• Nenhum resultado encontrado

ECG-based heartbeat classification for arrhythmia detection : a survey.

N/A
N/A
Protected

Academic year: 2021

Share "ECG-based heartbeat classification for arrhythmia detection : a survey."

Copied!
21
0
0

Texto

(1)

jou rn al h om ep a ge :w w w . i n t l . e l s e v i e r h e a l t h . c o m / j o u r n a l s / c m p b

ECG-based

heartbeat

classification

for

arrhythmia

detection:

A

survey

Eduardo

José

da

S.

Luz

a

,

William

Robson

Schwartz

b

,

Guillermo

Cámara-Chávez

a

,

David

Menotti

a,c,∗

aUniversidadeFederaldeOuroPreto,ComputingDepartment,OuroPreto,MG,Brazil

bUniversidadeFederaldeMinasGerais,ComputerScienceDepartment,BeloHorizonte,MG,Brazil cUniversidadeFederaldoParaná,DepartmentofInformatics,Curitiba,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27March2015 Receivedinrevisedform 8November2015

Accepted17December2015

Keywords:

ECG-basedsignalprocessing Heartbeatclassification Preprocessing Heartbeatsegmentation Featureextraction Learningalgorithms

a

b

s

t

r

a

c

t

Anelectrocardiogram(ECG)measurestheelectricactivityoftheheartandhasbeenwidely usedfordetectingheartdiseasesduetoitssimplicityandnon-invasivenature.Byanalyzing theelectricalsignalofeachheartbeat,i.e.,thecombinationofactionimpulsewaveforms producedbydifferentspecializedcardiactissuesfoundintheheart,itispossibletodetect someofitsabnormalities.Inthelastdecades,severalworksweredevelopedtoproduce automaticECG-basedheartbeatclassificationmethods.Inthiswork,wesurveythecurrent state-of-the-artmethodsofECG-basedautomatedabnormalitiesheartbeatclassification bypresentingtheECGsignalpreprocessing,theheartbeatsegmentationtechniques,the featuredescriptionmethodsandthelearningalgorithmsused.Inaddition,wedescribe someofthedatabasesusedforevaluationofmethodsindicatedbyawell-knownstandard developedbytheAssociationfortheAdvancementofMedicalInstrumentation(AAMI)and describedinANSI/AAMIEC57:1998/(R)2008(ANSI/AAMI,2008).Finally,wediscusslimitations anddrawbacksofthemethodsintheliteraturepresentingconcludingremarksandfuture challenges,andalsoweproposeanevaluationprocessworkflowtoguideauthorsinfuture works.

©2015ElsevierIrelandLtd.Allrightsreserved.

1.

Introduction

Therearevarioustypesofarrhythmiasandeachtypeis associ-atedwithapattern,andassuch,itispossibletoidentifyand classifyitstype.Thearrhythmiascanbeclassifiedinto two majorcategories.Thefirstcategoryconsistsofarrhythmias formedbyasingleirregularheartbeat,hereincalled morpho-logicalarrhythmia.Theothercategoryconsistsofarrhythmias

Correspondingauthorat:UniversidadeFederaldoParaná,DepartmentofInformatics,81.531-980Curitiba,PR,Brazil. Tel.:+554133613206;fax:+554133613031.

E-mailaddresses:eduluz@iceb.ufop.br(E.J.d.S.Luz),william@dcc.ufmg.br(W.R.Schwartz),guillermo@iceb.ufop.br(G.Cámara-Chávez),

menotti@iceb.ufop.br,menotti@inf.ufpr.br(D.Menotti).

formedbyasetofirregularheartbeats,hereincalledrhythmic arrhythmias.Theclassificationofnormalheartbeatsandthe onescomposingtheformergroupareonthefocusofthis sur-vey.Theseheartbeatsproducealterationsinthemorphology orwavefrequency,andallofthesealterationscanbeidentified bytheECGexam.

Theprocessofidentifyingandclassifyingarrhythmiascan beverytroublesomeforahumanbeingbecausesometimes itisnecessarytoanalyzeeachheartbeatoftheECGrecords,

http://dx.doi.org/10.1016/j.cmpb.2015.12.008

(2)

acquiredbyaholtermonitorforinstance,duringhours,or evendays.Inaddition,thereisthepossibilityofhumanerror duringtheECGrecordsanalysis,duetofatigue.Analternative istousecomputationaltechniquesforautomatic classifica-tion.

Afullautomaticsystemforarrhythmiaclassificationfrom signals acquired by a ECG device can be divided in four steps(seeFig.1),asfollows:(1)ECGsignalpreprocessing;(2) heartbeatsegmentation;(3)featureextraction;and(4) learn-ing/classification.Ineachofthefoursteps,anactionistaken andthefinalobjectiveisthediscrimination/identificationof thetypeofheartbeat.

Thefirst twostepsofa suchclassificationsystem (ECG signalpreprocessingandheartbeatsegmentation)havebeen widely explored in the literature [2–6]. The techniques employedduringthepreprocessingstepdirectlyinfluencethe finalresults,andtherefore,shouldbecarefullychosen.The resultsrelatedtotheheartbeatsegmentationstep,inthecase ofQRSdetection, are veryclosetooptimal.However,there isstillroomforexplorationandimprovementsinthesteps relatedtoclassification(featureextractionandlearning algo-rithms).EventhoughtheproblemofECGdelineationisstill open,itisnotsousefulforthemethodsintheliterature sur-veyedhere.

Thispaperpresentsasurveyofexistingstudiesfoundin literatureregardingtheECG-basedarrhythmiaclassification methodsanddiscussesthemaintechniquesusedforthe con-struction ofthese automaticsystems aswell astwo main paradigmsusedforevaluation:inter-patientandintra-patient

[7,8].Inaddition,themostpopulardatabasesandthe

prob-lemsrelatedtotheevaluationofcurrentmethodsfoundin literaturearealsodiscussed.Fromthisdiscussion,aworkflow isproposedtoguidetheevaluationprocessoffutureworks. Notethatthisworkflowforevaluationprocessconstitutesan importantcontributionofthissurveywork.Intheliterature, wefindasurveyofknowledge-basedECGinterpretation[9]

reviewingmethodsproposedinthe20thcentury.Cliffordetal.

[1]performedanextensivesurveyonthemethodsusedfor ECGsignalanalysis.Their study focusedon thephysiology ofthesignal,aswellasitsprocessingtechniques,mainlyon thefeatureextractionandclassification.Inparticular,Clifford etal.[1]didnotfocusontheproblemofevaluatingmethods, whichisthedifferentialofourstudy,inadditiontoamore up-to-dateliteraturereviewontheissue.Moreover,oursurveyon featureextractionbringsaspecialreviewonfeatureselection. Theremainingofthispaperisorganizedasfollows. Sec-tion 2introducesthe fundamental aspects ofECGsignals; thestate-of-artisdescribed inSections 3,4, 5, and 6; and theevaluationstandardsdevelopedbytheAssociationforthe AdvancementofMedicalInstrumentation(AAMI)[10]andthe databasesrecommendedforthesestandards,together with thecriticismsrelatedtothesystemsdevelopeduptodateand futurechallenges,arediscussedinSections7,8,and9.

More specifically, Section 3 deals with the preprocess-ing techniquesmost utilized inECG signals, whileSection

4presents the concept ofsegmenting heartbeats from the ECG signals and its commonly employed techniques. Sec-tion 5dealswiththekeypointforthesuccessofarrhythmia classification,i.e.,therepresentationofaheartbeatorthe fea-tureextractionprocess.Section 6discussesthemostpopular

learningalgorithmsfoundinliteratureforarrhythmia clas-sification. Section 7presents the recommendedevaluation standard proposed byAAMI and describesthe characteris-ticsofthemostutilizeddatabases,indicatedbythestandard, toevaluatetheclassificationarrhythmiamethods.Section 8

presentssomecommentsrelatedtotheissueofselectingdata forlearning/evaluatingmodelsforarrhythmiaclassification anditsimpactonthefinalresult.Finally,Section 9discusses thelimitationsandproblemsofthefieldandpointoutfuture challengesfortheresearchcommunity.

2.

ECG

signal

Theheartisamusclethatcontractsinarhythmicalmanner, pumpingbloodthroughoutthebody.Thiscontractionhasits beginningattheatrialsinenodethatactsasanatural pace-maker,andpropagatesthroughtherestofthemuscle.This electricalsignalpropagationfollowsapattern[11].Asaresult ofthisactivity,electricalcurrentsaregeneratedonthesurface ofthebody,provokingvariationsintheelectricalpotentialof theskinsurface.Thesesignalscanbecapturedormeasured withtheaidofelectrodesandappropriateequipment.

Thedifferenceofelectricalpotentialbetweenthepoints marked bytheelectrodes onthe skin,usuallyisenhanced withtheaidofaninstrumentation(operational)amplifierwith opticisolation.Then,thesignalissubmittedtoahigh-pass filter; and as a second stage, submitted to an antialiasing low-pass filter. Finally, it appears in ananalogical to digi-tal converter. Thegraphical registration ofthis acquisition process iscalledelectrocardiogram (ECG) (seeFig. 2).Since AugustusDesiréWallerdemonstratedthefirsthumanECGin 1887,theelectricalactivityofthehearthasbeenrecorded[12]. Evenso,theabilitytorecognizethenormalcardiacrhythm and/orarrhythmiasdidnotbecomeroutineinmedical check-upsuntil1960.

Nowadays, there are many approaches to measure-ment/recordECG.daSilvaetal.[13]providedataxonomyof state-of-the-artECGmeasurementmethods:in-the-person, on-the-personandoff-the-person.

Withinthein-the-personcategory,thereare equipments designedtobeusedinsidehumanbody,suchas surgically implantedones,subdermalapplicationsoreveningestedin theformofpills.Thesedevicesareusedwhenlessinvasive approacharenotapplicable.

Contrastingwiththein-the-personcategory,thereis off-the-person category. Deviceson this categoryare designed tomeasureECGwithoutskincontactorwithminimalskin contact.Accordingto[13],thiscategoryisalignedwithfuture trendsofmedicalapplicationwherepervasivecomputer sys-temsareareality.Examplesofsuchequipmentsaretheones basedoncapacitivedeviceswhichmeasuretheelectricfield changesinducedbythebodyallowingECGmeasurementat distanceof1cmormoreevenwithclothingbetweenthebody andthesensor[13–15].

ThemajorityofdevicesusedforECGmeasurementsarein theon-the-personcategory.Devicesonthiscategorynormally requiretheuseofsomeelectrodesattachedtotheskin sur-face.Examplesofsuchequipmentsarebedsidemonitorsand

(3)

Fig.1–Adiagramofthearrhythmiaclassificationsystem.

High-Pass Band Filter

Isolation Low-Pass Band Filter

Analog to Digital Converter (ADC) source ECG signal Amplification

Fig.2–SimplifieddisplayofthehardwareforthecaptureofECGsignals.Source:AdaptedfromRef.[1].

holters.Nowadays,thestandarddevices usedforheartbeat analysiscomefromthiscategory.

Onequipmentsbelongingintotheon-the-personcategory, threeormoreelectrodesareusedtoobtainthesignal,inwhich oneofthemservesasareferencefortheothers.Usually,the referenceelectrodeisplacedneartherightleg.Assuch,there canbedifferentvisionsoftheECGsignal,dependingonthe pairofelectrodeschosentoconstructthesignal.These differ-entiatedvisionsaregiventhenameofleads.

Awidelyusedconfigurationofelectrodesisonecomposed of5electrodes[16]:oneoftheelectrodesispositionedonthe leftarm(LA),oneontherightarm(RA),oneontheleftleg(LL), oneontherightleg(RL)andoneonthechest,totherightof theexternal(VorV1).Anotherwidelyemployedsetupuses 10electrodes[16],where5extraelectrodes(besidesVorV1 onthe chestand LA,RD,LL andRAon legsandarms)are positionedonthechest(V2toV6)allowingaformationof12 leads.The10electrodes(12leads)configurationcanbeseen inFig.3.

Fromtheseconfigurations,severaldifferentleadscanbe constructedtovisualizethe ECGsignal. Forexample,Fig.4

illustrates3particularleads:(I)formedbytheelectrical poten-tialdifferencebetweentheLAandRAelectrodes;(II)formedby theelectricalpotentialdifferencebetweentheLLandRA elec-trodes;and(III)formedbytheelectricalpotentialdifference betweentheLLandLAelectrodes.

ThepreviouslydescribedleadIIisoneofthemostutilized fordiagnosingheartdiseases.Ithighlightsvarioussegments withinthe heartbeat, besidesdisplaying three ofthe most important waves: P, QRS and T (see Fig. 5). These waves correspondtothefieldinducedbytheelectricalphenomena occurring on the heart surface, denominated atrial depo-larization (P wave), ventral depolarization (QRS complex

Fig.3–Typical10electrodesconfiguration.

wave) and repolarization (T wave). The patterns provoked byarrhythmiascandeeplychangethesewaves.Meanwhile, leadVanditscorrelateleads(V1,V2)favortheclassification ofventricularrelatedarrhythmias,sincethereareelectrodes

(4)

Tasc. Tdesc. Q P ST Segment QT Interval S PR Segment PR Interval R QRS Complex TPeak TEnd U TpeInterval

Fig.5–Fiducialpointsandvarioususualintervals(waves) ofaheartbeat.

Source:Ref.[21].

positioned on the chest, improving the registry of action potentialsonventricularmuscle.

Therefore,theleadsmostutilizedfortheautomatic heart-beat and arrhythmia classification are leads II and V and themethodsthatuseacombinationofthesetwoleads(and othercombinations)aretheonesthatpresentthebestresults todate[17]. Inthissense, therecentwork byTomasicand Trobec[18]reviewsmethodsworkingwithreducednumbers ofleadsandapproachesforthesynthesisofleads, conclud-ing thatthe traditional12 lead systemcan besynthesized from asmaller number of measurements[19]. In contrast, anotherstudypublishedbydeChazal[20]demonstratedthat similareffectivenessforECGarrhythmiaclassificationcanbe obtainedatalessercomputationalcostwhenusingonlyone lead,comparedwithmethodsusingmultipleleads[7].

Although on-the-person is the mainstream on devices aimingheartdiseasesdiagnoses,[13]haveshownthatdata captured with off-the-person based devices can be highly correlated to data captured with traditional on-the-person based equipments. The authors claim that off-the-person basedequipmentscanextendpreventivemedicinepractices byallowingECGmonitoringwithoutinterferenceondaily rou-tine.In thatsense, we encourageresearcherstobuild ECG databases basedon off-the-person devices toevaluateand validateheartbeatclassificationmethodsforthatcategory.

3.

Preprocessing

Amongall proposalsforreducingnoise inECGsignals,the simplestandmostwidelyusedistheimplementationof recur-sive digital filtersof the finiteimpulse response(FIR) [22], whichwasmadecomputationallypossiblewiththeadvance in microcontrollers and microprocessors. These methods workwellfortheattenuationoftheknownfrequencybands, suchasthenoisecomingfromtheelectricalnetwork(50Hz

or60Hz),sincetheyallowquickandeasyapplicationofthe reject-band-filter.Theproblemwiththisapproachisthatthe frequencyofthe noise isnotalwaysknown,which canbe solvedbyapplyingfiltersforvariousfrequencybandstothe signal. However,the indiscriminateuse offilters, i.e., high-passandlow-passones,distortsthemorphologyofthesignal, and many times, makesitunusable fordiagnosing cardiac diseases.Architectureswithadaptivefilters[23,24]werealso employedfornoiseremovalfromtheECGsignals.However, according toThakor and Zhu [25], this techniquehas con-straintsanddoesnotoffergreatadvantagesovertheFIRdigital filters.Xueetal.[26]surmountsomeofthesedifficultiesby using adaptive filters based on neural networks such that thenoisereductionwassignificantlyimproved.Thisstrategy proportionedbetterdetectionoftheQRScomplex,when com-paredwiththesamemethodusinglinearlyadaptivefilters.

Inthelastdecade,manymethodsbasedonwavelet trans-forms have been employed to remove noise, since they preserveECGsignalpropertiesavoidinglossofitsimportant physiological details and are simple from a computational point ofview[27–29]. Sayadi and Shamsollahi[2] proposed a modification of the wavelet transform called the multi-adaptivebionicwavelettransformanditwasappliedtoreduce noiseandbaselinevariationoftheECGsignal.Thismethod presentedsuperiorresultswhencomparedtotheonesbased onthetraditionalwavelettransform.

Othermethodshavealsopresentedinterestingresultson noise attenuation.Samenietal.[30]haveproposed theuse ofnonlinearBayesianfiltersforECGsignalnoisereduction, presentingpromisingresults.Anewalgorithmbasedonthe ExtendedKalmanFilter[3],whichincorporatesthe parame-ters ofthe ECGdynamic modelforECG noise reductionand signalcompression,yieldedasignificantcontributionbecause themethodshowedthegreatesteffectivenesstodate.Note thattheworksin[2,3,30]reporttheirresultsintermsofsignal tonoiseratio.

Techniques for preprocessingthe ECGsignal are widely explored,butthechoiceofwhichmethodtouseisintrinsically connectedwiththefinalobjective oftheresearch.Methods focusing onthe heartbeat segmentation from theECG sig-nal(i.e.,detectionoftheQRScomplex,otherwavesorfiducial pointsaimingatheartbeatdelimitation)tendtorequirea pre-processingthatisdifferentfromthemethodsfocusingonthe automaticclassificationofarrhythmias.

Table7sumarizesthemainreviewedreferencesof

meth-odsaimingatheartbeatclassificationandthistableisexplored further(Section 8).ThosemethodsfollowAAMIinstructions andthesameprotocoltoreporttheresults,butdifferent pre-processingtechniquesareused.deChazaletal.[7]usedtwo medianfilterstoremovebaselinewander.Onemedianfilter of200-mswidthtoremoveQRScomplexesandP-wavesand otherof600mswidthtoremoveT-waves.Theresultingsignal isthenfilteredagainwitha12-tap,low-passFIRfilterwith 3-dBpointat35Hz.Samepreprocessingisusedin[31–35,8,36]. In[37]signalispreprocessedwith10thorderlowpassFIR fil-ter.Ye etal.[38]usedawavelet-based approachtoremove baselinewander[39]andthenaband-passfilterat0.5–12Hz isappliedtomaximizeQRScomplexenergy.Bazietal.[40] pro-posedtheuseofhighpassfilterfornoiseartifactsandanotch filterforpowernetworknoise.LinandYang[41]usesasecond

(5)

orderlowpassfilterandtwomedianfilter.In[42],thesignalis subtractedbyitsmeanandthennormalized.Escalona-Moran etal.[43]usedtherawwavei.e.,nopreprocessingisapplied.

NotethatthemethodscitedinTable7usedifferent prepro-cessingapproaches.However,theimpactoftheseapproaches onautomaticarrhythmiaclassificationmethodsisnotclear. Theconsidered state-of-the-artmethodsdonotevenapply preprocessing on the signal. Although some studies exist relatingpreprocessingtechniqueswiththefinalperformance ofthe automaticclassificationofarrhythmias, suchasthe workpresentedin[44],theyareinsufficientinnumberand moreresearchinthisareaisencouraged.Itisworthnoting thatthestate-of-the-artmethodsforautomaticarrhythmia classificationdonotusestate-of-the-artpreprocessing meth-odssignaltonoiseratioimprovement.

4.

Segmentation

Heartbeatsegmentationmethods(i.e.,detectionoftheRpeak ortheQRScomplex)havebeenstudiedformorethanthree decades [49,53,46,54,55] and the generations of these algo-rithmsand newlydevelopingmethodsreflecttheevolution ofthe processingpower of computers.With the facility of usingfasterprocessingcomputers,authorsstoppedworrying aboutcomputationalcostand startedconcentratingonthe heartbeatsegmentationaccuracy.Twomeasuresareusually consideredforevaluatingtheaccuracyofheartbeat segmen-tation:sensitivityandpositivepredictivity,whicharedefined as:

SensitivitySEG=TP/(TP+FN), (1)

and

PositivepredictivitySEG=TP/(TP+FP), (2) whereTP(TruePositive),FP(FalsePositive)andFN(False Neg-ative)indicatethenumberofheartbeatscorrectlysegmented, numberofsegmentationsthatdonotcorrespondtothe heart-beats,andnumberofsegmentationsthatwerenotperformed, respectively.

Forafaircomparisonofthemethodsfocusingonthe heart-beatsegmentation,astandarddatabaseneedstobeused.The mostutilized,andrecommendedbyANSI/AAMIforthe vali-dationofmedicalequipment[10],istheMIT-BIHdatabasefor arrhythmiaanalysis[56]–inthiscase,usedforheartbeat seg-mentation,althoughotherdatabasesarealsoused,suchas thatofAHA[57]andthatofCSE[58].However,accordingto Kohleretal.[59],manyofthemethodspresentedinthe liter-aturedonotuseastandardizeddatabase,oruseonlypartof it,whichmakesitdifficulttofairlycomparemethods.

Anapproachwidelyusedforsegmentation,duetoits sim-plicityand promisingresults, isbased on digital filtersfor the attenuation of the noise and removal ofthe fluctuat-ingbaseline,nonlineartranslationsthatenhancetheRpeak andadaptivedetectionthresholdwereproposedbyPanand Tompkins[49].Moresophisticatedmethodshavealsobeen used,suchasmethodsbasedonneuralnetworks[53],genetic algorithms[50],wavelettransform[60,61,4],filterbanks[46],

Quad Level Vector [62], among others. Table 1 displays the performance ofsomemethods forheartbeat segmentation thatusetheMIT-BIHdatabaseforevaluation.Notethatthe SensitivitySEG (Se)andPositivepredictivitySEG (+P) valuesdo notshowgreatdifferencesinthemethodsstudied.Itis impor-tant tohighlight that the methodspresentedinthis table, contemplatedalargespectrumofcomplexity,i.e.,fromvery simplemethodstomoreelaboratedones.

Somealgorithmsalsoproposetoidentifyotherwaves asso-ciatedwithheartbeats,suchasthePwaveandtheTwave

[4,63–65], which canbeuseful forarrhythmiaclassification

methods, sincemoreinformationabouttheheartbeats can beobtained.

Althoughheartbeatsegmentationisnotthemainfocusof thissurvey,notethatthisstageisofparamountimportance inthearrhythmiaheartbeatclassificationprocess,sincesome errorsherearepropagatedtothefollowingstagesandhave astrongimpactinthefinalclassificationofthearrhythmia system.However,alargemajorityofthereviewedresearches hereinutilizeddatabasesinwhichtheeventsrelatedto heart-beatsegmentation,i.e.,thedetectionoftheRpeakortheQRS complex,areidentifiedandpreviouslylabeled,reducingthe segmentationstagetoasimplesearchofalabeledeventin thedatabase.Inthisway,theresultsreportedbytheseworks disregardtheimpactofsegmentationstepeventhoughthe databaselabelingispronetohumanerrors.Therefore, eval-uating theimpact ofdifferentsegmentation algorithmson automaticarrhythmiaclassificationmethodscanbea promis-ingresearchdirection.

Yeetal.[66]proposedatesttoinvestigatetherobustness oftheirfeatureextractionmethodagainstonesegmentation issue,theR-peakmislocateerror.AGaussian-distributed arti-ficialjitterwasusedtoadderroronR-peakannotations.We suggest toother authors toincorporatesuchtest infuture worksaimingautomaticheartbeatclassification.

5.

Feature

extraction

Thefeatureextractionstageisthekeytothesuccessinthe heartbeatclassificationofthearrhythmiausingtheECG sig-nal. Any informationextractedfrom the heartbeat usedto discriminateitstypemaybeconsideredasafeature.The fea-turescanbeextractedinvariousformsdirectlyfromtheECG signal’s morphology inthe time domainand/or inthe fre-quency domain or from the cardiac rhythm. Mostpopular methodsproposedinliteraturearediscussedinSection5.1.

Eventhoughsomeworksregardfeatureextractionand fea-tureselectionastwointerchangeableterms,thesetwoprocess are infact different. Whilefeature extractionisdefinedas the stagethat involves the descriptionof aheartbeat, fea-ture selectionconsistsinchoosinga subsetwith themost representativefeatureswiththeobjectivetoimprovethe clas-sificationstage.Section 5.2isdedicated todescribefeature selectionapproaches.

5.1. Featureextraction

Themostcommonfeaturefoundintheliteratureiscalculated fromthecardiacrhythm(orheartbeatinterval),alsoknownas

(6)

Table1–Effectivenessofheartbeatsegmentationmethods.#and%standforabsoluteandpercentagenumbers.The

MIT-BIHArr.databaseisusedinallmethods.

Method Heartbeats TP FP FN Error Se +P

(#) (#) (#) (#) (%) (%) (%)

Martinezetal.[4] 109428 109208 153 220 0.34 99.80 99.86

MoodyandMark[45] 109428 107567 94 1861 1.79 98.30 99.91

Lietal.[5] 104182 104070 65 112 0.17 99.89 99.94

Afonsoetal.[46] 90909 90535 406 374 0.86 99.59 99.56

Bahouraetal.[6] 109809 109635 135 184 0.29 99.83 99.88

Leeetal.[47] 109481 109146 137 335 0.43 99.69 99.88

HamiltonandTompkins[48] 109267 108927 248 340 0.54 99.69 99.77

PanandTompikins[49] 109809 109532 507 227 0.71 99.75 99.54

Polietal.[50] 109963 109522 545 441 0.90 99.60 99.50

Moraesetal.[51] N/R N/R N/R N/R N/R 99.22 99.73

Hamilton[52] N/R N/R N/R N/R N/R 99.80 99.80

Table2–TypicalfeatureofanormalECGsignal,witha

cardiacfrequencyof60beatsperminute(bpm)ofa

healthyadult.

Feature Normalvalue Normalvariation

Pwave 110ms ±20ms PQ/PRinterval 160ms ±40ms QRSWidth 100ms ±20ms QTinterval 400ms ±40ms AmplitudeofP 0.115mV ±0.05mV AmplitudeofQRS 1.5mV ±0.5mV STlevel 0mV ±0.1mV AmplitudeofT 0.3mV ±0.2mV Source:Ref.[1].

theRRinterval.TheRRintervalisthetimebetweentheRpeak ofaheartbeatwithrespecttoanotherheartbeat,whichcould beitspredecessororsuccessor.Withexceptionofpatientsthat utilizeapacemaker,thevariationsperceivedinthewidthof theRRintervalarecorrelatedwiththevariationsinthe mor-phologyofthecurve,frequentlyprovokedbyarrhythmias[1]. Thus,thefeaturesintheRRintervalhaveagreatcapacityto discriminatethetypesofheartbeatsandsomeauthorshave basedtheirmethodsonlyonusingtheRRintervalfeatures

[67–69]. Variationsofthis feature are usedto reducenoise

interferenceandareverycommon,e.g.,theaverageoftheRR intervalinapatientforacertaintimeinterval[70].

LinandYang[41]haveshownthattheuseofanormalized RR-intervalsignificantlyimproves the classificationresults. OnlynormalizedRR-intervalsareusedinthatworkandthe resultsarecomparabletothestate-of-the-artmethodseven undertheinter-patientparadigm.Doquireetal.[71]confirmed theefficiencyofnormalizedRR-intervalsbymeansoffeature selectiontechniques.

Otherfeaturesextractedfromtheheartbeatintervalsare alsofoundinliterature,suchasotherdistancesbetweenthe fiducialpointsofaheartbeat(herecalledECG-intervalsorECG segments),ascanbeseen inFig.5.Amongtheseintervals, theQRSinterval,orthedurationoftheQRScomplex,isthe mostutilized.Sometypesofarrhythmiasprovokevariations intheQRSinterval,makingitagooddiscriminatingfeature

[7,72].Itisworthmentioningthatthereexistotheralgorithms

availabletodeterminethesefiducialpoints,suchastheone proposedbyLagunaetal.[63].Table2displaysthestandard

valuesfortheseintervals,consideringahealthyhumanbeing withnocardiacabnormalities.

Features extracted from the domain of time/frequency togetherwiththefeaturesoftheRRintervalappearaspart ofthemethodsthatproducedthehighestaccuraciesin

litera-turetodate(seeTable7).Thesimplestwaytoextractfeatures

inthetimedomainistoutilizethepointsofthesegmented ECGcurve,i.e.,theheartbeat,asfeatures[73,74].However,the use ofsamplesofthecurve asfeaturesisatechniquethat isnotveryefficient,sincebesidesproducingavectorofthe featureswithhighdimensions(dependingontheamountof samplesusedtorepresenttheheartbeat),itsuffersfrom sev-eralproblemsrelatedtothescaleordisplacementofthesignal withrespecttothecentralpoint(peakR).

Aimingatreducing thedimensionofthe featurevector, various techniqueshavebeen applieddirectlyon the sam-ples that represent the heartbeat (in the neighborhood of theRpeak)asprincipalcomponentanalysis(PCA)[75–77],or independentcomponentanalysis(ICA)[78–80],inwhichnew coefficientsareextractedtorepresenttheheartbeat.Chawla

[81]presentsacomparativestudybetweentheuseofPCAand ICAtoreducethenoiseand artifactsoftheECGsignaland showedthatPCAisabettertechniquetoreducenoise,while ICAisbetteronetoextractfeatures.TheICAtechniqueenables statisticallyseparateindividualsourcesfromamixingsignal. TheECGisamixofseveralactionpotentialsandeachaction potential could bestrongly relatedto anarrhythmia class. TherationalebehindICAforECGheartbeat classificationis toseparatetheactionpotentialssourcesaswellasthenoise sources.ThePCAtechniqueseparatesthesourcesaccording totheenergycontributiontothesignal.Thestudypresented in[81]suggestthatnoisesourcesonthisbasehavelowenergy and are difficultto isolateand that the individual sources isolatedbyICAarepromisingfeaturesforECGclassification. Moreover,ithasbeenshownthatthe combinationofthese twotechniques,i.e.,PCAfornoisereductionandICAfor fea-tureextraction,canoffergreateradvantageswhencompared tousingonlyoneofthem.AnothertechniquebasedonPCA, theKernelPrincipalComponentAnalisys(KPCA),wasusedby Kanaanetal.[82].Inthatwork,acomparisonbetweenPCA andKPCAwasperformedanditwasconcludedthatKPCAis superiortothePCAtechniqueforclassifyingheartbeatsfrom theECGsignal.AccordingtoKallasetal.[83],KPCAperforms better,duetoitsnonlinearstructure.

(7)

Fig.6–Featurenumberreductionbymeansof interpolation.

Source:Ref.[7].

Özbay et al. [84] used clustering techniques directly in pointssampledfromthecurvetoreducefrom106samples to67clusters/points.Theauthorsalsousedaclustering tech-niquetoincreasethenumberoffeaturesto212,buttherewere nosignificantdifferencesintheresults.

Asletal.[85]usedGeneralizedDiscriminantAnalysis(GDA) toreducethedimensionsofthefeaturesoftheheartbeat inter-valtypetoclassifyrhythmicarrhythmias.Theyreportedan accuracycloseto100%forthistypeofarrhythmiausingthe MIT-BIHdatabase.However,theauthorsdidnottakecareto separatetheheartbeatsofthesamepatientusedduring train-ingand testing(intra-patientparadigm),whichisaserious concerndiscussedfurther.Theinter-patientparadigmshould beconsideredforamorerealisticscenario.

Simplertechniques,suchasinterpolation,havealsobeen usedtoreducethenumberofpointsrepresentingthe heart-beat.AnexampleofthistechniqueispresentedbydeChazal et al.[7], inwhich the heartbeat,originallyrepresented by 250samples(approximately600msofthecurve,sampledat 360Hz),was sub-dividedand presentedin18 samples(see

Fig.6).In theliterature,the sub-sampledECGwave isalso calledmorphologyormorphologicalfeatures.

Recently,randomprojectionshavealsobeenemployedfor

suchaim,asin[86,42].Huangetal.[42]showthatfeatures

extractedwithrandomprojectionsproducedresults compa-rabletothestate-of-the-artmethods,evenwhenconsidering theinter-patientparadigm.

Othertechniqueshavealsobeenemployed,suchaslinear predictivecoding[87], highorderaccumulates [88,89], clus-tering[84,90,91],correlationdimensionandlargestLyapunov exponent[92,93],Hermitetransform[94],localfractal dimen-sion[95].

Althoughvarioustechniqueshavebeenconsidered,most of the studies presented in literature use wavelet trans-formsandresearchersclaimthatthisisthebestmethodfor extractingfeaturesfromtheECGsignal[44,96,97].Thewavelet transformallowsinformationextractionfrombothfrequency andtime domains,differentfrom whatisusuallyachieved bythetraditionalFouriertransform[98]whichpermitsthe analysisofonlythe frequencydomain.Withinthetypesof wavelettransform,thediscrete wavelettransform(DWT)is

themostpopularforECGsignalclassificationduetoitseasy implementation.

BesidesDWT,continuouswavelettransform(CWT)hasalso beenusedtoextractfeaturesfromtheECGsignals[99],since itovercomessomeoftheDWTdrawbacks,suchasthe coarse-nessoftherepresentationand instability.However,CWTis notlargelyusedduetothefactthatitsimplementationand its inverse arenotavailableinstandard toolboxes(such as MATLABwaveletToolbox)andCWTshouldbecarefully dis-cretized for the use as a CWT analyzer. In addition, even thoughAddison[99]emphasizesthehighcomputationalcost asadisadvantageforusingCWT,ithasbeenemployed suc-cessfully evenonsimplemedicalequipmentsforatleasta decade.Finally,Addison[99]defendstheuseofDWT,together with CWT,because theyoffergain overthe methodologies used nowadays, inwhich the authors use onlyoneof the transforms.

AccordingtoGülerandÜbeyli[44],thechoiceofthemother wavelet function used for feature extraction is crucial for thefinalperformanceoftheclassificationmodel.Thischoice shouldbecarefullyanalyzedinordernottoloseimportant ECGsignaldetails.Besidesthechoiceofthemotherwavelet function, the orderoffilterand level ofdecomposition are parametersthatinfluencethefinalresultsofthearrhythmia classification.Daamoucheetal.[100]proposedtheuseofthe ParticleSwarmOptimization(PSO)techniqueforoptimizing theseparameters,and concludedthatthisprocess improve thefinalresults.

Intheliterature,variousstatisticalfeaturesextractedfrom the coefficientsofwavelettransformare proposed,suchas mean, standard deviation, energy[44] and coefficient

vari-ance[101].Thesefeatureshaveagreatadvantagesincethey

areimmunetothevariationsoffiducialpointmarking.Some authorsusedtechniquestoreducethespaceofthefeatures afterapplyingthewavelettransform,suchasintheworkof

Songetal.[102]whocomparedthePCAandlinear

discrim-inant analysis (LDA) techniques for dimensional reduction after the use of wavelet transform. Wang et al. [103] and Polat & Günes¸ [104] alsoemployed PCAto reducefeatures formedbywaveletcoefficientsandalsoreportedasignificant improvementtheirresults.AccordingtoGülerandÜbeyli[44], theDaubechieswaveletsarethemostappropriatedmother waveletsforECGheartbeatclassification.Amongthem,the Daubechiesoforder2offersthebestaccuracy.

Althoughmanytechniqueshavebeenproposedtoextract andreducefeaturesfromECGsignalsaimingheartbeat classi-fication,onlyafewofthemhaveconsideredtheinter-patient paradigmasonecanseeinTable7.Therefore,itisdifficultto evaluatewhetherfeaturesextractedwithPCA,ICA,GDAand othersareusefultodiscriminatepatientsorheartbeats.

Thevarianceoftheautocorrelationfunctionisconsidered tobeameasureofsimilarityorcoherencebetweenasignal anditsshiftedversion[101].Thistechniqueisusedfor fea-ture extractionfromwavelet coefficients[101,37], andhave demonstratedtobeeffectiveinthediscriminationof arrhyth-micheartbeats.

Thevectorcardiogram(VCG)isarepresentationoftheECG signalintwodimensionsthatintegratesinformationfromtwo leads(seeFig.7).FeaturesextractedwithVCGwereusedin

(8)

Fig.7–VCGsetupusingtwoheartbeatsofMIT-BIH’srecord 202.

Source:AdaptedfromRef.[37].

classificationcategorizedasSupraventricularectopicbeat(SVEB) andVentricularectopicbeat(VEB)(arrhythmicheartbeats)can befavoredbyinformationfromleadsoftypeV1,V2 orV4. Becauseofthis,itisbelievedthatthefeaturesextractedby VCG(combinedwithleadsIIandV1)canhelptobetter dis-criminateminorityandimportantarrhythmicclassessuchas SVEBandVEB.

5.2. Featureselection

AccordingtoLlamedoandMartinez[37],manyauthorshave used techniques that reduce the feature space, but few have investigated techniques for feature selection in the contextofarrhythmiaclassification.Llamedoand Martinez

[37]employed,forthe first timeinliterature,an algorithm forfeatureselectionbyusingfloatingsequentialsearch for arrhythmia classification. This method interchanges algo-rithmsexecuting forwardand backward searchestoobtain asetwiththemostrobustfeaturesandavoidlocaloptima inthe featurespace.Theproposedmethodachievedbetter resultsthanthestate-of-artmethodusingonlyeightselected features.

Recently,Maretal.[34]alsoperformedfeatureselectionby usingthefloatingsequentialsearch[108].Inthatstudy,the authorsanalyzedasetofpossibilitiesofthefeatureselection, searchingforatrade-offbetweenthenumberoffeaturesand accuracy.Theaimofthatresearchwastomakeaspecially developedmethodadequateforambulatorymonitoring;that is,tobespeciallyusefulinrealworldapplications.Forsuch aim,anobjectivefunctionoptimized byafeatureselection method,wasespeciallydevelopedtobeanindicatorofthe

qualityofthearrhythmiaclassificationsfromanECGsignal. Inadditiontothelineardiscriminant (LD)classifierusedin previousworks,Maretal.[34]employedamulti-layer percep-tron.However,neitheroftheseresultswerebetterthanthose proposedbydeChazaletal.[7]andtheworkofLlamedoand Martinez[37]intermsofaccuracy.Nonetheless,thefocusof

Maretal.[34]workwasonthemaintenanceofaccuracywith theuseofareducednumberoffeatures.

Feature selection techniques can bring various benefits for the classificationmethods, suchas the increaseof the generalizationpoweroftheclassificationalgorithmsandthe reductionofthecomputationalcost,duetothefactthatthey useasmallernumberoffeaturestoconstructthefinalmodel

[34].However,intheworksanalyzedinthissurvey,these tech-niqueswerelittleexplored.

Doquireetal.[71]comparewrapperfeatureselection tech-niqueagainstafilterfeatureselectiontechniqueandmore than200typesfeatures(dimensions)are consideredforthe task.Thewrapperfeatureselectionisusedwiththeweighted LDmodelusingaforward-backwardsearchstrategy.Thefilter techniqueemployedisthe mutualinformationin conjunc-tionwithrankingapproachandweightedSVM(SupportVector Machines).Accordingtotheauthors,resultshaveshownthat higherfiguresareobtainedwhenaverysmallnumberof fea-tures are selected. They stressed that the mostimportant featuresappearsareR-Rintervals,theamplitudeandlength oftheTwave,and2nd-orderstatistics.Alsotheyclaimedthat themutualinformationcriterionisapowerfultoolforfeature selectioninthisscenario.

AccordingtoZhangetal.[35],manyfeaturesare associ-atedwithmathematicalinterpretationanddonothaveaclear meaningtophysicians.Usually,theauthorsemployseveral combined featuresand theunderstandingofwhichfeature contributestodetectionofwhichclassofheartbeatisalsonot clearintheliterature.Aimingthat,Zhangetal.[35]proposed aheartbeat class-specificfeatureselectionscheme toallow the investigation of feature contribution for each arrhyth-mia/heartbeat class. Thus,wesuggest the incorporationof this approach on works aiming heartbeat classification. It couldbringimportantcontributiontotheliteratureby allow-ingbetterunderstandingofcorrelationamongheartdiseases andfeaturesextractedfromECG.

State-of-art techniques for attribute selection, such as GeneticAlgorithms(GA) [109,110]and particle swarm opti-mization (PSO)[111,112]canalsoprovidepromisingresults andshouldbebetterinvestigatedinfutureworks.

6.

Learning

algorithms

Oncethesetoffeatureshasbeendefinedfromtheheartbeats, modelscanbebuiltfromthesedatausingartificialintelligence algorithmsfrommachinelearninganddataminingdomains

[113–115]forarrhythmiaheartbeatclassification.

Thefourmostpopularalgorithmsemployedforthistask andfoundintheliteratureare:supportvectormachines(SVM)

[40,38,66], artificial neural networks (ANN) [34,116,69] and

linear discriminant (LD)[7,37,17],and ReservoirComputing With Logistic Regression (RC) [43]. Note that the state-of-the-art method aiming heartbeat classification uses RC algorithm.

Due to their importanceforcardiac arrhythmic classifi-cation, these four classifiers (SVM, ANN, LD, and RC) are discussedinthenextsubsections(Sections 6.1,6.2,6.3and

6.4).Then,Section6.5reviewsothertechniquesthatalsohave beenemployedtoarrhythmiaclassification.

(9)

6.1. Supportvectormachines(SVM)

SVMisoneofthe mostpopularclassifiers foundin litera-tureforECG-basedarrhythmiaclassificationmethods. Park et al. [33] used SVM and validated the method according toAAMIstandardsandthe datasetsplitschemeproposed bydeChazalet al.[7]. Thesesame authorsused SVMina mock-hierarchyconfigurationtoresolvetheimbalanceofthe MIT-BIHdatabase,andreportedpromisingvalues.deLannoy etal.[32]managedtoovercometheimbalanceoftheMIT-BIH databasewithSVM,alternatingtheobjectivefunctionforeach class(WeightedSVM).Expressivegainswerereportedforthe SVEBandFclasses.

Variousapproaches withSVMvariationshavebeen pro-posed,suchasacombinationofthefuzzytheorytorefineSVM classification[117],combinedwithanensembleofclassifiers

[42],geneticalgorithmscombinedwithrestrictedfuzzySVM

[118]andleastsquaresSVM[104].Huangetal.[42]usedthe

SVMinahierarchicalmannerwithamaximumvotingstrategy andreportsignificantlyimprovements.

MoavenianandKhorrami[119]proposedtheuseofanew kernelfunctionforcapturingdatafromSVM.Inthatwork,it wasusedthesame methodologyforcomparingthe results obtainedfrom aSVMand aMultilayerPerceptronArtificial NeuralNetwork(MLP-ANN).WhileSVMwasmoreefficientin executiontime,bothinthetrainingandinthetesting,MLP performedbetterintermsofaccuracy,Sensitivity(Se),positive prediction(+P)andfalsepositiverate(FPR).

SinceSVMpresents a negativebehavior forimbalanced classes,databasebalancingtechniquesforthetrainingphase, whicharelittleexploredforthisproblem,canbestudiedin futureresearch,asforexample,moresophisticatedsampling techniques,i.e.,SyntheticMinorityOver-samplingTechnique (SMOTE)[120].

6.2. Artificialneuralnetworks(ANN)

TheANNarchitecturesmostlyusedforarrhythmia classifica-tionareMultilayerPerceptrons(MLP)andProbabilisticNeural Networks (PNN). According to Yu and Chen [101], models constructedwithPNNarecomputationallymorerobustand efficientthanthetraditionalMLP.However,in[121,84,122,88], it wasproposed a hybridneuro-fuzzy networkmethods in ordertominimizethe problemsofMLP, increasingits gen-eralizationandreducingitstrainingtime.

ManyotherapproachesbasedonANNhavebeenproposed. Gülerand Übeyli[44]usedcombined neuralnetworksin ordertoobtainamoregenericmethodfromamore sophis-ticatedformofcross-validation.However,ofallthe articles mentioned in this study,only that of Mar et al. [34] used MLP with a more fair evaluation protocol by applying the patient division scheme proposed by de Chazal et al. [7]. Thusbyusingthereportedresultsintheworksofthe meth-odsthatutilizesANNasclassifierisimpossible tomakesa faircomparison.Finally,Maret al.[34]comparedMLPwith LinearDiscriminants andfound thatMLPwas significantly superior.

Combiningclassifiershadbeenlittleexploredforthetask inquestion.AccordingtoOsowskietal.[91],acombination

ofclassifiersnotonlyreducestheoverallerrorintheneural networks,butalsoreducestheincidenceoffalsenegatives.

6.3. Lineardiscriminants(LD)

TheLinearDiscriminantisastatisticmethodbasedonthe dis-criminantfunctions[114].Suchfunctionsareestimatedfrom atrainingsetofdataandtrytolinearlyseparatethefeature vector,beingadjustedbythe weightvector andabias.The criteriaforcalculatingtheweightvectorvariesaccordingto themodeladopted.In[7],theparameterswere determined usingthemaximum-likelihoodcalculatedfromtrainingdata. Lineardiscriminantsaretheclassifiersmoreusedin meth-odsthatfollowtheschemeproposedbydeChazaletal.[7]and recommendedbyAAMI.Theauthorsofthatresearchclaim thattheclassifierwaschosenforitssimplicityandforthefact thattheydidnotwanttoemphasistheclassifier,butinstead, theproposedfeatures.Amongstitsadvantages,LDcaneasily overcomeproblemsgeneratedbytheimbalanceofthe train-ingset(adifficultypresentedbyapproachesbasedonSVM). Whenusingtheschemeproposedin[7],itisagreatchallenge totuneSVMandMLPclassifierstoobtainpromising classifica-tioneffectivenessfortheminoritySVEBandVEBclasses(see

Table9).Moreover,theLDclassifierrequireslesstrainingtime,

ifcomparedtoSVMandMLP,asitisnotiterative.Thatis,it simplycalculatesstatisticsfromthetrainingdataandthen, theclassificationmodelisdefined.

6.4. Reservoircomputingwithlogisticregression(RC) AccordingtoRodanandTi ˇno[123],reservoircomputing mod-els are dynamical models aiming to process a time series signal in two parts: represent the signal through a non-adaptabledynamicreservoirandadynamicreadoutfromthe reservoir.MoredetailsregardingRCcanbefoundin[124].

The state-of-the-art method for heartbeat classification uses RC [43]. According toEscalona-Moran et al.[43], their approachusesasimplenonlineardynamicalelementsubject toadelayedfeedbackwhereeachpointoftheECGsignalis sampledandheldduringonedelaytimeandthenmultiplied by abinary random mask. Thelearningprocess is accom-plished with logistic regression. Thetechnique appearsto berobusttothe classimbalance ofthe dataset.Besides, it achievesthebestresultsintheliteraturetodate(seeTable7). Inaddition,theauthorsalsoclaimthatthetechniqueis suit-abletoimplementinhardwareduetoitslowcomputational cost,whichallowsthedevelopmentofrealtimeapplications forheartbeatclassification.

6.5. Othertechniques

Manyothermethodsforarrhythmiaclassificationhavebeen developed using other machine learning and data mining algorithms,suchasdecisiontrees[125,126,68],nearest

neigh-bors[127–129],clustering[73,130,131],hiddenMarkovmodels

[132,133], hyperbox classifiers [105], optimum-path forest

[134],conditionalrandomfields [8]and rules-basedmodels

[135,67,136].

Algorithms with a lazy approach, such as the k Near-est Neighbors(kNN),arenotmuchusedfortheproblemof

(10)

arrhythmiaclassification,sincetheirefficiencyisintimately connectedtopreviousknowledgetoperformtheclassification ofeachsamplethatisrepresentedbythecompletetraining set,whichleadstoahighcomputationalcostduringthe test-ingphase.Thiscostcaninvalidateitsusefordiagnosisinreal time.MishraandRaghav[95]usedaclassifierbasedonkNN andreportedpromisingresults,howeverthecomputational costwasnotmentioned.Inotherworks,alsobasedonkNN, intheliterature[127,92,128,137,129],noonepresentedamore fairevaluationprotocolforcomparisonofmethodsastheone proposedbydeChazaletal.[7],andnoonealsofollowedthe AAMIrecommendations.Inaddition,thecomputationalcost ofthesemethodswasnotinvestigated.

Clusteringtechniquesare widelyusedalong with Artifi-cialNeuralNetworks.AccordingtoÖzbayetal.[84],theycan improvethegeneralizationcapacityoftheneuralnetworks and diminish the learning time. Some works used unsu-pervised clustering techniques to agglomerate all of the heartbeatsintherecordofagivenpatientintoclusters[131]

and the final classification of each cluster, i.e., the heart-beats ofthatgroup, isthen defined byahumanspecialist

[138,130,73].Otherworksinthissameway[139,140,17],using

lineardiscriminantasclassifiersandfairevaluationschemes present promisingresults whichare reliable for real-world applications.Itisimportanttonotethatthissemi-automatic (orpatient-specific paradigm)and promisingapproachstill dependsonahumanspecialist.

HMMiswidelyusedtoaudioandspeechsignalanaysis andrecognition[141,142].Coastetal.[132]usedHMMforthe arrhythmiaclassificationproblem, other studies haveused thistechniquetoanalyzeECGsignals.Forinstance,Andreao

etal.[143]validatedtheuseofHMMforECGanalysisin

med-icalclinics(realworld).

The Optimum-path Forest (OPF) classifier was used for arrhythmiaclassificationforthefirsttimebyLuzetal.[134]. In that work, the OPF performance, interms of computa-tionalcostandoverallaccuracy,wascomparedtootherthree classifiers:Bayesian,SVMandMLP.Experimentsshowedthat OPFobtained,inaverage,comparableresults,revealingitasa promissoryapproach.

Methodsthatuseadecisiontreeallowaninterpretationof thedecisionsmadebythemodel[68].However,thistypeof methodisnotefficientforcontinuousfeatures(belongingto asetofrealnumbers)[144,145]andfeaturevectorsoflarge dimensions[146].Thus,methodsthatusedecisiontrees con-sideronlyafewfeatures.Forexample,in[68],onlythefeatures intheRRintervalwereusedinthedecisiontree.Meanwhile thehyperboxclassifiers,besidesprovidinghighlevelof inter-pretationofthe classificationrules,are alsomore efficient forhigher dimensionfeaturevectors [105]. Mertet al.[147]

usedacombinationtechniqueofbagginganddecisiontree. Accordingtotheauthors,theBaggedDecision Tree demon-stratedgreateraccuracyandabettercapacitytodiscriminate theclasses.

The methods with the greatest interpretation level are theonesthatuseasetofrules.Thesetofrulespresented byTsipouraset al.[135,67,136] was obtainedtogether with cardiologistsand arerelatedtoamorphological tachogram forarrhythmicevents.Methodsconstructedinconjunction withrulesusuallypresentaworserperformance,intermsof

effectiveness,whencomparedtoothermethodsproposedin literature.However,notestusingafairercomparisonscheme, suchastheoneproposedbydeChazaletal.[7],andthe rec-ommendationsofAAMI,wasdonewithmethodsthatusea setofrules.ThissubjectisdiscussedindepthinSection 8.

Usingafewdiscriminativefeaturesfrom previousworks

[71,37],deLannoyetal.[8]proposedtheuseofweighted

Condi-tionalRandomFieldsfortheclassificationofarrhythmiasand comparedtheapproachwithSVMsandLDs.Theexperiments demonstrated thattheproposedmethodobtainspromising resultsforthe minority arrhythmicalclasses (SVEBeVEB). However, the relatively low efficiency forthe normalclass (80%)representsaproblem whenusedinreallifescenario (inter-patientparadigm),sincemanyhealthyheartbeatswill beclassifiedasarrhythmic.

7.

Databases

and

the

AAMI

standard

Variousdatabasesarecomposedofcardiacheartbeatgrouped inpatientsrecordsfreelyavailablethatpermitsthecreationof astandardizationfortheevaluationofautomaticarrhythmia classificationmethods.Thisstandardizationwasdeveloped byAAMIandisspecifiedinANSI/AAMIEC57:1998/(R)2008[10]

anddefinedtheprotocoltoperformtheevaluationstomake suretheexperimentsarereproducibleandcomparable.

Theuseoffivedatabasesisrecommendedbythe standard-ization:

MIT-BIH:TheMassachusettsInstituteofTechnology–BethIsrael HospitalArrhythmiaDatabase(48recordsof30mineach); • EDB: The European Society of Cardiology ST-T Database (90

recordsof2heach);

AHA:TheAmericanHeartAssociationDatabaseforEvaluationof VentricularArrhythmiaDetectors(80recordsof35mineach); • CU:TheCreightonUniversitySustainedVentricularArrhythmia

Database(35recordsof8mineach);

NST: The Noise Stress Test Database (12 records of ECGof 30mineach,plus3recordswithnoiseexcess);

Themost representative database forarrhythmiais the MIT-BIH,andbecauseofthis,ithasbeenusedformostofthe publishedresearch.Itwasalsothefirstdatabaseavailablefor thisgoalandhasbeenconstantlyrefinedalongtheyears[148]. Themajorityoftheheartbeatsrecordedinthesedatabases haveannotationsassociatedwiththetypeofheartbeatorthe events.Theseheartbeat annotations,asmuchfortheclass andforthefiducialpoints(e.g.,pointR,maximumamplitude oftheheartbeat)are fundamentalforthedevelopmentand evaluationofautomaticarrhythmiaclassificationmethods.

TheANSI/AAMIEC57:1998/(R)2008standardalsospecifies howannotationsshouldbedoneinthedatabases.Anexample canbeseeninFig.8,inwhichthereistheleadIIattheupper partofthefigure,leadV1atthelower,andsomeannotations inthecenter.Noteworthyisthefactthatitisrecommended thatrecordsofpatientsusingpacemakersshouldnotbe con-sidered.Inthisdatabase,4patients/recordshavethisproperty anditsrespectiveheartbeatsshouldberemoved.Inaddition, segmentsofdatacontainingventricularflutterorfibrillation (VF)shouldalsobeexcludedfromtheanalysis.

(11)

Fig.8–ExampleofannotationsinaMIT-BIHdatabase. Source:Ref.[107].

Althoughvarioustypesofcardiacarrhythmiasexist,AAMI recommends that onlysome types should be detected by equipment/methods.Thereare15recommendedclassesfor arrhythmiathatareclassifiedinto5superclasses:Normal(N), Supraventricularectopicbeat(SVEB),Ventricularectopicbeat (VEB),Fusionbeat(F)andUnknownbeat(Q).Table3illustrates the15classesandtheirsymbols,aswellasthehierarchyof the5groups(superclasses).

ThemeasuresrecommendedbyAAMIforevaluating meth-odsare:Sensitivity(Se),Positivepredictivity(+P),Falsepositive rate(FPR)andOverallaccuracy(Acc).SensitivityandPositive Predictivityarealsoknowninliteratureasrecallandprecision, respectively;theoverallaccuracycanbestronglydistortedby theresultsofthemajorityclass.Inthisway,thefirst three measuresarethemostrelevantforcomparingthemethods, sincetheclassesfortheheartbeattypesareextremely imbal-ancedinavailabledatabases.

Calculationofthemeasuresisbasedonthedefinitions pre-sentedinTable4.Notethatinsections(a),(b),and(c)ofTable4, formulasandschemastocomputeSe,+P,FPRandAccaregiven

Table3–Principaltypesofheartbeatspresentinthe

MIT-BIHdatabase.

Group Symbol Class

N Nou. Normalbeat

Anyheartbeat L Leftbundlebranchblockbeat notcategorized R Rightbundlebranchblockbeat asSVEB,VEB, e Atrialescapebeat

ForQ j Nodal(junctional)escapebeat SVEB A Atrialprematurebeat

a Aberratedatrialprematurebeat Supraventricular J Nodal(junctional)prematurebeat ectopicbeat S Supraventricularprematurebeat VEB V Prematureventricularcontraction Ventricular E Ventricularescapebeat

ectopicbeat

F F Fusionofventricular

Fusionbeat andnormalbeat

Q Pou/ Pacedbeat

Unknownbeat f Fusionofpacedandnormalbeat U Unclassifiablebeat

forV,SandNclasses,respectively.Observethataccordingto

thistable,itisnotnecessarytopenalizeVEB+Pwiththefalse

positivesFvandQv(ashighlightedintheschemaofTable4(a)),

meanwhile,forSVEB+P,Qv(ashighlightedintheschemaof

Table4(b))alsodoesnotneedtoenterthecalculation.

Thestandardalsosuggeststhattheresultsshouldbe pre-sented inaglobalmanner,consideringthateach heartbeat hasthesameweight(grossstatistics)andinpersamplebasis. AsetofresultsisexemplifiedinTable5.

Next,webrieflydiscussthefivedatabasesrecommended bythe standard,presentingthenumber ofrecords,sample frequency,resolutionandfinalityofeach.

7.1. MIT-BIH

Thisdatabase1 ispresentedinmajority ofthe publications

foundinliterature.Itisuniquesinceitcontemplatesthefive arrhythmiagroupsproposedbyAAMIasdescribedinTable3. Thisdatabasecontains48recordsofheartbeatsat360Hz forapproximately30minof47differentpatients.Eachrecord containstwoECGleadsandinthemajorityofthemthe prin-cipallead(leadA)isamodificationofleadII(electrodeson thechest).Theotherlead(leadB)isusuallyleadV1, modi-fied,butinsomerecords,thisleadisknowntobeV2,V5orV4

[107].Generally,leadAisusedtodetectheartbeats,sincethe

QRScomplexismoreprominentinthislead.LeadBfavorsthe arrhythmicclassificationofthetypesSVEBandVEB[107].More informationregardingthisdatabasecanbefoundin[148].

7.2. EDB

TheEDBdatabase2isacollectionof90recordsacquiredfrom

79subjects,sampledat250Hzwith12-bitresolution.These recordswereextractedfrom70men(between30and84years old) and8women (between55 and 71years old). Asallof thesesubjectsweresufferingfromaspecificcardiacdisease (i.e.,myocardialischaemia),thedatabasewasoriginallybuilt toallowST-segmentandT-waveanalysis.

Theheartbeatswererecordedforatwohourdurationand each ofthemcontainstwosignals(i.e.,twoleads).Two car-diologistsmadetheannotationsfortherecordandtheAAMI standardwasused.Moreinformationregardingthisdatabase canbefoundin[149].

7.3. AHA

TheAHAdatabase3consistsof155records,each one

com-posedoftwoleads,sampledat250Hzwith12-bitresolution. Eachrecordingisthreehourslongandonlythefinal30min havebeenannotated.Thedatabasewascreatedtoevaluate ventriculararrhythmiadetectors.However,thedatabasedoes notdifferentiatenormalsinusrhythmfromsupraventricular ectopicbeats(SVEB).

1 Thecompleteinformationregardingthedatabaseaswellas itsusageanddataannotation/labellingcanbefoundin

http://www.physionet.org/.

2 TheEDBdatabasecanbeobtainedin[107].

(12)

Table4–Calculationsformethodevaluations.(a),(b),and(c)highlightthecalculationofmeasuresforV,S,andN,

respectively.

Source:Ref.[7].

Abbreviations:Acc:Accuracy;F:Fusionheartbeatgroup(superclass);FPR:Falsepositiverate;N:Normalheartbeatgroup(superclass);+P: Pos-itivepredictivity;Q:Unknownheartbeatgroup(superclass);Se:Sensitivity;Sp:Specificity;S&SVEB:Supraventricularectopicheartbeatgroup (superclass);V&VEB:Ventricularectopicheartbeatgroup(superclass);TN:Truenegative;andTP:Truepositive.

Table5–ExhibitionexampleofresultsaccordingtotheAAMIstandard.

Record Acc N SVEB VEB F Q

Se/+P/FPR Se/+P/FPR Se/+P/FPR Se/+P/FPR Se/+P/FPR

101 99.5 99.7 99.8 60.0 33.3 12.5 0.4 – – 0.0 – – 0.0 0.0 – 0.0 106 72.5 97.5 100.0 0.0 – 0.0 27.5 0.0 – 0.0 – – 0.0 – – 0.0 108 97.2 98.3 99.7 21.7 75.0 6.4 2.5 0.0 – 0.0 0.0 – 0.0 – – 0.0 109 95.9 97.4 99.5 27.5 – 0.0 3.7 0.0 – 0.0 0.0 – 0.0 – – 0.0 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 215 3.0 3.1 99.0 0.6 100.0 0.1 97.1 0.0 – 10.0 90.0 – 60.0 – – 0.0 220 98.5 99.4 99.0 21.3 78.7 87.1 0.6 – – 0.0 – – 0.0 – – 0.0 223 79.8 98.6 94.7 20.0 86.3 13.2 16.3 0.0 – 30.0 0.0 – 0.0 – – 0.0 Gross 75.5 83.0 98.1 14.4 45.8 4.3 19.2 0.0 0.0 4.5 50.0 0.0 10.0 0.0 0.0 0.0 7.4. CU

TheCUdatabase4iscomposedof35eight-minuteECG

recor-dings,sampledat250Hzwith12-bitresolution.Thedatabase was intended to evaluate algorithms aiming at detecting episodes of sustained ventricular tachycardia, ventricular flutter,andventricularfibrillation.Itprovidesreference anno-tation files to aid users to locate these events on the recordings.Moreinformationregardingthisdatabasecanbe foundin[150].

7.5. NSD

The NSD database5 includes 12 half-hour ECG recordings

and3half-hournoise recordings.Thenoiseinsertedinthe recordingsistypicalinterferencesfoundinambulatorycare services,suchasbaselinewander,muscleartefact(EMG)and

4 TheCUdatabaseandtheannotationfilescanbeobtainedin

[107].

5 TheNSDdatabaseanditsannotationfilescanbeobtainedin

[107].

electrodemotionartefact.AccordingtoGoldbergeretal.[107], the electrode motionartefact isconsidered tobe themost troublesome,sinceitcanbeeasilymisinterpretedasectopic beats.Also,itcannotbeeasilyremovedbyfilters.

TheECGrecordingsavailableintheNSDdatabasewere cre-atedbased ontwoclean recordingsfrom MIT-BIH (118and 119).Thenoise wasartificiallyinserted inthe signals.This databaseismoredetaileddescribedin[151].

8.

Heartbeats

selection

problem

for

evaluation

of

methods

TheAAMIstandardspecifiesaprotocolfortestsand evalua-tion ofarrhythmiaclassificationmethods.Italsostipulates which databases should be used. However, it does not specify which patients/heartbeats should be used to con-structthemodeltobeclassified(trainingphase)andwhich patients/heartbeatsshouldbeusedforevaluationmethods,

i.e.,thetestingphase,whichmayrenderbiasedresults.For instance, deChazal et al.[7] demonstratedthat the useof heartbeatsfromthesamepatientforboththetrainingandthe testingmakestheevaluationprocessbiased.Thisisbecause

(13)

Table6–Heartbeatdistributionbyclassesofsets/partsasproposedbydeChazaletal.[7].

Set N SVEB VEB F Q Total

DS1 45866 944 3788 415 8 51021

DS2 44259 1837 3221 388 7 49712

DS1+DS2 90125 2781 7009 803 15 100733

themodelstendtolearn theparticularitiesofthepatient’s

heartbeatduringthetraining,obtainingexpressivenumbers

duringthetest(verycloseto100%).Aspreviouslymentioned,

this heartbeat division protocol is called in the literature

intra-patientschemeorparadigm[8,42].However,ina

clini-calenvironment,afullyautomaticalgorithm/methodwillfind heartbeatsofpatientsdifferentfromthosetheyusedto learn-inginthetrainingphase.

Intendingtospecifyaprotocol,theworkofdeChazaletal.

[7]proposed adivisionofthe heartbeats fromthe MIT-BIH databaseinto twosetsso thatthedatabase becomesmore coherentwithreality.Thefirstsetiscomposedofall heart-beatsofrecords:101, 106, 108, 109,112, 114, 115,116, 118, 119,122,124, 201,203,205, 207,208,209, 215,220,223and 230,calledDataset1(DS1).Whilethesecondiscomposedof allheartbeatsofrecords:100,103,105,11,113,117,121,123, 200,202,210,212, 213,214,219,221, 222,228,231,232, 233 and234, calledDataset 2(DS2).Theauthors onlyusedDS1 toconstructtheclassificationmodel,whileDS2wasreserved for evaluation. In this way, they guaranteed that the cre-atedmodelhadnocontactwiththeheartbeatspertainingto DS2,i.e.,heartbeats fromDS1andDS2comefromdifferent individuals.Suchdivisionprotocoliscalledintheliterature inter-patientschemeorparadigm[7,8,42].Notethatonlythe MIT-BIHdatabasewasusedforthecreationofthesets,since itistheonlyoneindicatedbytheAAMIstandardthat contem-platesall5ofthesuperclassesforarrhythmias.

AccordingtodeChazaletal.[7],theserecordswere pri-marilydividedintwoparts:oddandevennumberedrecords. Thefinalrecordselectionwasachievedbyexchangingsome oftherecordsbetweenthepartssoastobalancetheclasses. TheheartbeatdistributionofthesetscanbeseeninTable6. Observethatthetwosetshaveapproximatelythesame num-berofheartbeatsperclass,withapproximately100thousand heartbeats.Itisworthmentioningthatrecords201and202 arefromthesamepatient,butareindifferentsets.Theother recordspertaintoonlyonepatient.

deChazaletal.[7]concludedthatforamorerealistic evalu-ation,theDS1setmustbeusedfortrainingandtheDS2setfor testing,makingheartbeatclassificationasignificantlymore difficulttask,andconsequently,reducingtheperformanceof thepresentedclassifyingmethod.Theyalsoconcludedthat theminorityclasses (SVEBand VEB),wherethemost prob-lematicarrhythmiasarefound,sufferedmorewiththistype ofprotocol.

Tables 7and 8 lists the main works,considered byus,

publishedinliterature,groupedaccordingtotheschemeof heartbeat selection: intra-patient, where heartbeats of the samepatientsprobablyappearinthetrainingaswellasin thetestingdataset;andthesecondscheme, whereauthors tooktheprecautiontoconstructandevaluatethe classifica-tionusingheartbeatsfromdifferentpatients(inter-patient), followingtheprotocolproposedby[7].

Worksthatdonotfitintointer-patientcategory,donot per-mitfaircomparisonswiththeresultsintheliterature,oncea greatmajorityoftheauthorsdidnotfollowthesameprotocol fortheevaluations.AsonecanseeinTable8,itisalsodifficult toassesswhichtechniquecontributetoheartbeat classifica-tion,sincemethodswithdifferentapproachesachievesvery high(>98%)accuracies.Thus,thereportedresultsgroupedin

Table8cannotbetakenintoconsiderationfromaclinicalpoint

ofview,sincethereportedvaluesbytheseworksareprobably differentinareallifescenariointermsofaccuracy.

Unfortunately,thegreatmajorityoftheworksinthe liter-aturedoesnotconcernonfollowingthedivisiondefinedin

[7]oranyotherinter-patientprotocolthatimposedthe non-usageofheartbeatsfromthesamepatientinthetrainingand testing[160],asshowninTable8.

Aimingtostandardizetheevaluationprocessconsideringa clinicalpointofviewandAAMIrecommendations,wesuggest futureworkstofollowaworkflow6:

1. Databaseselection:

• UseMIT-BIHARRDBwithinter-patientschemeproposed in[7]toallowunbiasedliteraturecomparison;

• UseINCARTdatabasetoassessgeneralizationpowerof themethod,asproposedin[37];

2. Preprocessing. Run all process with at least 2 filtering scheme besides the proposed filtering method by the authors:

• Signalfilteringasproposedin[7]toallowliterature com-parison;

• UsetheRawSignal,i.e.,nofiltering.Thisshouldworkas agroundtruth;

3. Segmentation:

• AddjittertoRlocationannotationasproposedin[66]to testtherobustnessofthemethodagainstsegmentation errors;

4. Featureextraction:

• Usefeatureselectiontoreportwhichproposedfeatures improvetheresults;

• Useaclass-orientedfeatureselectiontoassess which featureismoresuitabletowhichdiseaseasproposedin

[35].Thiscouldresultinanimportantcontributiontothe literature;

5. Classification:

• Duringtraining,useak-patientcrossvalidationtodefine modelparametersasproposedin[7].

• Investigate thedatabase imbalanceimpact onchosen classifier,byreportingresultswithandwithoutuseof techniquestocompensatetheimbalance;

6 Theproposedworkflowfortheevaluationprocessisan importantcontributionofthissurveywork.

(14)

Table7–Methodswhichusedinter-patientparadigm.

Work Featureset Classifier Effectiveness

deChazaletal.[7] ECG-Intervals, WeightedLD Acc=83%;

Morphological SeN=87%;+PN=99%;

SeS=76%;+PS=38%;

SeV=77%,+PV=82%;

SoriaandMartinez[31] RR-Intervals, WeightedLD Acc=90%;

VCG,morphological SeN=92%,+PN=85%;

+FFS SeS=88%,+P=93%;

SeV=90%,+P=92%

LlamedoandMartinez[37] Wavelet, WeightedLD Acc=93%;

VCG SeN=95%;+PN=98%;

+SFFS SeS=77%;+PS=39%;

SeV=81%,+PV=87%;

Maretal.[34] TemporalFeatures, WeightedLD Acc=89%;

Morphological, MLP SeN=89%;+PN=99%;

statiscialfeatures SeS=83%;+PS=33%;

+SFFS SeV=86%,+PV=75%;

#Bazietal.[40] Morphological, SVM Acc=97%(DS1)

Wavelet IWKLR,DTSVM Acc=92%(DS2)

Luzetal.[134] features SVM, SeN=84%SpSVEB=18%

proposedin ANN, SpVEB=72%

[102,101,79] Bayesian,

[70,44] OPF

Yeetal.[38] Morphological,Wavelet, SVM Acc=86.4%

RRinterval,ICA, SeN=88%;+PN=97%;

PCA SeS=60%;+PS=53%;

SeV=81%,+PV=63%;

deLannoyetal.[32] ECG-Intervals, weightedSVM Acc=83%;

morphological, SeN=80%;

HOS, SeS=88%;

HBFcoeficients SeV=78%;

Parketal.[33] HOS,HBF HierarchicalSVM Acc=85%;

SeN=86%;

SeS=82%;

SeV=80%;

Zhangetal.[35] RR-intervals, CombinedSVM Acc=86%;

morphologicalfeatures, SeN=89%;+PN=99%;

ECG-intervalsandsegments SeS=79%;+PS=35%;

SeV=85%,+PV=92%;

Escalona-Moranetal.[43] Rawwave RC Acc=98%;

SeN=96%;+PN=91%; SeS=79%;+PS=96%; SeV=96%;+PV=99%;

#Huangetal.[42] Randomprojection EnsembleofSVM

RR-intervals SeN=99%;+PN=95%;

SeS=91%;+PS=42%;

SeV=94%,+PV=91%;

$LinandYang[41] normalizedRR-interval weightedLD Acc=93%;

SeN=91%;+PN=99%;

SeS=81%;+PS=31%;

SeV=86%,+PV=73%;

deLannoyetal.[8] RR-intervals,ECG-segments weightedCRF Acc=85%;

morphological,HBF,HOS AccN=79%;

AccS=92%;

AccV=85%;

ZhangandLuo RR-intervals, CombinedSVM Acc=87%;

morphologicalfeatures, SeN=88%;+PN=98%;

ECG-intervalsandsegments, SeS=74%;+PS=59%;

waveletscoeff. SeV=88%,+PV=82%;

ANN,ArtificialNeuralNetwork;PCA,PrincipalComponentAnalysis;FFS,FloatingFeatureSelection;ICA,IndependentComponentAnalysis; BPNN,BackPropagationNeuralNetwork;HBF,HermiteBasisFunction;HOSC,highorderstatisticscummulants;LD,LinearDiscriminants;SFFS, Sequentialforwardfloatingsearch;IWKLR,ImportanceWeightedKernelLogisticRegression;CRF,ConditionalRandomFields;RC,Reservoir Computing;$Authorsoptimizetheirresultfor3classes(N,SVEB,VEB);#Whereconfusionmatrixwasnotgiven,somevaluescouldnotbe computed.

(15)

Table8–MethodswhichusedIntra-patientparadigm.

Work #cl. Featureset Classifier Effectiveness

Chenetal.[152] 2 RR-interval Setofrules Acc=95%

Lagerholmetal.[138] 16 HBF,SOM clustering Acc=98%

DokurandOlmez[98] 10 Fourier,Wavelet+FSDP MLP,RCE, Acc=96%

NovelhybridNN

OsowskiandLinh[88] 6 HOSC fuzzyNN Acc=96%

Tsipourasetal.[135] 9 RR-interval Deterministicautomata Acc=96%

Mehmet[122] 4 HOSC,Wavelet Min.Dist,kNN,Bayes Acc=98%

CristovandBortonal[106] 2 Heartbeat-Intervals,VCG NN Acc=99%

GulerandUbeyli[44] 4 Wavelets(statistics) CombinedNN Acc=96%

Songetal.[102] 6 Waveletcoef.,LDA SVM Acc=99%

RR-Intervals

Karimifardetal.[153] 7 HBF kNN Acc=99%

Özbayetal.[84] 10 Raw-wave MLP,FuzzyCluster, Acc=99%

FCNN

Tsipourasetal.[136] 4 RR-interval FuzzyExpertSystem Acc=96%

Bortolanetal.[105] 2 VCGandMorphological FuzzyClustering Acc=99% hyperbox+GA

Ubeyli[154] 4 DWT SVM,ECOC Acc=99%

YuandChen[101] 5 ICA,RR-interval PNN Acc=99%

CeylanandOsbay[76] 10 DWT FCM,NN Acc=99%

YuandChen[101] 6 Wavelet(statistics) PNN Acc=99%

RR-interval

MinhasandArif[137] 6 Wavelet,RR-interval,PCA kNN Acc=99%

Linetal.[96] 7 MorletWavelet AWN Acc=90%

KorurekandNizam[127] 6 RR-interval,ECG-segments ACO-basedCluster, Acc=94% kNN

YuandChou[79] 8 RR-interval,ICA PNN,BPNN Acc=98%

Asletal.[85] 6 HVR,GDA SVM Acc=100%

Ceylanetal.[90] 10 PCA,DWT FCMT2,ANN Acc=99%

Wenetal.[73] 16 RR-interval,raw-wave SOCMAC-basedCluster Ac=98%

YuandChou[80] 8 ICA SVM Acc=98%

Kimetal.[77] 6 RR-interval,PCA ELM Acc=98%

Yeetal.[70] 15 Wavelet,ICA, SVM Acc=99%

PCA,RR-interval

OzbayandTezel[74] 10 ECG-wave NNAAF Acc=98%

MishraandRaghav[95] 6 LFD NearestNeighbor Acc=89%

KorurekandNizan[127] 6 RR-interval,QRS-width, ACO,kNN Acc=90%

Wavelet,PCA

Lanataetal.[128] 6 HOS MOG,kNN Acc=85%

Yehetal.[131] 5 Morphological,RR-interval clustering Acc=94%

QFS

Kallasetal.[83] 3 KPCA SVM Acc=97%

Khazaee[155] 3 Heartbeatintervals PSO+SVM Acc=97%

morphologyamplitudes

Wangetal.[103] 8 PCA,LDA PNN Acc=99%

KumarandKumaraswamy[69] 3 RR-intervals CART,RBF, Acc=92%

MLP,IOAW-FFNN

Chenetal.[156] 6 RR-intervals SVN,NN Acc=100%

Mertetal.[147] 6 RR-intervals,HOS, BaggedDecisionTree Acc=99%

2ndorderLPCcoeff.

AhmedandArafat[157] 11 Heartbeatintervals MLP,SVM,TreeBoost Acc=98% morphologyamplitude,HOS

Sarfrazetal.[78] 11 RR-intervals,QRSpower BPNN Acc=99%

ICAcoeff.

Tranetal.[158] 7 RR-intervals,HBF Ensembleofclassifiers Acc=98%

AlickovicandSubasi[159] 5 autoregressive(AR)modeling SVM,MLP, Acc=99% RBF,kNN

NN,NeuralNetwork;PCA,PrincipalComponentAnalysis;GDA,GeneralizedDiscriminantAnalyses;ECOC,Errorcorrectingoutputcodes;NNAAF, NeuralNetworkAdaptativeActivationFunction;ACO,AntColonyOptimizationbasedclustering;ICA,IndependentComponentAnalysis;FCM, FuzzyC-Means;AWN,adaptivewaveletnetwork;PNN,ProbabilisticneuralNetwork;BPNN,BackPropagationNeuralNetwork;PSO,Particle swarmoptimization;CWT,ContinuesWaveletTransform;DWT,DiscreteWaveletTransform;DCT,DiscreteCosineTransform;FCMT2,Fuzzy C-Meanstype2;MOG,MixtureofGaussian;QFS,Qualitativefeatureselection;HMM,HiddenMarkovmodeling;LPC,linearpredictivecoding; BME,Burgsmaximumentropy;SOM,self-organizingmaps;HBF,HermiteBasisFunction;HOSC,Highorderstatisticscummulants;HOS,Higher orderstatistics;LD,LinearDiscriminants;SOCMAC,Self-organizingcerebellarmodelarticulationcontrollernetwork;ELM,ExtremeLearning Machine;LFD,Localfractaldimension;LDA,lineardiscriminantanalysis.

Referências

Documentos relacionados

For example, mean absolute error of J48 is minimum for breast cancer data set (i.e. small data set) but not minimum for sick data set (i.e. large data set) for from the table 1, it

tabLe 2 - Result of discriminant analysis, according to the percentage of correct classification of the heterotic groups proposed by the artificial neural network technique for

Comparison between principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and

[15] presented an efficient method for face detection and eye localization using neural network for color segmentation.. A self-growing probabilistic decision-based neural

Keywords: Electrocardiogram, Arrhythmia, Heart block, Automatic classiication, Principal component analysis, Artiicial neural

In line with this, artificial neural network technology of backpropagation neural network (BPNN), radial basis function neural network (RBFNN) and generalized regression

Key words: Fault diagnosis, wavelet transform, three phase inverter, fault dictionary, neural network classifier, Circuit Under Test (CUT), Standard Deviation (SD),

Linear model generators take as input a dataset containing a number of independent variables and a dependent variable and produce linear models by combining influence factors..