• Nenhum resultado encontrado

Spanning trees of dense digraphs Tássio Naia

N/A
N/A
Protected

Academic year: 2022

Share "Spanning trees of dense digraphs Tássio Naia"

Copied!
66
0
0

Texto

(1)

Spanning trees of dense digraphs Tássio Naia

Joint work with

Richard Mycroft

ICGT 2018

(2)

Spanning trees of dense digraphs Tássio Naia

Joint work with

Richard Mycroft

ICGT 2018

(3)

Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G)n

r(T)

r(T) := minimumk s.t. v(G)k =⇒ TG.

T is unavoidable : TG ∀G s.t. v(G)v(T).

So nr(T)≤2n−1

T in every orientation of KnT unavoidable ≡ r(T) =n

(4)

Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G)n

r(T)

r(T) := minimumk s.t. v(G)k =⇒ TG.

T is unavoidable : TG ∀G s.t. v(G)v(T).

So nr(T)≤2n−1

T in every orientation of KnT unavoidable ≡ r(T) =n

(5)

Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G)n

r(T)

r(T) := minimumk s.t. v(G)k =⇒ TG.

T is unavoidable : TG ∀G s.t. v(G)v(T).

So nr(T)≤2n−1

T in every orientation of KnT unavoidable ≡ r(T) =n

(6)

Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G)n

r(T) r(T) := minimumk s.t. v(G)k =⇒ TG.

T is unavoidable : TG ∀G s.t. v(G)v(T). So nr(T)≤2n−1

T in every orientation of KnT unavoidable ≡ r(T) =n

(7)

Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G)n

r(T) r(T) := minimumk s.t. v(G)k =⇒ TG.

T is unavoidable : TG ∀G s.t. v(G)v(T).

n−1

T in every orientation of KnT unavoidable ≡ r(T) =n

(8)

Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G)n

r(T)

r(T), Unavoidable tree r(T) := minimumk s.t. v(G)k =⇒ TG.

T is unavoidable : TG ∀G s.t. v(G)v(T).

n−1

T in every orientation of KnT unavoidable ≡ r(T) =n

(9)

Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G)n

r(T)

r(T), Unavoidable tree r(T) := minimumk s.t. v(G)k =⇒ TG.

T is unavoidable : TG ∀G s.t. v(G)v(T).

n−1

r(T) =n

(10)

Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G)n

r(T)

r(T), Unavoidable tree r(T) := minimumk s.t. v(G)k =⇒ TG.

T is unavoidable : TG ∀G s.t. v(G)v(T).

n−1

(11)

Proof by picture

(12)

Unavoidable trees — examples

Directed paths( Rédei ’34 ) · · ·

All large paths( Thomason ’86 )

All paths, 3 exceptions( Havet & Thomassé ’98 )

Some claws( Saks & Sós ’84; Lu ’93; Lu, Wang & Wong ’98 )

· · ·

· · ·

· · ·

· · ·

3

8 + 1 200

nbranches

(13)

Unavoidable trees — examples

Directed paths( Rédei ’34 ) · · · All large paths( Thomason ’86 )

All paths, 3 exceptions( Havet & Thomassé ’98 )

Some claws( Saks & Sós ’84; Lu ’93; Lu, Wang & Wong ’98 )

· · ·

· · ·

· · ·

· · ·

3

8 + 1 200

nbranches

(14)

Unavoidable trees — examples

Directed paths( Rédei ’34 ) · · · All large paths( Thomason ’86 )

All paths, 3 exceptions( Havet & Thomassé ’98 )

Some claws( Saks & Sós ’84; Lu ’93; Lu, Wang & Wong ’98 )

· · ·

· · ·

· · ·

· · ·

3

8 + 1 200

nbranches

(15)

Unavoidable trees — examples

Directed paths( Rédei ’34 ) · · · All large paths( Thomason ’86 )

All paths, 3 exceptions( Havet & Thomassé ’98 )

Some claws( Saks & Sós ’84; Lu ’93; Lu, Wang & Wong ’98 )

· · ·

· · ·

· · ·

· · ·

3

8 + 1 200

nbranches

(16)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(17)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(18)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(19)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(20)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(21)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(22)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(23)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(24)

Avoidable trees — examples

· · · n−2

is not in n−3

And

5 vertices

is not in

3-regular

3-regular: 2·5−3 vertices

(25)

Avoidable trees, a longstanding conjecture

Conjecture(Sumner, 1971)

? r(T)≤2n−2 for all T. v(T) =n

publ. who tournament size

1982 Chung n1+o(n)

1983 Wormald nlog2(2n/e)

1991 Häggkvist & Thomason 12nand also 4 +o(n)n

2002 Havet 38n/5−6

2000 Havet & Thomassé (7n−5)/2

2004 El Sahili 3n−3

2011 Kühn, Mycroft & Osthus 2n−2 for large n

Conjecture(Havet & Thomassé, 2002)

? T has`T leaves =⇒ r(T)n+`T −1. v(T) =n

(26)

Avoidable trees, a longstanding conjecture

Conjecture(Sumner, 1971)

? r(T)≤2n−2 for all T. v(T) =n

publ. who tournament size

1982 Chung n1+o(n)

1983 Wormald nlog2(2n/e)

1991 Häggkvist & Thomason 12nand also 4 +o(n)n

2002 Havet 38n/5−6

2000 Havet & Thomassé (7n−5)/2

2004 El Sahili 3n−3

2011 Kühn, Mycroft & Osthus 2n−2 for large n

Conjecture(Havet & Thomassé, 2002)

? T has`T leaves =⇒ r(T)n+`T −1. v(T) =n

(27)

Avoidable trees, a longstanding conjecture

Conjecture(Sumner, 1971)

? r(T)≤2n−2 for all T. v(T) =n

publ. who tournament size

1982 Chung n1+o(n)

1983 Wormald nlog2(2n/e)

1991 Häggkvist & Thomason 12nand also 4 +o(n)n

2002 Havet 38n/5−6

2000 Havet & Thomassé (7n−5)/2

2004 El Sahili 3n−3

2011 Kühn, Mycroft & Osthus 2n−2 for large n

Conjecture(Havet & Thomassé, 2002)

(28)

Typical behaviour (1) — an approximate result

Kühn, Mycroft & Osthus, 2011 For allε,>0 and large n

∆(T)≤∆ =⇒ r(T)≤(1 +ε)n. v(T) =n

Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 Havet and Thomassé’s conjecture holds for almost everyT.

by Moon 1st moment+Cayley

(29)

Typical behaviour (1) — an approximate result

Kühn, Mycroft & Osthus, 2011 For allε,>0 and large n

∆(T)≤∆ =⇒ r(T)≤(1 +ε)n. v(T) =n Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 Havet and Thomassé’s conjecture holds for almost everyT.

by Moon 1st moment+Cayley

(30)

Typical behaviour (1) — an approximate result

Kühn, Mycroft & Osthus, 2011 For allε,>0 and large n

∆(T)≤∆ =⇒ r(T)≤(1 +ε)n. v(T) =n Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n Moon, 1970 Typically, ∆(T) = (1±o(1))

logn

log logn

. T labelled

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 Havet and Thomassé’s conjecture holds for almost everyT.

by Moon 1st moment+Cayley

(31)

Typical behaviour (1) — an approximate result

Kühn, Mycroft & Osthus, 2011 For allε,>0 and large n

∆(T)≤∆ =⇒ r(T)≤(1 +ε)n. v(T) =n Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n Moon, 1970 Typically, ∆(T) = (1±o(1))

logn

log logn

. T labelled

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 Havet and Thomassé’s conjecture holds for almost everyT.

by Moon 1st moment+Cayley

(32)

Typical behaviour (1) — an approximate result

Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 Havet and Thomassé’s conjecture holds for almost everyT.

by Moon 1st moment+Cayley

(33)

Typical behaviour (1) — an approximate result

Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 Havet and Thomassé’s conjecture holds for almost everyT.

by Moon 1st moment+Cayley

(34)

Typical behaviour (1) — an approximate result

Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 Havet and Thomassé’s conjecture holds for almost everyT.

by Moon 1st moment+Cayley

(35)

Typical behaviour (1) — an approximate result

Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 Havet and Thomassé’s conjecture holds for almost everyT.

by Moon 1st moment+Cayley

(36)

Typical behaviour (1) — an approximate result

Mycroft, N., 2018 For allε, C >0 and large n

∆(T)≤(logn)C =⇒ r(T)≤(1 +ε)n. v(T) =n

=⇒ (1 +ε)nvertices suffice to embed almost every tree

Conjecture(Havet & Thomassé, 2002)

? IfT has`T leaves and v(G)n+`T −1 then TG.

Lemma Typical treeT has ≈n/e leaves and ∆(T)<logn.

Mycroft, N., 2018 by Moon

1st moment+Cayley

(37)

Typical behaviour (2) — a probabilistic result

Tn:={n-vertex trees} oriented, labelled Gn:={n-vertex tournaments} labelled

Bender, Wormald, 1988 There exists

T ⊆ Tn with |T |= 1−o(1)Tn and G ⊆ Gn with |G|= 1−o(1)Gn s.t.

T ∈ T, G∈ G =⇒ TG.

Conjecture(Bender, Wormald, 1988)

? There existsT ⊆ Tn with |T |= 1−o(1)Tn s.t. T ∈ T =⇒ T unavoidable

Mycroft, N., 2018 Indeed!

(38)

Typical behaviour (2) — a probabilistic result

Tn:={n-vertex trees} oriented, labelled Gn:={n-vertex tournaments} labelled

Bender, Wormald, 1988 There exists

T ⊆ Tn with |T |= 1−o(1)Tn and G ⊆ Gn with |G|= 1−o(1)Gn s.t.

T ∈ T, G∈ G =⇒ TG.

Conjecture(Bender, Wormald, 1988)

? There existsT ⊆ Tn with |T |= 1−o(1)Tn s.t. T ∈ T =⇒ T unavoidable

Mycroft, N., 2018 Indeed!

(39)

Typical behaviour (2) — a probabilistic result

Tn:={n-vertex trees} oriented, labelled Gn:={n-vertex tournaments} labelled

Bender, Wormald, 1988 There exists

T ⊆ Tn with |T |= 1−o(1)Tn and G ⊆ Gn with |G|= 1−o(1)Gn s.t.

T ∈ T, G∈ G =⇒ TG.

Conjecture(Bender, Wormald, 1988)

? There existsT ⊆ Tn with |T |= 1−o(1)Tn s.t.

T ∈ T =⇒ T unavoidable

Mycroft, N., 2018 Indeed!

(40)

Typical behaviour (2) — a probabilistic result

Tn:={n-vertex trees} oriented, labelled Gn:={n-vertex tournaments} labelled

Bender, Wormald, 1988 There exists

T ⊆ Tn with |T |= 1−o(1)Tn and G ⊆ Gn with |G|= 1−o(1)Gn s.t.

T ∈ T, G∈ G =⇒ TG.

Conjecture(Bender, Wormald, 1988)

? There existsT ⊆ Tn with |T |= 1−o(1)Tn s.t.

T ∈ T =⇒ T unavoidable

Mycroft, N., 2018

(41)

Almost all trees are unavoidable!

Mycroft, N., 2018 There existsTn0 ⊆ Tn of size 1−o(1)Tn s.t.

eachG∈ Gn contains all T ∈ Tn0 .

A sufficient condition which is typical !

Ingredients:

Mycroft, N., 2018

∆(T)≤polylog(n) =⇒ (1 +ε)n

Kühn, Mycroft & Osthus, 2011 Structure of large tournaments

+randomized embedding algorithm

(42)

Almost all trees are unavoidable!

Mycroft, N., 2018 There existsTn0 ⊆ Tn of size 1−o(1)Tn s.t.

eachG∈ Gn contains all T ∈ Tn0 .

A sufficient condition which is typical ! Ingredients:

Mycroft, N., 2018

∆(T)≤polylog(n) =⇒ (1 +ε)n

Kühn, Mycroft & Osthus, 2011 Structure of large tournaments

(43)

Nice trees

··· ······ ······ ···· · · · · ·

pendant (out-star) in-leaf%

out-leaf%

α-nice

∀α >0, oriented tree T onnvertices is α-nice if

I αn pendant in-stars with an outleaf

I αn pendant out-stars with in- and outleaf

Mycroft, N., 2018 For allα, C >0and largen

T is α-nice and ∆(T)≤(logn)C =⇒ T is unavoidable.

(44)

Nice trees

··· ······ ······ ···· · · · · ·

pendant (out-star) in-leaf%

out-leaf%

α-nice

∀α >0, oriented tree T onnvertices isα-nice if

I αn pendant in-stars with an outleaf

I αn pendant out-stars with in- and outleaf

Mycroft, N., 2018 For allα, C >0and largen

T is α-nice and ∆(T)≤(logn)C =⇒ T is unavoidable.

(45)

Nice trees

··· ······ ······ ···· · · · · ·

pendant (out-star) in-leaf%

out-leaf%

α-nice

∀α >0, oriented tree T onnvertices isα-nice if

I αn pendant in-stars with an outleaf

I αn pendant out-stars with in- and outleaf

Mycroft, N., 2018 For allα, C >0and largen

(46)

Nice trees are nice, and ALSO typical

Mycroft, N., 2018 For allα, C >0and largen

T isα-nice and ∆(T)≤(logn)C =⇒ T is unavoidable.

Moon, 1970 Almost alln-vertex trees have max. degree(1±o(1))

logn

log logn

.

Basic lemma Almost alln-vertex trees are 2501 -nice.

=⇒ Almost all trees are unavoidable.

(47)

Nice trees are nice, and ALSO typical

Mycroft, N., 2018 For allα, C >0and largen

T isα-nice and ∆(T)≤(logn)C =⇒ T is unavoidable.

Moon, 1970 Almost alln-vertex trees have max. degree(1±o(1))

logn

log logn

.

Basic lemma Almost alln-vertex trees are 2501 -nice.

=⇒ Almost all trees are unavoidable.

(48)

Nice trees are nice, and ALSO typical

Mycroft, N., 2018 For allα, C >0and largen

T isα-nice and ∆(T)≤(logn)C =⇒ T is unavoidable.

Moon, 1970 Almost alln-vertex trees have max. degree(1±o(1))

logn

log logn

.

Basic lemma Almost alln-vertex trees are 2501 -nice.

(49)

Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995

For all ∆>0, ε >0, and large n,

tree T, graphG s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ(G)≥(1/2 +ε)n then TG.

Mycroft, N., 2018+ For all ∆>0, ε >0, and large n,

oriented tree T, digraph G s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ0(G)≥(1/2 +ε)n

then TG. Work in progress:

1. Let ∆(T)grow withn

2. More general spanning subdigraphs (i.e.: allow some cycles)

(50)

Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995 For all ∆>0, ε >0, and large n,

tree T, graphG s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ(G)≥(1/2 +ε)n then TG.

Mycroft, N., 2018+ For all ∆>0, ε >0, and large n,

oriented tree T, digraph G s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ0(G)≥(1/2 +ε)n

then TG. Work in progress:

1. Let ∆(T)grow withn

2. More general spanning subdigraphs (i.e.: allow some cycles)

(51)

Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995 For all ∆>0, ε >0, and large n,

tree T, graphG s.t. n=v(T) =v(G)

if ∆(T)≤∆ and δ(G)≥(1/2 +ε)n then TG.

Mycroft, N., 2018+ For all ∆>0, ε >0, and large n,

oriented tree T, digraph G s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ0(G)≥(1/2 +ε)n

then TG. Work in progress:

1. Let ∆(T)grow withn

2. More general spanning subdigraphs (i.e.: allow some cycles)

(52)

Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995 For all ∆>0, ε >0, and large n,

tree T, graphG s.t. n=v(T) =v(G) if ∆(T)≤∆

and δ(G)≥(1/2 +ε)n then TG.

Mycroft, N., 2018+ For all ∆>0, ε >0, and large n,

oriented tree T, digraph G s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ0(G)≥(1/2 +ε)n

then TG. Work in progress:

1. Let ∆(T)grow withn

2. More general spanning subdigraphs (i.e.: allow some cycles)

(53)

Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995 For all ∆>0, ε >0, and large n,

tree T, graphG s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ(G)≥(1/2 +ε)n

then TG.

Mycroft, N., 2018+ For all ∆>0, ε >0, and large n,

oriented tree T, digraph G s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ0(G)≥(1/2 +ε)n

then TG. Work in progress:

1. Let ∆(T)grow withn

2. More general spanning subdigraphs (i.e.: allow some cycles)

(54)

Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995 For all ∆>0, ε >0, and large n,

tree T, graphG s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ(G)≥(1/2 +ε)n then TG.

Mycroft, N., 2018+ For all ∆>0, ε >0, and large n,

oriented tree T, digraph G s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ0(G)≥(1/2 +ε)n

then TG. Work in progress:

1. Let ∆(T)grow withn

2. More general spanning subdigraphs (i.e.: allow some cycles)

(55)

Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995 For all ∆>0, ε >0, and large n,

tree T, graphG s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ(G)≥(1/2 +ε)n then TG.

Mycroft, N., 2018+ For all ∆>0, ε >0, and large n,

oriented tree T, digraph G s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ0(G)≥(1/2 +ε)n

then TG.

Work in progress:

1. Let ∆(T)grow withn

2. More general spanning subdigraphs (i.e.: allow some cycles)

(56)

Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995 For all ∆>0, ε >0, and large n,

tree T, graphG s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ(G)≥(1/2 +ε)n then TG.

Mycroft, N., 2018+ For all ∆>0, ε >0, and large n,

oriented tree T, digraph G s.t. n=v(T) =v(G) if ∆(T)≤∆ and δ0(G)≥(1/2 +ε)n

then TG.

Work in progress:

1. Let ∆(T)grow withn

(57)

Open questions

Q How about other oriented trees?

e.g., few leaves, or outbranchings

Q Characterise unavoidable trees

Q Orientations of n-chromatic graphs (Burr’s conjecture)

Conjecture (Burr, 1980)

? IfGis a graph,χ(G) = 2n−2 andT is a tree on nvertices, then every orientation ofGcontains every orientation of T

Thanks! Other questions? Please ask!

(58)

Open questions

Q How about other oriented trees?

e.g., few leaves, or outbranchings

Q Characterise unavoidable trees

Q Orientations of n-chromatic graphs (Burr’s conjecture)

Conjecture (Burr, 1980)

? IfGis a graph,χ(G) = 2n−2 andT is a tree on nvertices, then every orientation ofGcontains every orientation of T

(59)

Quick Reference

Paths and claws Avoidable trees Sumner

Bounded degree result

“Unavoidable” conjecture Result summary

Nice trees are nice — our sufficient condition

(60)

Embedding T to G (general scheme)

I reserve a small set SG

I form T0T by removing a few leaves

I embed T0 to GS (using [MN18] ) I use S to cover badvertices

I use perfect matchings to complete the copy of T

T G

bad

(61)

Embedding T to G (general scheme)

I reserve a small set SG

I form T0T by removing a few leaves

I embed T0 to GS (using [MN18] ) I use S to cover badvertices

I use perfect matchings to complete the copy of T

T

S G

bad

(62)

Embedding T to G (general scheme)

I reserve a small set SG

I form T0T by removing a few leaves

I embed T0 to GS (using [MN18] ) I use S to cover badvertices

I use perfect matchings to complete the copy of T

T T0

S G

bad

(63)

Embedding T to G (general scheme)

I reserve a small set SG

I form T0T by removing a few leaves

I embed T0 to GS (using [MN18] )

I use S to cover badvertices

I use perfect matchings to complete the copy of T

T T0

S G

bad

(64)

Embedding T to G (general scheme)

I reserve a small set SG

I form T0T by removing a few leaves

I embed T0 to GS (using [MN18] ) I use S to cover badvertices

I use perfect matchings to complete the copy of T

T

S G

bad

(65)

Embedding T to G (general scheme)

I reserve a small set SG

I form T0T by removing a few leaves

I embed T0 to GS (using [MN18] ) I use S to cover badvertices

I use perfect matchings to complete the copy of T T

S G

bad

(66)

Embedding T to G (general scheme)

I reserve a small set SG

I form T0T by removing a few leaves

I embed T0 to GS (using [MN18] ) I use S to cover badvertices

I use perfect matchings to complete the copy of T T

S G

bad

Referências

Documentos relacionados

As clicar nas provas para as quais os resultados foram disponibilizados pelo professor, o aluno pode verificar os resultados da prova e o gabarito da mesma, como pode ser visto

Não por acaso, o princípio constitucional da legalidade e moralidade pública, ao menos em tese, funcionam como vetores impeditivos da corrupção, impondo a seus agentes o dever ético

Estamos intencionalmente distanciando o recorte da nossa pesquisa das análises que debatem a expansão do ensino superior privado nos governo do PT (2003 – 2016), das

Ao encontro da noção de desenvolvimento das potencialidades que o ensino da disciplina de História promove, os Parâmetros curriculares municipais6 contemplam cultura, identidade

Then, it de- scribes the branching and selection of a candidate solution implementation to solve the MMRMST problem by enumerating all spanning trees in a graph, based on the

The first experiments were performed taking as trans- port network the US network based on a former NSF network topology (NSFNET – The National Science Foundation Network, as

Neste trabalho, foi realizado um estudo experimental com chamas difusivas produzi- das por velas, variando comprimento e diâmetro do pavio, para obter altura e diâmetro da

As atividades realizadas no estágio constituem o ciclo completo da produção de mudas de abacaxizeiro em laboratório através da micropropagação por organogênese, a partir de