturesbetween23and46◦C duetothethermophilicconditionshownbytheisolatedstrain (Table1).

Table2showsthecodedandrealvaluesofthe experimen-taldesignperformedwiththreecenterpointsandsixaxial pointstotaling17tests.Thevaluesof␤-xylosidasesactivities arepresentedindividuallyaccordingtoeachassayincluding thecorrespondingstandarderror.

The estimated effects of the variables evaluated were positiveinthisanalysisastheydemonstratedthatthe tem-perature,cornstrawandyeastextractledtoanincreasein enzymeactivityof302,324and247U/mL,respectively. Analy-sesofvariablesgeneratedamathematicalmodelofthesecond order(Eq.(2))wherepmiscornstraw,tistemperatureandel isyeastextract.

ˆ

ˇ=(1107,73+(162,435pm−163,005pm2)

+(151,434t−293,537t2)+(123,753el144,798t2)) (2)

Thesummaryoftheanalysisofvariance(ANOVA)ofthe experimentaldesignispresentedintermssignificantto10% ofprobability(p<0.10)inTable3.Thecoefficientof determi-nation (R2)was0.86,andtheF-testshowedthatthemodel isappropriatetopredicttheresultsviaresponsesurface,thus confirmingthemathematicalmodelpresentedinEq.(2).Fig.2

showsthebehaviorofthedesigndatawiththethreevariables tested,thusindicatingthepreferredoptimization.

Thesurfaceresponsesrepresentthemathematicalmodel thatenablestheverificationofthecombinationofthree fac-torsanalyzedintheexperiment, theinfluenceofeachone and the maximum enzymeactivity of␤-xylosidase. Condi-tionsofincreasedproductionof␤-xylosidasewereobtainedat concentrationsthatwereclosetothecentralpointcondition forthethreefactorsstudied.However,contourcurves were presentindicatingslightlylowervaluesofthecenterpointfor allthreevariables,thusleadingtothesameresponses.

Optimizationoftheconditionsthatmaximizeenzymatic production of ␤-xylosidase requires analysis of individual behavioral responsesinacceptableregions.Thedesirability conditions (Fig. 3) showed that the combination of factors that achieved the highestproductionof␤-xylosidase must contain0.287gofcornstrawwith0.06gofyeastextractata temperatureof36◦C.Theprofileofthepredictedvaluesand desirabilityofthemodelshowedthatitispossibletoobtain a maximum of1194U/mL of␤-xylosidase enzymewithan expectedyieldof84%.

Validationofoptimizedexperimentalconditions

The conditions determined for desirability of the experi-ment were validated after performing 6 repetitions with duplicatebiologicalandenzymatic dosagesfortheextracts obtainedfrom mycelia.Thecultivationswereperformedin

Table2–Matrixofdesign(CCRD)withthecoded,realgivenvaluesandvaluesobtainedintheexperiments(residue concentration,temperatureandconcentrationoftheyeastextract).

Essays Codedvalues Realvalues Obtainedvalues

F1 F2 F3 Cornstraw Temperature Yeastextract ␤-Xylosidaseactivity

Levels (g) (%) ◦C (g) (%) U/mL

1 −1 −1 −1 0.125 0.5 28 0.025 0.05 237±18.30

2 1 −1 −1 0.375 1.5 28 0.025 0.05 263±5.00

3 −1 1 −1 0.125 0.5 42 0.025 0.05 554±13.52

4 1 1 −1 0.375 1.5 42 0.025 0.05 569±19.11

5 −1 −1 1 0.125 0.5 28 0.0807 0.3 279±29.54

6 1 −1 1 0.375 1.5 28 0.0807 0.3 281±19.13

7 −1 1 1 0.125 0.5 42 0.0807 0.3 529±20.55

8 1 1 1 0.375 1.5 42 0.0807 0.3 1386±37.11

9 0 0 0 0.25 1 35 0.0525 0.2 1258±60.58

10 0 0 0 0.25 1 35 0.0525 0.2 974±63.45

11 0 0 0 0.25 1 35 0.0525 0.2 1095±82.63

12 −1.68 0 0 0.04 0.2 35 0.0525 0.2 248±18.70

13 +1.68 0 0 0.46 2 35 0.0525 0.2 1031±96.72

14 0 −1.68 0 0.25 1 23 0.0525 0.2 245±16.58

15 0 +1.68 0 0.25 1 46 0.0525 0.2 297±6.86

16 0 0 −1.68 0.25 1 35 0.005 0.01 442±11.35

(6)

Table3–SummaryofANOVAofthe2ndordermathematicalmodelfortheproductionof␤-xylosidase.

Variationsource SS GF MS Fvalue Ftab

Regression 194,460.20 6 324,100.33 5.34 2.46

Residues 60,731.30 10 60,731.30

Total 255,191.50 16

SS,sumofthesquares;GF,degreesoffreedom;MS,meansquares;Fvalue,calculatedFvalue;Ftab,tabulatedFvalue;R2=0.86;p-value<0.10.

liquidmediumwithshaking(150rpm)for5daysat36◦Cas

indicated by the desirability settings (Fig. 3). The

intracel-lular crude enzymatic extract and dosages of ␤-xylosidase activityfollowedtheprotocolin“Materialsandmethods” sec-tion.Theaverageenzymaticactivityobtainedinthetestswas 1003U/mL,andthespecificactivitywas1683U/mg.Initially, the experiments without application of the experimental designhad a maximum ␤-xylosidase activity of 214U/mL. However,optimizationachievedalmost500%morethanthe initialvalueswitha4.7-foldincreasein␤-xylosidaseactivity.

Theˇ-xylosidaseactivityinthecrudeextractwas

subjectedtoapartialcharacterization

The␤-xylosidaseactivityinthecrudeextractwassubjected toapartialcharacterization.Thetestconditionsatdifferent pHvalues(McIlvainebuffer) indicatedthat theoptimal pH

valuewas5.5(Fig.4A)at60◦C(Fig.4B).Inthisstudy,the intra-cellular␤-xylosidaseofT.lanuginosuswasmorethermostable at55◦CandpH7(Fig.5A)retaining80%activityfor90min. However,thethermostabilityof␤-xylosidasewaslowatthe optimumpHastherewasasignificantdecreaseinenzyme activityafter30minofincubation,buttheactivityremained stablethereafteratthethreetestedtemperatures(Fig.5B).In the sameextractwerequantified the␤-glucosidaseactivity at4.9U/mL,␣-l-arabinofuranosidase2.6U/mLand Xylanase

35.59U/mL.

Enzymaticsaccharificationusingxylanaseand

ˇ-xylosidase

The intracellular T. lanuginosus␤-xylosidase was subjected toatestforenzymaticsaccharificationattwotemperatures of 37 and 50◦C with and without pre-hydrolysis with the

1600 1600 1400 1200 1000 800 600 400 200 –200 –400 –600 0.1 0.0525 0.0807 0.025 0.0050.005 0.025 0.0525 0.807 0.1 0 1600 1400 1200 1000 800 600 400 200 –200 –400 –600 0.1 0.0807 0.0525

Corn str

aw (g) Cor n str aw (g) 0.025 0.005 0.125 0.25 0.3750.46 0.04 0 1400 1200 1000 800 600 β -xylosidase U/mL β -xylosidase U/mL β -xylosidase U/mL 400 200 –200 –400 –600 –800 –1000 42 Temper ature ( °C) 35 28 23 0.04

Corn str

aw (g) 0.12 5 0.25 0.37 5 0.46

Yeast e xtract(g)

Yeast e xtract(g) 0 >1000 <1000 <600 <200 <–200 <–600 >1000 <1000 <800 <600 <400 <200 <–200 <0 >1000 <1000 <800 <600 <400 <200 <–200 <0

a

c

b

(7)

Corn straw

1800

1194

84%

0.125 g 0.375 g

0.287 g

28°C 46°C

36°C

0.025 g

0.06 g 0.0807 g

Temperature Yeast extract

0 5

1 1386

811.69

β

-Xylosidase (U/mL)

236.89

Desirability

Fig.3–DesirabilityfortheproductionofT.lanuginosus␤-xylosidase.

100

a

b

Relativ

e activity of

β

-Xylosidase

, %

Relativ

e activity of

β

-Xylosidase

, %

75

50

25

0

100

75

50

25

0 5.0 5.5 6.0 6.5

pH

7.0 7.5 50 55 60 65 70

Temperature °C

Fig.4–(A)EffectofpHontheactivityofintracellular␤-xylosidaseofT.lanuginosusincubatedinMcIlvainebuffer(pH 5.0–7.5)followedbydeterminationof␤-xylosidaseusing␳NPXasasubstrate.(B)Effectoftemperatureontheactivityof intracellular␤-xylosidaseofT.lanuginosusincubatedinMcIlvainebuffer(pH5.5)during10minattemperaturesof50–70◦C

withsubsequentstandarddeterminationof␤-xylosidase.

Table4–Productionofreducingsugarsintheenzymatichydrolysisbyactionofxylanase(X)or␤-xylosidase(BX)tested individuallyorincombination(X+BX).

Essay 37◦C 50C

Reducingsugars␮mol/mL Reducingsugars␮mol/mL

X X+BX BX X X+BX BX

Xylanfrombeechwood(1%,w/v) 6.77 3.17 0.64 7.04 8.15 0.30

(8)

100

a

b

80

60

40

20

0

100

75

50

25

0 0 30 60 90 120 150 180

Time (minutes) Time (minutes)

55°C 60°C 65°C

210 0 30 60 90 120 150

Relativ

e activity of

β

-Xylosidase

, %

Relativ

e activity of

β

-Xylosidase

, %

Fig.5–ThermostabilityprofileoftheintracellularT.lanuginosus␤-xylosidaseactivity.(A)Thermostabilitydisplayedinthe topthreetemperaturesof55◦C,60Cand65Cduring210minofincubationtime.(B)TheenzymestabilityatpH5.5at

temperaturesof55◦C,60Cand65Cduring150min.

filtrate containing high extracellular xylanase activity and totalabsenceof␤-xylosidaseactivityobtainedfromT. lanug-inosus. Each crude enzyme(2U/mL), including intracellular ␤-xylosidaseandextracellularxylanase,wasincubatedwith thefollowingtwodifferentsubstrates:1%xylanfrom beech-wood(w/v)and1%hemicellulosefromcornstraw (w/v).In thehydrolysisperformedattwotemperaturesinthepresence ofxylanfrombeechwood,theenzymeshadsimilarbehavior whentheyweretestedindividuallyorincombination(Table4). However,inthe presenceofhemicellulosefromcorn straw andinassayscontainingxylanasepreviouslyadded,the␤ -xylosidasesofT.lanuginosuswasmoreefficientinpromoting saccharification.Theseresultssuggestacombinedactionof bothenzymes,andindicateanimportantroleforthe decon-structionstructureofhemicellulosefromvegetablebiomasses derivedfromresidues(Table4).

Theyieldofthereducingsugarsgeneratedfromthe indi-vidualactionof␤-xylosidaseintheassaydemonstratedthe highconversioncapacityoftheenzymebecausethe hydroly-sisat50◦Cwas80%comparedtosaccharificationperformed onlybyxylanaseinhemicellulosederivedfrom corn straw (Table4).Aslightlylowerconversionwasfoundusingxylan

asasubstrateatthesametemperaturewheretheefficiency of␤-xylosidasewasonly50%higherthanthatofthe individ-ualactionofthexylanaseenzyme.Theenzymaticactivityof ␤-xylosidasewasmonitoredduringtheentiresaccharification processandshowedaconstancymaintainingapproximately 80%ofitsactivityovertimeinthepresenceofthetest hemi-cellulosesubstratefromcornstraw(Fig.6A).

The yield of ␤-xylosidase conversion into xylo-oligosaccharides was represented by the amount of total reducing sugars which indicated the ability to generate 0.64 and 0.30␮mol/mL from xylan and between 2.12 and 2.75␮mol/mL from hemicellulose from corn straw in the twotestconditionsof37and50◦C,respectively.Thexylose content was also measured using the d-xylose Assay Kit

(Megazyme®)whichindicatedaproductionof207mol/mL ofxyloseat37◦Cand205mol/mLofxyloseat50Cin24h oftesting.TheamountofxyloseproducedisshowninFig.7.

Asaparameterdeterminingthelevelsofxylosedetected duringsaccharificationofhemicellulosefromcornstrawwith ␤-xylosidaseofT.lanuginosus,anexperimentwasconducted toinvestigatethebehaviorofenzymeactivityintheabsence andpresenceof200mMofxyloseevenwithoutthepresenceof

100

a

b

80

60

40

20

0

100

75

50

25

0 0 2

Time (hours) Treatments

Xylose–(37°C) Xylose+(37°C) Xylose–(50°C) Xylose+(50°C)

4 6 8 10 12

Relativ

e activity of

Beta-Xylosidase

, %

Relativ

e activity of

β

-xylosidase

, %

Fig.6–PerformanceT.lanuginosus␤-xylosidasesactivitiesduringsaccharification.Relativeactivityafterhydrolysisby intracellular␤-xylosidaseofT.lanuginosusfor12hinxylanfrombeechwood(square)(1%,w/v)andhemicellulosefromcorn straw(circle)(1%,w/v)at37◦C(closedcircleandclosedsquare)and50C(opencircleandopensquare).Relativeactivity

(9)

a

P XL H XLC H 37°C

C P XL H 50°C

b

XLC HC

Fig.7–Analysisofthinlayerchromatography.TLCofthe hydrolysisofT.lanuginosus␤-xylosidaseproductsobtained after12hofincubationwithxylanfrombeechwood(1%, w/v)andhemicellulosefromcornstraw(1%,w/v)at37◦C

(A)and50◦C(B).P,xylose,xylobioseandxylotriose;XL,

xylanfrombeechwood(1%,w/v);H,hemicellulosefrom cornstraw(1%,w/v);XLC,xylanfrombeechwood(1%,w/v) control;HC,hemicellulosefromcornstraw(1%,w/v) control.

anothersubstrateatbothtemperaturesusedinthehydrolysis (37and50◦C)for12h.Thisassayshowedthatthe

␤-xylosidase activityat37◦Cremainedatapproximately85%ofthe origi-nalactivity at50◦Candthattheenzymeactivityremained slightlymorethan56%oftheenzymeactivitywhencompared withthetotalabsenceofxylose(Fig.6B).Importantly,inthe actualtestconditionsofsaccharification,thehydrolysis prod-uctsof␤-xylosidasearegraduallyreleasedintothereaction mediumfromthenaturalsubstrate,eitherxylanor hemicel-lulosefromcornstraw.However,whentryingtoevaluatethe inhibitionbythefinalhydrolysisproductof␤-xylosidase in thecaseofxylosealone,thecompoundisaddedinthe pres-enceofenzyme,whichjustifiesagreaterinhibitionbyproduct, thusoverestimating whatactuallyoccurs intheprocess of saccharification(Fig.6A).

Discussion

Despite of the fact the ␤-xylosidase activity in the crude extractwashightoptimized(1003U/mL),otherenzymes intra-cellularxylanase,␤-glucosidaseand␣-L-arabinofuranosidase wereobtainedinlowlevels.Thisresultsuggeststhatthehigh levelof␤-xylosidaseintracellularobtainedinthecrudeextract isaconsequenceoftheextracellulardeconstructionofcorn strawresiduebyotherxylanoliticenzymes.

Ingeneral,the growthoffungicanbeinfluencedbythe rateofaerationincultivationduetothehigheravailabilityof oxygenduringgrowth,whichcanpositivelyinfluenceenzyme productivity.7 However,variousmicroorganismsbehave dif-ferentlytogrowthconditions,soitisessentialtoevaluatethe combinationofdifferenteffectsexertedontheenzymes of interest.Severalcarbonsourceshavebeenusedtoevaluate

theinductionofhemicellulaseactivityinotherisolatesofT. lanuginosus.Amongthesestudies,thereisanemphasisonthe useofmaterialsderivedfromcornprocessingaspromising enzymeinducers.2,7,8

Thecorncobhasbeenreportedasacomplexresiduein the inductionofxylanase inT. lanuginosusDSM 5826 com-paredtoxylan8toinducelowenzymeproductivity.Theeffects ofaerationoncultivatingwerealsoinvestigatedthe produc-tionofhemicelluloseinT.lanuginosusSSBPcellsgrownina bioreactor.3Thesetestsshowedanoverallinductionof hemi-cellulaseproportionaltotheincreasedagitation.2

Although some studies have focused on T. lanuginosus, theuseofagro-industrialresiduesinfermentationprocesses withthisfilamentous fungusforenzymeproductionisstill incipient.However,thecorncob,7,9 citruspectin/beetpulp,4 wheatstraw10 andwheatbran11 havebeen showntohave potentialapplicabilityforenzymeinductionofthexylanolytic andhemicellulolyticcomplex.However,theapplicationofan experimental designwiththis microorganism toinduce ␤ -xylosidaseshasnotbeenreporteduntilthepresentwork.

DatageneratedusingStatistica7®softwaretoanalyzethe combinedfactorsindicatedamaximumpredictedactivityof 1194U/mL,andtheexperimentalconditionsindicateda pro-ductionof1003U/mL.Thus,84%ofthepredictedvaluewas achieved with the application of the experimental model. Accordingourknown,thisstudyisthefirsttoshowsohigh levelsof␤-xylosidaseactivityinduction.Inaddition,the appli-cationofanexperimentaldesignwiththismicroorganismto induce␤-xylosidaseshasnotbeenreporteduntilthepresent work.

Inthisstudy,theneedforexperimentaldesignto deter-mine the optimal conditions for enzyme induction was demonstrated.Oneofthemajoradvantagesusingthis statis-ticalapproachtoobtainhighenzymaticactivityislaboratory economics; inarecentwork hasreported5 the presenceof beta-xylosidasesinthermophilicfungiinsmallerquantities than this study,the abilityto obtainhigh enzymelevelsis desirable.

Thenumberoftestsperformedtoachievetheoptimalstate islesswithhigherefficiencyduetoless timespentforthe determinationoffurtherparametersandthereduceduseof reagentsneededintheculturesandenzymedosages.Thedata indicatedthatstrawcornresidue(abundantintheAmerican continents,largelyunexploredandconsideredpoorin nutri-ents)isanexcellentinducerofintracellular␤-xylosidasefrom T.lanuginosusinoptimizedconditions.

TheAspergillusfumigatusgrownoncorncobsat tempera-turesof30and42◦CshowedanoptimumpHof5.4andan optimumtemperature of70◦C.9 Lactobacillusbrevis NCDC01 grown in 1% wheat bran has an optimum pH and tem-perature of 6.0 and 40◦C, respectively.12 In the bacterium

Selenomonas ruminantiumGA192,showedanoptimumpHof 5.3andtemperatureof25◦Cfor-xylosidase.12,13

Alicyclobacil-lusacidocaldariusinoptimizedconditionsisassayedatpH5.5 andat50◦C.14Allofthesedatasuggesttheversatilityand het-erogeneityofbiochemicalcharacteristicsof␤-xylosidasesin pro-andeukaryoticmicroorganisms.

(10)

contributionof␤-xylosidase inthe process of deconstruct-ing hemicellulose, and they showed increased production ofreducing sugars withthepurifiedenzymes ascompared totheamountproduced withpre-hydrolysisbyxylanase.15 Inotherstudy withrecombinantproteins␤-xylosidase and xylanasepurifiedfromHumicolainsolensexpressedinE.coli tohydrolyzexylanfrombirchwoodandbeechwoodat37◦C, which resulted in saccharification increases of 1 and 1.29 times,respectively,indicatingthesynergisticactionofthese enzymes.16

Xylanaseand␤-xylosidaseisolatedfromNeurosporacrassa havealsobeenusedforthesaccharificationofxylan result-ingin18%hydrolysiswiththeindividualactionofxylanase, 68% with the combination of both and 48% with the individual action of ␤-xylosidase, thereby indicating that ␤-xylosidaseisanimportanttoolfordepolymerizationof xylo-oligosaccharides.17

In this study, the ␤-xylosidase activity was monitored throughoutthetestshowinghighperformancewith hemicel-lulosefromcornstraw,anditretainedapproximately80%of theactivityovertime(Fig.6A).Mostofthetestsshowed sta-bilitythatlastedfor1hafterthestartofthesaccharification, whichstronglysuggestedthattheenzymewasnotsubjected totheeffectsofpotentialenzymeinhibitorsoftenproduced duringthistypeofprocess.

Ingeneral,thedatapresentedherestronglysuggestthat ␤-xylosidasefromT.lanuginosuscanbeusedforthe sacchari-ficationofhemicellulosederivedfromcornstraw,anabundant residueintheAmericancontinents,thusprovidingan alter-native forfuture trials toproduce energythat dependson the conversion of plant biomass. Successful strategies for theproductionofhemicellulaseswithbiotechtraitsnotonly dependontheselectionofnewmicroorganismsbutalsoon theimprovementofexperimentalstrategiesthattake maxi-mumadvantageofitspotential.18,19

Conclusions

Thisstudydemonstratesthepotentialofusingcornstrawasa substrateforachievinghighlevelsofintracellular␤-xylosidase (1003U/mL/1683U/mg)forT.lanuginosus.Thisabundant agro-industrialwastebiomassiseasilyaccessibleandcanleadto significantcostreductionsforproductionofenzymeswhen usedasacarbonsource.Althoughitiswidelyusedforfeed, corn straw is underutilized in biotechnological processes, thusleadingtoitsaccumulationintheenvironment.Inthis study, we tested the optimal conditions for producing ␤ -xylosidaseusinganoptimizedexperimentaldesignresulting inanincreaseofapproximately500%or4.7timesinterms ofenzymeyield.Ourresultssuggestanapplicationforthe useofcorn strawnotonlyforenzymeproductionbut also forprocessesinvolvingthesaccharificationofhemicellulose. Additionalstudiesarestillneededandarebeingconducted fortheapplicationofcornstrawintheproductionofbiofuels.

Conflict

of

interest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgements

J.M. Corrêa was fellow of the Coordination of Improve-ment of Higher Education Personnel(CAPES, Brazil). R.C.G. Simão (process 630/2014) was partially supported by the Araucária Foundation. M.K. Kadowaki were supported by the Araucária Foundation (process 395/2013) and National CouncilforScientificandTechnologicalDevelopment(CNPq 563260/2010-6/Brazil).

r

e

f

e

r

e

n

c

e

s

1.JuturuV,WuJC.Insightintomicrobialhemicellulasesother thanxylanases:areview.JChemTechnolBiotechnol.

2013;88:353–363.

2.SuY,ZhangX,HouZ,ZhuX,GuoX,LingP.Improvementof xylanaseproductionbythermophilicfungusThermomyces lanuginosusSDYKY-1usingresponsesurfacemethodology.

NewBiotechnol.2011;28:40–46.

3.ReddyV,ReddyP,PillayB,SinghS.Effectofaerationonthe productionofhemicellulasesbyT.lanuginosusSSBPina30l bioreactor.ProcessBiochem.2002;37:1221–1228.

4.PuchartV,KatapodisP,BielyP,etal.Productionofxylanases, mannanases,andpectinasesbythethermophilicfungus

Thermomyceslanuginosus.EnzymeMicrobTechnol. 1999;24:355–361.

5.BenassiVM,LucasRC,JordeJA,PolizeliMLT.Screeningof thermotolerantandthermophilicfungiaiming␤-xylosidase andarabinanaseproduction.BrazJMicrobiol.

2014;45:1459–1467.

6.DerringerG,SuichR.Simultaneousoptimizationofseveral responsevariables.JQualTechnol.1980;12:214–219.

7.SinghS,MadlalaAM,PriorBA.Thermomyceslanuginosus: propertiesofstrainsandtheirhemicellulases.FEMSMicrobiol Rev.2003;27:3–16.

8.BennetNA,RyanJ,BielyP,VranskaM.Biochemicaland catalyticpropertiesofanendoxylanasepurifiedfromthe culturefiltrateofThermomyceslanuginosusATCC46882.

CarbohydrRes.1998;306:445–455.

9.LenartoviczV,SouzaCGM,MoreiraFG,PeraltaRM. Temperatureandcarbonsourceaffecttheproductionand secretionofathermostable␤-xylosidasebyAspergillus fumigatus.ProcessBiochem.2003;38:1775–1780.

10.BokhariSAI,RajokaMI,JavaidA,Shafiq-ur-Rehman, Ishtiaq-ur-Rehman,LatifF.Novelthermodynamicsof xylanaseformationbya2-deoxy-d-glucose

resistantmutantofThermomyceslanuginosus

anditsxylanasepotentialforbiobleachability.Bioresour Technol.2010;101:2800–2808.

11.HoqMM,HempelC,DeckwerWD.Cellulase-freexylanaseby

ThermomyceslanuginosusRT9:effectofagitation,aeration, andmediumcomponentsonproduction.JBiotechnol. 1994;37:49–58.

12.LasradoLD,GudipatiM.Purificationandcharacterizationof

␤-d-xylosidasefromLactobacillusbrevisgrownon xylo-oligosaccharides.CarbohydrPolym.2013;92: 1978–1983.

13.JordanDB,LiXL,DunlapCA,WhiteheadTR,CottaMA. ␤-Xylosidaseforconversionofplantcellwallcarbohydrates tosimplesugars.USPatent20,090,280,541;2009.

(11)

15.CorrêaJM,GracianoL,AbrahãoJ,etal.Expressionand characterizationofaGH39␤-xylosidaseIIfromCaulobacter crescentus.ApplBiochemBiotechnol.2012;168:2218–2229.

16.YangX,ShiP,HuangH,etal.Twoxylose-tolerantGH43 bifunctional␤-xylosidase/␣-arabinosidasesandoneGH11 xylanasefromHumicolainsolensandtheirsynergyinthe degradationofxylan.FoodChem.2014;148:381–387.

17.DeshpandeV,LachkeA,MishraC,KeskarS,RaoM.Modeof actionandpropertiesofxylanaseand␤-xylosidasefrom

Neurosporacrassa.BiotechnolBioeng.1986;28:1832–1837.

18.MallerA,ViciAC,FacchiniFDA,etal.Increaseofthephytase productionbyAspergillusjaponicusanditsbiocatalyst potentialonchickenfeedtreatment.JBasicMicrobiol. 2014;54:S152–S160.

Imagem

Table 1 – Levels of factors used in CCRD. Factors a − 1.68 − 1 0 1 +1.68 F1 0.04 g (0.2%) 0.125 g(0.5%) 0.25 g(1%) 0.375 g(1.5%) 0.46 g(2%) F2 23 ◦ C 28 ◦ C 35 ◦ C 42 ◦ C 46 ◦ C F3 0.005 g (0.01%) 0.025 g (0.05%) 0.0525 g(0.2%) 0.0807 g(0.3%) 0.1 g (0.4%)
Fig. 1 – (A) ␤-xylosidases activities in the crude extract of Thermomyces lanuginosus after 7 days of cultivation in mineral medium supplemented with 1% of various agro-industrial residues as a carbon source at 42 ◦ C and at stationary conditions.
Table 2 shows the coded and real values of the experimen- experimen-tal design performed with three center points and six axial points totaling 17 tests
Table 3 – Summary of ANOVA of the 2nd order mathematical model for the production of ␤-xylosidase.
+4

Referências

Documentos relacionados

Optimal conditions of arsenic extraction were obtained by evaluating the operational parameters of ultrasound bath and the analysis conditions with the experimental design.. The

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

No campo, os efeitos da seca e da privatiza- ção dos recursos recaíram principalmente sobre agricultores familiares, que mobilizaram as comunidades rurais organizadas e as agências

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente