• Nenhum resultado encontrado

Logical Hexagons of Statistical Modalities: Probabilistic, Alethic, Hybrid & Spiral

N/A
N/A
Protected

Academic year: 2022

Share "Logical Hexagons of Statistical Modalities: Probabilistic, Alethic, Hybrid & Spiral"

Copied!
28
0
0

Texto

(1)

Logical Hexagons of Statistical Modalities:

Probabilistic, Alethic, Hybrid & Spiral

Luís Gustavo Esteves, Rafael Izbicki#, Julio Michael Stern, Rafael Bassi Stern#;

University of São Paulo, #Fed. Univ. of São Carlos.

http://www.ime.usp.br/∼jstern/miscellanea/jmsslide/hexa16.pdf 5th W. Congr. Square of Oppositon, Rapa Nui, Chile, Nov. 11-15, 2016;

XVIII Brazilian Logic Conference, Pirenópolis, Brazil, May 8-12, 2017;

November 29, 2016

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities I.1 1/28

(2)

This Presentation

I- Introduction;

II- Logical Hexagons of Opposing Modalities;

III- Testing (Accepting / Rejecting) Statistical Hypotheses, Desirable Logical Properties of Agnostic Tests,

Failure of Probabilistic Statistical Tests;

IV- Full Coherence = (Alethic= Possib.Calculus) Region Tests, Generalized Full Bayesian Significance Test,

GFBST Continuous Mathematics under the hood;

V- Hybrid (Alethic / Probabilistic) Relations, Sharp Hypotheses: Importance, vs. Slackness;

Pierre Gallais’ Hexagonal Spirals and Science Evolution;

VI- Final Remarks.

Problem of Induction: +3H? or ∇∗ H =3H∧ ¬H !!!

Future Research: How to measure Slackness?

References and Acknowledgments.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities I.2 2/28

(3)

Logical Hexagons of Opposing Modalities

U:p H=H∨ ¬3H

A:H E:¬3H

9

I:3H O:¬H

Y:p H=3H∧ ¬H

2 3 4

::

1

6∗

7∗

8 9

dd

5

10

12∗

11

13∗

dd

14

::

15

Modal Operators:

- Necessity, 3- Possibility,

- Contingency,

- Non-Contingency;

Types:

3- Alethic, +∆ ++3- Probabilistic,

3- Slackness,

p p ∇ ∗ - Hybrid;

Logical Operators:

¬- Nega.,- Implic.,

- Conjunction (and),

- Disjunction (or);

Opposition relations:

=== Contradiction, - - - Contrariety, ... Sub-Contrariety.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities II.1 3/28

(4)

The Problem of Induction: + 3 H or 3 H ?

+∆: Accept or Reject

: AcceptH⇔Pr(H)≥1-α ¬3+: RejectH⇔Pr(H)< β

+3: Do not Reject ¬: Do not Accept

+∇: Agnostic⇔Neither Accept nor Reject Ideal world (wishful thinking),not how it really works:

Parameter spaceΘ, Posterior Probability pn(θ)∝p0(θ)p(X, θ);

HypothesesH :θ∈ΘH (relaxed notation: H forΘH);

HypothesisH ⊂Θhas known Pr(H) =R

Hp(θ)dθ;

β= Pr( type II error = false negative );

1−β= Power = Pr( rejectH ifθ /∈H);

α= Significance level = Pr( type I error = rejectHifθ∈H );

Choices forαorβ:

Ronald Fisher:α= 0.05 (*), 0.02 (**), 0.01 (***);

Equal weight: Calibrate the test to minimizeα+β.

He = ΘH, Pr(H) =e 1Pr(H);

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities II.2 4/28

(5)

Slack and Sharp versions of Non-Cont. ∇ = 3 ∧ ¬

: Mandatory ∆: Ordained

¬3: Forbiden 3: Permitted

∇: Indifferent ¬: Optional : Inclusion ∆: Inclu.or Exclu.

¬3: Exclusion 3: Inclu.or Intersct.

∇: Intersection ¬: Exclu.or Intersct.

: x <y ∆: x 6=y

¬3: x >y 3: x ≤y

∇: x =y ¬: x ≥y

The interpretation of themodality can have a weak role (broad, vague, Slack) or a “reverse” strong role (equal, identical, Sharp)!

> Examples: Deontic relations from Gallais (1982); Order relations and set operations from Blanché (1966) & Béziau (2015).

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities II.3 5/28

(6)

Coherence: Logical Desiderata for Statistical Tests

3He

He

¬2He

¬3He

He 2He

¬2H

∇H 3H

2H

∆H ¬3H

¬2H 2H

∆H ¬3H

¬2H0

∇H0 3H0

2H0

Agnostic = possible case∇H Invertibility (forHcomplement):

H ⇐⇒ ¬3He and

∇H ⇐⇒ ∇He AE,e EA,e IO,e OeI, UU,e Y Y;e

Monotonicity (for nestedHH0):

HH0

(HH0 3H3H0 AA’, II’, O0O, E0 E;

See Esteves et al. (2016).

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities III.1 6/28

(7)

Coherence: Logical Desiderata for Statistical Tests

3(ABC)

3(AB) 3(B∪C) 3(A∪C)

3C

3A 3B

¬(ABC)

¬(AB)

¬(BC)

¬(AC)

¬C

¬A ¬B

Agnostic = possible case∇H Strong union consonance:

For every index setI, 3(∪i∈IHi)⇒ ∃i I|3Hi ;

Strong intersection consonance:

For every index setI

¬(∩i∈IHi)⇒ ∃i I| ¬Hi ; Figures: Under strong consonance, there is at least one path from the center to a vertex of the polygon representing the indexed set of sub-hypotheses.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities III.2 7/28

(8)

Failure of Decision Th. Posterior Probability Tests

¬H

p H +3H

H

+H ¬+3H

p(H|x)1 0

Decis.

Truth

H He

H 0 1

+H b b

¬+3H a 0 Optimal Decision: Take c1=max((1+a)−1,b), c2=min((1+a)−1,b/a), and Choose Probabilistic modality:

H , ifpn(H|x)>c1

¬+3H , ifpn(H|x)<c2

+H , otherwise.

These tests are logically incoherent:

Can calibrate constantsaandbs.t.

tests are invertible & monotonic, but these tests arenotconsonant!

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities III.3 8/28

(9)

Failures of other Standard Statistical Tests

Property\Test ALRT Post.Pr. GFBST

Invertibility X X X

Monotonicity X X X

Consonance X X X

Invariance (Θ,H) X ? X

Consistency X ? X

> ALRT – Agnostic Likelihood Ratio Test: Slack or SharpH;

> Generalized Full Bayesian Significance Test: Slack or Sharp;

> Posterior Probability: ?=Xfor SlackH, ?=X for SharpH;

For details and examples: Izbicki & Esteves (2015).

* Posterior Probability tests may be extended to sharpHvia Bayes Factors based onad hocprior/posterior measures defined onH.

Bad idea, leading to well known paradoxes. Fully acknowledged by orthodox (decision theoretic) Bayesian statistics, that regards sharp hypotheses asill formulated!

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities III.4 9/28

(10)

Fully Coherent (Alethic) Region Tests

S H He

A:H

S H

He

E:¬3H

S H

He

Y:∇H

Choose Alethic modality

H ifS⊆H

¬3H ifS⊆He

∇H ifS∩H6=∅&S∩He 6=∅ whereSis a region estimator of the parameterθ, i.e.,S⊆Θ.

•Esteves (2016): Fully coherent testsmust beregion tests.

•ex: S={θ∈Θ|pn(θ)>v}, Highest Probability Density Set.

>Smay not be path- or simply-connected.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities IV.1 10/28

(11)

Generalized Full Bayesian Significance Test

•Surprise functions(θ) =pn(θ)/r(θ);

•Reference densityr(θ)6=p0(θ), ex: Jeffreys invariant prior, or representation of Fisher Information Metric, dl2=dθ0J(θ)dθ;

•T(v) ={θ∈Θ|s(θ)≥v}, HSFS at levelv.

> Highest Surprise Function Set, defining the region test.

Significance measure for hypothesisH:

•Wahrheit or truth functionW(v) =1−R

T(v)pn(θ|x)dθ;

•e-value or Epistemic Value ofH given observationsX is ev(H|X) =W(s), where s =supθ∈Hs(θ).

•GFBST: Alethic modality

H if ev(H)e <c

¬3H if ev(H)<c

∇H otherwise.

Obs.1: T(s)= Tangential Set, the smallest HSFS | 3H . Obs.2: J(θ) = EX logr(x|θ)

∂ θ log∂ θr(x|θ) .

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities IV.2 11/28

(12)

GFBST Continuous Mathematics under the hood

• ev(H|X)has good asymptotic properties;

> Sharp or precise hypotheses pose no special difficulties;

• ev(H|X)is fully invariant by model reparameterization;

• ev(H|X)can be logically computed for Coherent Structures, that is, for the series / parallel composition of statistical models and hypotheses, see Borges and Stern (2007).

————————————————————–

Consistency and asymptotics:

Assuming a “true” (vector) parameterθ0for the regular (ex. H is a differentiable algebraic sub-manifold ofΘ) statistical model:

•Ifθ0is an interior point ofH, ev(H|X)→1;

•Ifθ0∈H, whereHis sharp, t =dim(Θ)&h=dim(H), then asn→ ∞(increasing sample size) the Standarizede-value, sev(H|X), converges in distribution to the Uniform in[0,1]:

> sev(H|X) =Chi2(t,Chi2−1(t−h,ev(H|X) );U[0,1] ;

> Chi2(k,x) = Γ(k2,x2)/Γ(k2,∞) .

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities IV.3 12/28

(13)

GFBST Invariance by Reparameterization of Θ

Consider a regular (bijective, integrable, a.s.cont. differentiable) reparameterization of the statistical model’s parameter space, ω=φ(θ),ΩH=φ(ΘH), with Jacobian matrix

J(ω) = ∂ θ

∂ ω

=

∂ φ−1(ω)

∂ ω

=

∂ θ1

∂ ω1 . . . ∂ ω∂ θ1 .. n

. . .. ...

∂ θn

∂ ω1 . . . ∂ ω∂ θn

n

 .

s(ω) =˘ p˘n(ω)

˘r(ω) = pn−1(ω))|J(ω)|

r(φ−1(ω))|J(ω)| =s(φ−1(ω)) and s˘ =supω∈ΩH ˘s(ω) =supθ∈ΘHs(θ) =s . Hence, T(s)7→φ(T(s)) = ˘T(˘s), making the significance measure

ev(H) =˘ 1− Z

T˘s)

n(ω)dω =1− Z

T(s)

pn(θ)dθ= ev(H) invariant by the reparameterization.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities IV.4 13/28

(14)

Disjunctive Normal Form for Coherent Structures

A Coherent Structure is a family,M(i,j) ={Θj,H(i,j),pj0,pnj,rj} , of Independent Models,Mj,j =1...k , including, for each modelMj, a set of alternative hypotheses,H(i,j),i =1...q (serial composition of models with parallel hypotheses).

ev(H) = ev

_q i=1

^k

j=1H(i,j)

= maxqi=1 ev

^k

j=1H(i,j)

= W

maxqi=1Yk

j=1s∗(i,j)

; W = O

1≤j≤k

Wj .

•W is the Mellin Convolution of the models’ truth functions, where [f⊗g](y) =R

0 (1/x)f(x)g(y/x)dx;

•If alls =0∨bs, ev =0∨1, we get classical logic.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities IV.5 14/28

(15)

Hybrid (Alethic / Probabilistic) Relations

¬H

pH +3H

H

+H ¬+3H

p(H|x) 1 0

¬2H 3H ∇H

2H

∆H ¬3H c=1

c=0

¬2He

∇eH 3He

2He

∆eH ¬3He

Setting constantsc1=1−c & c2=c, the modal operators defined by the GFBST and the agnostic probabilistic test obey:

• H⇒Pr(H|X)≥1−c⇒H;

•¬3H ⇒Pr(H|X)≤c ⇒ ¬+3H;

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities V.1 15/28

(16)

Hybrid (Alethic / Probabilistic) Relations

U:p H=H∨ ¬3H

A:H E:¬3H

9

I:3H O:¬H

Y:p H=3H∧ ¬H

2 3 4

::

1

6∗

7∗

8 9

dd

5

10

12∗

11

13∗

dd

14

::

15

Hence, setting consts.

c1=1c and c2=c,

¬3H⇒ ¬3+H⇒ ¬H, H +3H3H, and all (stared) relations in hybrid hexagon hold!

(+Consist => false hopes?)

However, ifHis sharp, Pr(H|X) =0⇒ ¬+3H (trivial hybrid relations)

Nevertheless, 3H is a consistent (s.12) outcome of the GFBST (FBST main motivation)

Importance sharpH?

Meaningful measures &

versions of H 3H?

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities V.2 16/28

(17)

From Probability to Slackness & role reversals

•Most important scientific hypotheses or Laws are Equations, and those are naturally expressed as Sharp Hypotheses;

•Motivates having new versions of+3&that are meaningful for preciseH, with non-trivial and useful relations to3H;

•Let H ⇔ R

Hr(θ)dθ >0 (Lebesgue reference volume), so that H indicates a Necessarily Slack or looseH;

•A regular (a.e. differentiable algebraic sub-manifold ofΘ) hypothesisHis Sharp or precise iff¬H ⇔Pr(H,r) =0.

•Role Reversal of a positive Lebesgue measure ofH !

> Zero measure means Shapness, a desirable characteristic;

> Slackness entailsinexactness, error, Doubt.

•∇∗ H =3H∧ ¬H reversal (s.5) from weak to strong!!!

> Indeed, corroborating anH that is almost surely false is a Miracle!!! (Infidels required to take Physics101-104+Lab.)

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities V.3 17/28

(18)

Gallais’ Hexagonal Spirals & Science Evolution

U: H=H∨ ¬3H

A:H E:¬3H

I:3H O:¬H

Y: H=3H∧ ¬H

3= Credibility, ev(H), possible truth;

= Doubt, necessary slackness.

(A) A well established theory with well defined laws is put in question;

(U) Vis-à-vis an alternative class of models that, at this point, may still be somewhat vague or imprecise;

(E) The old laws are rejected as new information becomes available;

(O) Alternative class of models is taken into consideration; and a specific (precise) form is selected;

(Y) New Laws are corroborated!!!

fundamental constants calibrated;

(I) Theory / paradigm integration, (A’) including best estimates and imprecisions (measurement errors).

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities V.4 18/28

(19)

Gallais’ Hexagonal Spirals & Science Evolution

U: H=H∨ ¬3H

A:H E:¬3H

I:3H O:¬H

Y: H=3H∧ ¬H

3= Credibility, ev(H), possible truth;

= Doubt, necessary slackness.

(A) Ptolemaic astronomy & system of epicycles is put in question;

(U) Circles or Oval orbits?

(E) Orbits are Not circular;

(O) Elliptical orbits (eureka);

(Y) Kepler laws!!!

(A’) Vortex forces in question;

(U’) Tangential or Radial?

(E’) Forces are Not tangential;

(O’) Radial & inverse square;

(Y’) Newton laws!!!

(I’) Newtonian mechanics, (A”) including its imprecisions.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities V.5 19/28

(20)

Gallais’ Hexagonal Spirals & Science Evolution

U: H=H∨ ¬3H

A:H E:¬3H

I:3H O:¬H

Y: H=3H∧ ¬H

(A) Geoffroy rules and tables as axioms of chemical affinity;

(U) Ordinal or Numerical?

(E) Not ordinal;

(O) Integer affinity numbers;

(Y) Morveau rules and tables!

(I) Modern (1800) chemistry, including stoichiometry rules.

(A’) Substitution reactions;

(U’) Total or Parcial?

(E’) Not total substitution;

(O’) Reversible equilibria;

(Y’) Mass-Action kinetics!!!

(I’) Thermodynamic networks, (A”) including its imprecisions.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities V.6 20/28

(21)

Future Research: Unit Square Bilattice

3:c= ev(H|X), Credibility, possib.truth;

3:d =µ(H|X), Doubt, possibly slack.

Unit Square Bilattice in[0,1]2orders Knowledge and Trust, given coordinates Credibility and Doubt:

B(C,D) =hC×D,k,ti,

hc1,d1i ≤khc2,d2i ⇔c1cc2 d1d d2, hc1,d1i ≤t hc2,d2i ⇔c1cc2 d2d d1; Alternative coordinates in[−1,+1]2: BT(hc,di) =cd, degree of Trust;

BI(hc,di) =c+d1, Inconsistency.

Extreme points: Inconsistency (>), truth (t), false (f), indetermination (⊥); Stern (2004).

How to better use the USB to map the evolutionary path of a scientific theory?

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities VI.1 21/28

(22)

Future Research: Measures of Slackness

•Want Possible Slackness to express a measure of doubt:

3H ⇔d =µ(H|X)> δ

•What is the best measureµ(H|X)?

> Credal sets or intervals?

> Confidence regions or intervals?

> for the theory fundamental constants or empirical calibration constants vs. instrumentation or observational error estimates?

•Could that be a good appropriate opportunity to look directly at uncertainty in the sample space?

> Some version ofp-values?

> Parameter estimates and their credibility, measured inΘ, and prediction errors, measured inX, can both have a legitimate role to play in statistical epistemology?

•Universal or case specific solutions?

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities VI.2 22/28

(23)

Short Bibliography

> W. Borges, J. M. Stern (2007). The Rules of Logic Composition for the Bayesian Epistemice-values.Logic Journal of the IGPL, 15, 401-420.

> L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern (2016). The Logical Consistency of Simultaneous Agnostic Hypothesis Tests.Entropy, 18, 7, 256.1-256.32.

> R. Izbicki, L.G. Esteves (2015). Logical Consistency in Simultaneous Statistical Test Procedures.Logic Journal of the IGPL, 23, 5, 732-758.

> C.A.B. Pereira, J.M. Stern, S. Wechsler (2008). Can a Signicance Test be Genuinely Bayesian?Bayesian Analysis, 3, 79-100.

> J.M. Stern (2015). Continuous versions of Haack’s Puzzles: Equilibria, Eigen-States and Ontologies.CLE e-prints, 15, 7, 1-25.

> J.M. Stern (2015). Cognitive-Constructivism, Quine, Dogmas of Empiricism, and Muenchhausen’s Trilemma.

Interdisciplinary Bayesian Statistics, Ch.5, p.55-68. Heidelberg: Springer.

> J.M. Stern, C.A.B. Pereira (2014). Bayesian Epistemic Values: Focus on Surprise, Measure Probability!Logic Journal of the IGPL, 22, 236-254.

> J.M. Stern (2014). Jacob’s Ladder and Scientific Ontologies. Cybernetics & Human Knowing, 21, 3, p.9-43.

> J.M. Stern (2011). Constructive Verification, Empirical Induction, and Falibilist Deduction: A Threefold Contrast.

Information, 2, 635-650

> J.M. Stern (2004). Paraconsistent Sensitivity Analysis for Bayesian Significance Tests.LNAI, 3171, 134-143.

——————————————————————————

> J. Alcantara, C.V. Damasio, L.M. Pereira (2002). Paraconsistent Logic Programs.LNCS, 2424, 345–356.

> O. Arieli, A. Avron (1996). Reasoning with Logical Bilattices.J.of Logic, Language and Information, 5, 25–63.

> J.Y. Béziau (2005). Paraconsistent Logic from a Modal Viewpoint.Journal of Applied Logic, 3, 7-14.

> J.Y. Béziau (2012). The Power of the Hexagon.Logica Universalis, 6, 1-43.

> J.Y. Béziau (2015). Opposition and order. In J.Y.Béziau, K.Gan-Krzywoszynska (2015).New Dimensions of the Square of Opposition. Munich: Philosophia Verlag.

> R. Blanché (1966).Structures Intellectuelles: Essai sur l’Organisation Systématique des Concepts. Paris: Vrin.

> W. Carnielli, C. Pizzi (2008).Modalities and Multimodalities. Heidelberg: Springer.

> D. Dudois, H. Prade (1982). On Several Representations of an Uncertain Body of Evidence. pp. 167-181 in M. M.

Gupta, E. Sanchez (1982).Fuzzy Information and Decision Processes. North-Holland.

> D. Dudois, H. Prade (2012). From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory.Logica Universalis, 6, 149-169.

> P. Gallais, V. Pollina (1974). Hegaxonal & Spiral Structure in Medieval Narrative.Yale French Studies, 51, 115-132.

> P. Gallais (1982).Dialetique du Récit Mediéval: Chretien Troyes et l’Hexagone Logique. Amsterdam: Rodopi.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities VI.3 23/28

(24)

Acknowledgments

The Problem of Induction: +3H? or ∇∗ H=3H∧ ¬H !!!

•He who wishes to solve the problem of induction must beware of trying to prove too much.

Karl Popper, Replies to my Critics;

in Schilpp (1974, Ch.32, p.1110), also quoted in Stern (2011).

This work was supported by IME-USP - the Institute of Mathematics and Statistics of the University of São Paulo; UFSCar - the Federal University of São Carlos;

FAPESP - State of São Paulo Research Foundation (grants CEPID 2013/07375-0, CEPID 2014/50279-4 & 2014/25302-2);

and CNPq - Brazilian National Counsel of Technological and Scientific Development (PQ 301206/2011-2, PQ 301892/2015-6).

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities VI.4 24/28

(25)

Goodby! Adiós! Adeus! Au revoir! Ko te pava kokorua!

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities VII.1 25/28

(26)

Goodby! Adiós! Adeus! Au revoir! Ko te pava kokorua!

•The legendary Polynesian king and navigatorHotu Matu’a reachedTe pito te henua(the navel of the world) some time arround 1000 CE, sailing a double hull catamaran from Mangareva, 2600 km, or the Marquesas, 3200 km away;

•Building ofAriña ora ata tepuña, face-living-image-idols or moai monoliths, lead to ecological devastation, famine, war, cultural breakdown & civilization collapse.

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities VII.2 26/28

(27)

Goodby! Adiós! Adeus! Au revoir! Ko te pava kokorua!

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities VII.3 27/28

(28)

Goodby! Adiós! Adeus! Au revoir! Ko te pava kokorua!

L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern Logical Hexagons of Statistical Modalities VII.4 28/28

Referências

Documentos relacionados

Em suma, o financiamento do BNDES para a agroindústria sucroenergética no período recente atendeu de forma majoritária, mas não unicamente, o eixo Centro-Sul do país, priorizando

The intermediation approach is followed and for each measure of efficiency several statistical models are considered as modeling tools to assess the significance of technical effects

CNC se torne num sistema h´ıbrido com fabrico aditivo (Directed Energy Deposition (DED)) e subtrativo, alternando entre estes dois sistemas [6]. (a) Hermle MPA [29] (b) Lasertec 65

O uso do território ocorre mediante o aparato técnico e científico capaz de potencializar a produção, a partir do uso de insumos e equipamentos e formas de manejo que

The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for

of the proportions of strength of the evidence published, which are directly responsible for the need of appropriate statistical tests.. he deiciencies of the statistical tests used

We differentiate between nonlinear physiological-based models, such as the Bal- loon model (Buxton, Wong and Frank, 1998; Friston et al., 2000; Riera et al., 2004), which describes

Regarding the Context feature, it is responsible for providing the user with a concise dialogue with several interactions of questions and answers forcing the Chatbot agent to