• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número4"

Copied!
9
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Turbo-extraction

of

glycosides

from

Stevia

rebaudiana

using

a

fractional

factorial

design

Paula

M.

Martins

a

,

Aurea

D.

Lanchote

c

,

Bhaskar

N.

Thorat

b

,

Luis

A.P.

Freitas

c,∗

aFaculdadedeCeilândia,UniversidadedeBrasília,Brasília,DF,Brazil

bInstituteofChemicalTechnology,NathalalParekhMarg,Matunga,Mumbai,India

cFaculdadedeCiênciasFarmacêuticasdeRibeirãoPreto,UniversidadedeSãoPaulo,RibeirãoPreto,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29November2016 Accepted24February2017 Availableonline1April2017

Keywords:

Designofexperiments Stevioside

RebaudosideA Hydroethanolicextract Desirability

a

b

s

t

r

a

c

t

Steviarebaudiana(Bertoni)Bertoni,Asteraceae,leafextracthasrecentlycalledtheattentionoffood industryasaproposalfornaturalsweetener.Thesweetflavorisattributedtotheglycosides,inespecial steviosideandrebaudiosideA,whicharetheplantmainchemicalmarkers.Theaimoftheworkreported herewastooptimizetheturbo-extractionofstevialeavesusingwater,ethanol70%and90%(w/w)as greensolvents.A25-2factorialdesignwasappliedtostudythelineareffectsofthedrugsize,solventto

drugratio,temperature,timeandalsotheturbolysisspeedontheextractionofglycosides.Theglycosides exhaustiveextractionshowedthatethanol70%gavebetterresultsandwasusedforturbo-extraction. ThesteviosideandrebaudiosideAcontentswerequantifiedbyavalidatedmethodbyhighperformance liquidchromatographicwithphotodiodearraydetector.ThecontentsofsteviosideandrebaudiosideAin fluidextractincreasedwiththedrugsize,butdecreasedathighshearingspeedsandsolventtodrugratio, whiletheiryieldsdecreasedathighertemperatureandwerenotaffectedbyturbospeed.Anincreasein solventtodrugratioreducedsignificantlytheglycosidespercentindriedextract.Optimalsolutionfor

S.rebaudianaleavesturbo-extractionwasdeterminedbydesirabilityfunctions.Theoptimalextraction conditioncorrespondedtodrugsizeof780␮m,solventtodrugratioof10,extractiontimeof18min;

temperatureof23◦Candturbospeedof20,000rpm,resultinginyieldsof4.98%and2.70%,forstevioside

andrebaudiosideA,respectively.Theseyieldsarecomparabletotheonesrecentlypublishedfordynamic maceration,butwiththeadvantageofshorterextractiontimes.Thisworkdemonstratesthatturbolysis ispromisingforS.rebaudianaglycosidesextractionandstimulatenewresearchonthepurificationof theseextracts,whichmaybecomeaninterestingsourceofincomefordevelopingcountriessuchasIndia andBrazil.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The “estevia” is a shrub popularly known worldwide and belongstothe261membersofgenusinthefamilyAsteraceaeand hasthebotanicalnameofSteviarebaudiana (Bertoni)Bertoni.It originatesfromtheValleyofAmambay,whichextendsfrom north-eastParaguaytosouthBrazilandsouthernArgentina.Theplantis aperennialshrubheightupto30cm.Itsleavesaresessile,3–4cm long,shapedasspatulaorlongbladewithsawnedges.Theadaxial surfaceisslightlyglandular.Thebranchesarefragileandtheroots arerhizometype, slightlybranched.Theflowersare composite,

Correspondingauthor.

E-mail:lapdfrei@usp.br(L.A.Freitas).

surroundedbyepicalyceshousing,colorwine,lightand pentamer-ous.Thefruitisstriated(Madanetal.,2010).

Stevialeavescontaineightterpeneglycosides,identifiedas ste-vioside,rebaudosideA,B,C,DandE,dulcosideAandC.Themain glycosidesaresteviosideandrebaudosideA,summingupto5–10% ofthedrug(SinghandRao,2005;Abou-Arabetal.,2010;Yadav etal.,2011)andgiveapronouncedsweetflavor.Steviaisdescribed in theBrazilianPharmacopoeia 5th Ed.(FarmacopeiaBrasileira, 2010)indicatingdriedleavesasthepartusedandmustcontain atleast12%oftotalcarbohydratesand4%steviosides.

AccordingtoMadan etal.(2010),thespecies hasbeenused for centuries by the Guarani Indians as a sweetener in some drinks,especiallythematetea,andtheactivecomponentthathas thehighestsweetnessindexisrebaudosideAwhilesteviosideis themaincomponentandgivesapostdigestivebittertaste.The

http://dx.doi.org/10.1016/j.bjp.2017.02.007

(2)

concentrationofthesediterpeneglycosidesmayvarydepending oncultivars,soiland climate,andagronomictechniques(Yadav etal.,2011).

The medicinal use of the species is described in the con-trol of obesity, high blood pressure, digestive problems and contraceptivebyindigenous peoplesinmany countriesof Latin America(Sardhara,2015;Madanetal.,2010).Preclinicaland clini-calstudieshavebeenconductedtoevaluatetheantioxidantactivity (Sharmaetal.,2012),thereproductivesystem,kidneyfunction, bloodpressure,theeffectonbloodglucoseandanti-viralactivity, aswellasstudiesonpharmacokinetic(Madanetal.,2010),toxicity, sideeffectsandallergenic(Urbanetal.,2015).

Inmanycountriessteviahasitsuseregulatedasadietary sup-plementandthusisnotusedasasweetener,suchasinEurope. Butin2008,theFDAhascategorizedthespeciesasGenerally Rec-ognizedasSafe(GRAS)afterpublicationbytheJointCommitteeof ExpertsontheFAOFoodAdditives/WHO–JECFA,whichestablished themonographofglycosidesofsteviol(WHO,2004).Theproduct approvedforindustrialandcommercialuseisapowderwith min-imumof95%ofsteviolglycosidesandthesumofsteviosideand rebaudosideoAnotlessthan70%.

Steviaproductsareconsideredhealthyandnaturalfoodsand havegained attentionininternationalmarkets(Gasmallaetal., 2014) with China, India, Brazil, Korea, Mexico, United States, Indonesia,TanzaniaandCanadaasproducers(Ahmadetal.,2014). Recently,thecommercialgiantCocaColaCompanyhaslaunched the“green”product“CokeLife”andisexpectedtohighlyincrease thesteviaworldsales(Ausfood,2015).

The separation of the glycosides from the plant extract is hamperedbyseveralfactorsincludingimpuritiessuchasresins, proteins, organic acids and especially pigments (chlorophyll, caroteneandxanthophyll). Theaqueousextractionofthe pow-dered leaveswas themost indicated choice until recently and presentsthehighestyieldsof steviosideand rebaudosídeo Ain crude extract (Abou-Arab et al., 2010; Chhaya et al., 2012a,b; MondalandChhaya,2012;Raoetal.,2012;Pericheetal.,2014; Sardhara,2015).

Theuseofmethanolwasalsoproposedtogiveselective extrac-tionandeasypurification(Rajabetal.,2009),buttheendproduct isnolongerclassifiedasGRAS.Becauseofthebloominginterest in steviaproducts, there is a largenumber of publications and patentsontheextractionandpurificationofsteviosideusing dif-ferent methods (Periche et al.,2015; Jentzer etal., 2015), such asenzymatic extraction(Purietal.,2012),bleachingagentsand selectiveprecipitationprocessesusingmetalions(Kienle,2010; Abou-Arabetal.,2010),selectiveextractionbysupercriticalfluid extractionandseparationprocessesforadsorptivemethodsusing chromatographiccolumns,chemicalsolventsandactivatedcarbon (Rajabetal.,2009),ionexchangeresins,micro,ultraand nanofil-tration(Zhangetal.,2000;Reisetal.,2009;Raoetal.,2012;Chhaya etal.,2013).

Recently,theglycosidesextractionfromsteviausingethanol 70 and 90% wasstudied by dynamic maceration coupled with a multivariateapproachand resultedin stimulatingadvantages over previous methods (Martins et al., 2016). Meanwhile, the turbo-extractionorturbolysiscanbeadvantageousoverdynamic macerationandisbasedonextractionwithstirringand simulta-neousreductionofparticlesizeasaresultofapplicationofhigh shearingforce,sothatwiththedisruptionofthecellsthereisa rapiddissolutionoftheactivesubstances,resultinginextraction timesoftheorderofminutesandalmostcompletelyexhausted theplantdrug(Sonaglioetal.,2003).

Nevertheless, turbolysisof stevia hasnever beenattempted (Martinsetal.,2016)andtogetherwiththeuseofdifferentgrade ethanolasgreenandGRASsolventandtheapplicationof experi-mentaldesigns(Costa-Machadoetal.,2013;Pauluccietal.,2013;

Martinsetal.,2013)thisprocesscouldgiveapromisingand opti-mizedmethodforsteviaextraction.

Thus,theaimofthisworkwastostudytheturbo-extractionof steviosideandrebaudosídeoAfromS.rebaudianadriedand pow-deredleavesbyapplyingafractionalfactorialdesignthatallowthe evaluationofthemaineffectsofdrugpowdersize,weightratio sol-venttodrug,temperature,agitationandtimeontheyieldofthese glycosides.

Materialandmethods

Steviadrugcharacterization

TheleavesofSteviarebaudiana(Bertoni) Bertoni,Asteraceae, camefromaplantationlocatedatlatitude22◦7981.059′′Sand lon-gitude47◦1156.138′′W,grownbytheCPQBAMultidisciplinary CenterforChemical,BiologicalandAgriculturalSciencesfromState University ofCampinas(Campinas– SP,Brazil), witha voucher depositedattheCPQBAherbariumwithfilenumber273.Theplant wassuppliedtoCPQBAbyCenargen(Brasília,DF,Brazil)in1998, accordingtoDrIllioMontanariJr.

Thepharmacognosticcharacterizationofdrugwasperformed accordingtotheBrazilianPharmacopoeia5thEdition(Farmacopeia Brasileira,2010)afterdryingat45±2Cinacirculatingairoven andmilling.Thephysicochemicalparametersdeterminedwerethe moisturecontent,totalash,swellingindexandsolventuptake.

Turbolysisextractionstudy

InordertodeterminethesteviosideandrebaudiosideAcontent inthedrug,a preliminaryexhaustiveextractionstudywas per-formedbyusingwater,alcohol70%and90%assolvents.Finedrug powder(5g)wasaddedto50mlofsolventandstirredatroom tem-perature(25◦C)for2h.Thedrugpowderasfilteredandthenthe procedurewasrepeatedthree-foldwith50mloffreshsolvent.The fourthandfinalextractionstepwasrunfor12hatsameconditions (50mlfreshsolventunderstirringand25◦C).Theextractionruns werecarriedoutintriplicateandthestevioside content(CEST), rebaudosideAcontent(CREB)andthetotalsolidscontent(TSOL) weredetermined.

Theturbo-extractionorturbolysiswasperformedusingahigh shearstirrerUltraturraxT-25(IkaLtda,SaoPauloBrazil).Grounded stevialeavestogetherwith50mlofethanol70%asextracting sol-ventwerepouredintoa50mlbeakerandsubmittedtothehigh shear stirring according to temperature, velocity and time pre determinedbytheexperimentaldesign.Theextractswerefiltered onWhatman® qualitativefilterpapergrade1(poresize11␮m) andstoredat−8◦Cforfurtherchromatographicdeterminationof TSOLandquantificationofCESTandCREBbyHPLC-PAD.

Theeffectoffiveturbolysisextractionfactorswereinvestigated byapplyinga25-2fractionalfactorialdesign,asshowninTable1 (Moura-Costaetal.,2012;Araújoetal.,2014;Martinsetal.,2016). Theextractionfactorsselected,accordingtoMartinsetal.(2016), werethesolventtodrugmassratio(S/D),averagedrugpowdersize (D50),highshearspeed(SS),extractiontime(t),andtemperature (T).TheireffectontheextractglycosidescontentCESTandCREB werequantifiedbyliquidchromatography.Toallowtheelucidation oftheeffectofdrugdivisionlevelontheextraction,thedrugwas dividedintwosizefractions,calledfinepowder(150–212␮m)and coarsepowder(710–850␮m),withaveragesizesof181␮mand 780␮m,respectively.

(3)

Table1

Steviarebaudianaturbo-extractionfractionalfactorialdesign25-2presentingfactors,theirlevelsaandextractionresults.

Run D50(␮m) S/D(g/g) t(min) T(◦C) SS(rpm) CEST(mg/ml) CREB(mg/ml) YST(%) YREB(%) DST(%) DREB(%)

1 −1 −1 −1 −1 +1 2.37 1.25 4.65 2.45 6.19 3.27

2 +1 −1 −1 +1 −1 2.83 1.52 4.26 2.28 6.24 3.35

3 −1 +1 −1 +1 −1 0.12 0.07 0.11 0.06 0.76 0.45

4 +1 +1 −1 −1 +1 0.17 0.10 0.15 0.09 1.19 0.70

5 −1 −1 +1 +1 +1 2.22 1.21 4.50 2.46 5.28 2.88

6 +1 −1 +1 −1 −1 2.75 1.49 5.22 2.83 6.63 3.59

7 −1 +1 +1 −1 −1 0.14 0.08 0.12 0.07 1.24 0.71

8 +1 +1 +1 +1 +1 0.21 0.12 0.15 0.09 1.52 0.87

aActualvaluesforeachfactor:drugmeansizeD50(−1)181␮m,D50(+1)780␮m;solventtodrugratioS/D(−1)10g/g,S/D(+1)30g/g;extractiontimet(−1)3min,t

(+1)18min;extractiontemperatureT(−1)23◦C,T(+1)80C;turbospeedSS(1)5000rpm,SS(+1)20,000rpm.SteviosideandrebaudiosidecontentsinfluidextractCEST

andCREB(mg/ml);SteviosideandrebaudiosideyieldsYSTandYREB(%).Steviosideandrebaudiosidecontentsindriedextract,DSTandDREB(%).

calculatetheglycosidescontentindriedextracts,DSTandDREB.

TheliquidextractsweredriedinErlenmeyer’sundernitrogenflux

of10ml/minatroomtemperature.Thedefinitionsusedtocalculate

DSTandDREBaregiveninEqs.(3)and(4).

YST (%)= CEST×V

Wd ×100 (1)

YREB (%)=CREB×V

Wd ×100 (2)

DST (%)= (CEST×V)

(TSOL×V)×100 (3)

DREB (%)= (DREB×V)

(TSOL×V)×100 (4)

whereV,volumeofliquidextractcollected;Wd,weightofdrug usedinextractionrun.

GlycosidesquantificationbyHPLC-PDA

Theglycosidesstevioside andrebaudosideAwerequantified byhighperformanceliquidchromatography,HPLC-PDA.TheHPLC equipmentusedwasanUltimate3000(ThermoFischerScientific, Sunnyvale,CA,USA)withachromatographiccolumnPhenomenex C18(5␮m, 250×4.6mm) and a photodiode arraydetector set to210nm(Liuetal.,2010;Woelwer-Riecketal.,2010; Aranda-Gonzalezetal.,2014;Jentzeretal.,2015).ThesoftwareChromeleon 7.1.2ChromatographicDataSystem(ThermoFischerSci, Sunny-vale,CA,USA)wasusedfordataacquisitionandanalysis.Theoven wassetto50◦Candtheacetonitrile/watermobilephasewas oper-atedingradientmodevaryingfrom10:90to90:10,v/vin45min atflowof0.7ml/min.Thepureanalyticalstandardsofthe glyco-sides(Sigma–AldrichCo,SãoPaulo,Brazil)wereusedasreference standardstopreparethecalibrationcurves.Solutionscontaining concentrationsof50,100,200, 400and600␮g/ml for rebaudo-sideAand28,84,140,224,560and840␮g/mlforsteviosidein methanolwerepreparedandinjectedinquintuplicateforthe cal-ibrationcurvesconstruction.Dependingonglycosidescontentof theextracts,thesampleinjectionvolumevariedfrom5to25␮l. Bothextractsamplesandanalyticalstandardsweresolubilizedin methanolandfilteredthrough0.45␮mfilter(MilliporeCo., Biller-ica,MA,USA)priortoinjection.Allextractssampleswereinjected intriplicate.Methodresolutionwascalculatedbasedonselectivity (separationfactor),efficiencyandretention(capacityfactor)bythe softwareChromeleon7.1.2.

Multivariateanalysis

The25-2fractionalfactorialdesign,asshowninTable1( Moura-Costaetal.,2012;Araújoetal.,2014;Martinsetal.,2016)was appliedtoinvestigatethelineareffectsof S/D,D50, SS,t,and T ontheTSOL, CEST,CREB,YST,YREB,DSTandDREBbyresponse

surfacemethodology,RSM,usingMinitab14.0(Minitab,State Col-lege,USA),adoptingthesignificancelevelof5%(p<0.05).Amodel consideringlineartermsofthefactorswasfittedtothedata, accord-ingtoEq.(5).

Yi=A1+A2X1+A3X2+A4X3+A5X4+A6X5 (5)

TheresponsesurfacesfittedtoEq.(5)wereusedtofind opti-malextractionconditionbyapplyingthe“DesirabilityFunctions Method”,using“ResponseOptimizer”(Minitabv14,StateCollege, USA).

Resultsanddiscussion

TheS.rebaudiana leavespresented totalmoisturecontentof 8.62±0.20%,ashcontentof8.16±1.08%,swellingindexof67%and solventuptakeof149%inethanol90%,33%and177%inethanol70% and167%and245%inwater.Thedrugmoistureandashcontents areunderthemaximumlimitsestablishedbytheBrazilian Pharma-copoeia(FarmacopéiaBrasileira,2010)13%and9.5%,respectively, and can beattributedto adequatepost-harvest processing, e.g. dryingandstorage,andalsothatthedrugisacceptableforthe forth-comingextractionstudy.Totalashrepresentsapuritytestforthe presenceofnon-volatileorganicsubstancesbyincineration,giving thesumofinorganicorintrinsicashinS.rebaudianaandthe con-taminantsfromearthyorigin.Ontheotherhand,swellingindex andsolventuptakebydrugareusedtoestimatethevolumeof solventthatwillberetainedorabsorbedbyvegetalmatterafter extractionandthefinalextractvolumerecovered.Thistraditional pharmacognosticcharacterizationisessentialtoguaranteeagood phytopharmaceuticaltechnologystudyoftheplant.TheS. rebaudi-anaswellingindexandsolventuptakewere,indescendingorder, water,ethanol90%andethanol70%.Inordertochoosethebest solventforglycosidesextractionfromS.rebaudianaapreliminary exhaustiveextractionbymacerationwascarriedout.

TheHPLC-PDAchromatogramshowingsteviosideand rebau-dioside A peaks in extract injection can be seen in Fig. 1. Stevioside and rebaudiosideA had elutiontimes of17.303 and 17.060min,respectively.Thecalibrationcurvesobtainedandtheir correlationcoefficientswereC=0.0557A+0.2918(R2=0.9996)and C=0.0491A+0.1154(R2=0.9999),forsteviosideandfor rebaudio-sideArespectively.Furthermore,theresolutionscalculatedbythe softwareChromeleon7.1.2(ThermoFischerScientific,Sunnyvale, CA,USA)variedfrom1.98to1.99and1.48to1.64forstevioside andrebaudiosideA,respectively.

(4)

2

1

1 2

1-Rebaudioside A t=17.060 min

2-Stevioside t=17.303 min

250

200

150

100

50

0

–50

0.0 5.0 10.0 15.0

Time (min)

Absorbance (mA

U)

20.0 25.0

Fig.1.HPLC-PDAchromatogramofSteviarebaudianaleafextractobtainedbyturbolysisusingethanol70%,solventtodrugweightratio1:10,drugpowdersize780␮m, temperature50◦C,turbolysisspeed20,000rpmand1hextraction.Peak1rebaudosídeA(17.060min)andpeak2estevioside(17.303min).

Table2

Cumulativestevioside,rebaudiosideAandtotalsolidscontentsinSteviarebaudianaextractsobtainedinafour-stepexhaustiveextractionbydynamicmaceration.

Extractiontime(h) Solvent

Water Ethanol70% Ethanol90%

CEST(mg/ml) CREB(mg/ml) TSOL% CEST(mg/ml) CREB(mg/ml) TSOL(%) CEST(mg/ml) CREB(mg/ml) TSOL(%)

2 1.83 1.12 3.08 2.52 1.48 3.84 1.77 0.95 2.72

4 2.15 1.33 3.38 2.69 1.59 4.76 1.98 1.07 3.73

6 2.17 1.39 3.50 2.78a 1.65a 4.94a 2.25 1.25 4.01

18 2.17 1.39 3.67 2.80a 1.66a 5.20a 2.41 1.37 4.27

Final 2.17 1.39 3.67 2.80 1.66 5.20 2.41 1.37 4.27

aSteviosideandrebaudiosidecontentsinfluidextractCESTandCREB(mg/ml);totalsolidscontentinfluidextractTSOL(%,w/w).

obtainedwas100ml.RebaudosideAextractionfromS.rebaudiana withdifferentgradesofethanolupto60%(Gasmallaetal.,2014) resultedinhigheryieldswithethanol30%,justifiedbytheswelling index,accordingtotheauthors.However,inotherwork(Martins etal.,2016)highswellingindexandextractionyieldsfor stevio-sideandrebaudiosideAwereobservedforethanol70%,whichis inagreementwiththis workand canbeexplained bythe ade-quatepolarityofthissolventforsteviacomponentsextraction,like organicacids,flavonoids,alkaloids,xanthophyll,oligosaccharides andglycosides(Muandaetal.,2011).Ethanol70%hasalsogiving excellentresultsinothernaturalproductsextraction,suchasfor curcuminoidsfromCurcumalonga(Martinset al.,2013), actives fromofSchinusterebenthifoliusshells(Mouraetal.,2005)andin theturbolysisofpopularplantsfromancienttribes,usingethanol 38–56%(Moura-Costaetal.,2012).BasedonliteratureforS. rebau-dianaglycosidesextraction(Liuetal.,2010;Gasmallaetal.,2014; Sardhara,2015;Pericheetal.,2015;Jentzeretal.,2015;Koubaa etal.,2015;Martinsetal.,2016)and theresultsinTable2the solventchosenfortheturbolysisstudywasethanol70%.Besides, ethanolisclassifiedasGRAS(Rajabetal.,2009)andalsoasagreen solvent(Capelloetal.,2007;Chematetal.,2015)andsohighly rec-ommendedforphytotherapicsandnutraceuticals(Chematetal., 2012;Torrietal.,2016).

Theresultsofextractionbythefractionalfactorialdesignare showninTable1,whichdisplaysthevalues ofCEST,CREB,YST, YREB, DST and DREB for all conditions studied. This data was analyzed by response surface methodology using Minitab 14.0

(Minitab,StateCollege,USA)andresultedinlinearmodels, accord-ingtoEq.(1),foreachextractparameterasshowninTable3,where thesignificanttermsandrespectivecoefficientsforthemodelare indicated.Thesteviosidecontentinfluidextract,CEST(mg/ml) var-iedfrom0.12mg/mlto2.83mg/mlandwasaffectedbythesolvent todrugmassratio–S/D,averagedrugpowdersize–D50andhigh shearorturbolysisspeed–SS,atthesignificancelevelof5%,which wasadoptedforallanalysisintheworkherein.Ontheotherhand, rebaudiosideAcontentinfluidextract,CREB(mg/ml),rangedfrom 0.07mg/mlto1.52mg/mlandwassimilarlyaffectedbythesame factorssignificantforstevioside,S/D,D50andSS,whichisexpected bychemicalsimilaritybetweenthesetwoglycosidesfromS. rebau-diana.Allfivefactorsstudiedinthefractionalfactorialdesignwere chosenbasedonthe“spaceofknowledge”assuggestedbythe up-to-dateapproachoftheQualitybyDesign(Yanetal.,2014),since previousknowledgeindicatethesearethemostimportantin turbo-extraction.However,theresultsshowthatonlyS/D,D50andSS affectedtheextraction,whileextractiontime(t)andtemperature (T),didnot.Theextractiontimeandtemperatureareusuallyvery importantfactorsinherbaldrugextractiveprocessesbecausethey mayalterthekineticsofactiveremovalfromplantmatrixby equi-libriumdislocation.However,turbolysisisahighenergyextraction requiringreducedtimeandtemperature.Probablythesetwo fac-torswerenotsignificantduetotheshortextractiontimesof3and 18min,aswellasmoderatetemperaturesof23and80◦C.

(5)

Table3

SummaryoffactorialANOVAfortheprincipaltermsinSteviarebaudianaturbo-extractionfractionalfactorialdesign25-2.

Factor Responses

CEST(mg/ml) CREB(mg/ml) YST(%) YREB(%) DST(%) DREB(%)

D50(␮m) p=0.000a

ki=1.345

p=0.000a

ki=0.080

p=0.302 p=0.283 p=0.106 p=0.016a

ki=0.059

S/D(g/g) p=0.000a

ki=−1.185

p=0.000a

ki=−0.633

p=0.000a

ki=−2.24

p=0.000a

ki=−1.205

p=0.000a

ki=−2.668

p=0.000a

ki=−1.415

t(min) p=0.092 p=0.467 p=0.09 p=0.047a

ki=0.071

p=0.860 p=0.223

T(◦C) p=0.473 p=0.724 p=0.022a

ki=−0.15

p=0.046a

ki=−0.071

p=0.767 p=0.280

SS(rpm) p=0.000a

ki=−0.114

p=0.000a

ki=−0.061

p=−0.04 p=0.442 p=0.513 p=0.493

R2

adj 99.8% 99.9% 99.4% 99.3% 99.6% 99.8%

D50,drugmeansize;S/D,solventtodrugratio;t,extractiontime;T,extractiontemperature;SS,turbospeed.SteviosideandrebaudiosidecontentsinfluidextractCEST (mg/ml)andCREB(mg/ml);SteviosideandrebaudiosideyieldsYST(%)andYREB(%).Steviosideandrebaudiosidecontentsindriedextract,DST(%)andDREB(%).

aSignificantat5%level(p<0.05);ki,coefficientsforthemodel,R2

adj,adjustedRsquared.

A

CEST mg/ml < 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 > 2.5

CEST mg/ml < 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 > 2.5

1.0 1.0

0.5 0.5

0.0 0.0

–0.5 –0.5

–1.0 –1.0

–1.0 –0.5 0.0

SS S/D

D50 D50

0.5 1.0 –1.0 –0.5 0.0 0.5 1.0

B

Fig.2.Contourplotsforsteviosidecontent(CEST,mg/ml)influidextractasfunctionsof:(A)druggranulometry(D50)andhighshearspeed(SS);and(B)druggranulometry (D50)andsolventtodrugratio(S/D).

1.0

A

B

0.5

CREG mg/ml <0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1.0 1.0 - 1.2

> 1.4 1.2 - 1.4

CREG mg/ml <0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1.0 1.0 - 1.2

> 1.4 1.2 - 1.4

D50 D50

SS S/D

0.0

–0.5

–1.0

1.0

0.5

0.0

–0.5

–1.0

–1.0 –0.5 0.0 0.5 1.0 –1.0 –0.5 0.0 0.5 1.0

Fig.3. ContourplotsforrebaudiosideAcontent(CREB,mg/ml)influidextractasfunctionsof:(A)druggranulometry(D50)andhighshearspeed(SS);and(B)drug granulometry(D50)andsolventtodrugratio(S/D).

seeninFigs.2and3,respectively.Thecontourplotofstevioside content,CEST(mg/ml),asafunctionofD50andSSisshown in Fig.2A,whileCESTvaluesasafunctionofD50andS/Disshown inFig.2B.Fig.2AshowsthatCESTvaluesarehigherinthecorners ofthecontourplot,withcombinationsoflargeD50andlowSSor theopposite.Thisresultisinterestingbecauseitshowsthatcoarse powdersneedmoresolventfortheextraction,butatthesametime finepowdercangivegoodextractiveresultwithlesssolvent.The

(6)

A

1.0

YST % < 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

YST % < 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5 0.5

0.0

–0.5

–1.0

1.0

0.5

0.0

–0.5

–1.0 –1.0 –0.5 0.0

T T

S/D S/D

0.5 1.0 –1.0 –0.5 0.0 0.5 1.0

B

Fig.4. Contourplotsforsteviosideextractionpercentyield(YST,%)fromSteviarebaudianaleavesasfunctionsof:(A)solvent/drugratio(S/D)andtemperature(t);and(B) solventtodrugratio(S/D)andextractiontemperature(T).

1.0

YREB % YREB %

< 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 > 2.5

< 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 > 2.5 0.5

0.0

–0.5

–1.0

1.0

0.5

0.0

–0.5

–1.0 –1.0 –0.5 0.0

T T

S/D S/D

A

B

0.5 1.0 –1.0 –0.5 0.0 0.5 1.0

Fig.5.ContourplotsforrebaudiosideAextractionpercentyield(YREB,%)fromSteviarebaudianaleavesasfunctionsof:(A)solvent/drugratio(S/D)andtemperature(t);and (B)solventtodrugratio(S/D)andextractiontemperature(T).

inFigs.2A-3Aand2B-3B.Asamatteroffact,thesignificant fac-torswerethesameforsteviosideandrebaudiosideAcontentsin fluidextract,whichcouldbeexplainedbythechemicalsimilarity betweenthesetwoglycosides.Duetothisonemayalsoconclude thatfinerpowderneedlesssolventbutlargeramountsofsolvent givesbetterextraction.AgainforrebaudiosideAthefactorstand Tdidnotaffectextractionsignificantly,duetocharacteristicsof theturbolysistechnique.Itisimportanttoreinforcethatthe deter-minationcoefficients,ortheadjustedRsquared,giveninTable3 showverygoodfitsofthemodelsbeing99.8%and99.9%forCEST andCREB,respectively.Thefittedequationsforthemultiplelinear CESTandCREBdependencyonthethreesignificantfactors,D50,SS andS/D,areshowinEqs.(6)and(7):

CEST (mg/ml)=1.345+0.145

D50−480.5 299.5

−1.185

SD−20 10

−0.114

SS−12,500 7500

(6)

CREB (mg/ml)=0.725+0.080

D50−480.5 299.5

−0.633

SD−20 10

−0.061

SD−20 7500

(7)

ThesteviosideandrebaudiosideAyieldsarerepresentedas per-centagesofthedrugweightusedintheexperimentalruns.The valuesareshowninTable1andcorrespondto0.11%to5.22%for steviosideandfrom0.06%to2.83%forrebaudiosideA.Thecontour plotshowingtheresponseofsteviosideyield,YST,asfunctionof S/DandtisshowninFig.4A,whileitsresponseasfunctionofS/D andTisshowninFig.4B.Fig.4AshowshigherYSTdecreaseswith S/Dincrease,e.g.decreasesforhigheramountsofsolvent.Although theeffect oft resulted significantin RSManalysis,the contour linesshowthatS/Dinfluenceismuchstronger.Thecontourplotin Fig.4BshowsthatS/DstronglyaffectsYSTaswell,andlower sol-ventamountsgavehighersteviosideyields.TheeffectofT,shown incontourlinesofFig.4BisalsolessimportantthantheS/D.These resultsareconfirmedbythecoefficientsinEq.(8),sincecoefficient forS/Dismorethanten-foldhigher.TherebaudiosideAyieldsare showninFig.5AandB.TheYREBvaluesarehigherforcoarse parti-clesandlowtemperatures,asshowninthecontourplotinFig.5A. ThetopographicviewofYREBresponsesasfunctionofS/Dandt canbeseeninFig.5B,whichshowsastrongeffectofS/D.Thedata ofYSTandYREBwerefittedtothemodelfromEq.(5),andresulted inEqs.(8)and(9),withadjustedR squaredof99.1%and99.0%, respectively(Fig.6).

YST (%)=2.382−2.24

SD−20 10

−0.15

T−51.5 28.5

(7)

Optimal D 0.93881

Hi Cur

Lo

ST % Pla

Maximum

y = 4.9795

d = 0.89978

REV % PI

Maximum

y = 2.6907

d = 0.86333

ST % PO

Maximum

y = 6.5606

d = 1.0000

REB % PO

Maximum

y = 3.5423

d = 1.0000

D50 1.0 [1.0] –1.0

S/D 1.0 [–1.0]

–1.0

t 1.0 [1.0] –1.0

TEMP 1.0 [–1.0]

–1.0

RPM 1.0 [–1.0]

–1.0

Fig.6.Plotshowingthedesirabilityresponsesforsteviosideandrebaudiosideyields,YSTandYREB,andtheircontentsindriedextract,DSTandDREB,foreachofthe followingstudiedfactors.Drugpowdersize:D50;temperature:T;time:t;turbolysisspeed:SS,andsolventtodrugratio:S/D.

YREB (%)=1.281−1.2057

SD−20 10

+0.071

t−10.5 7.5

−0.071

T−51.5 28.5

(9)

Thevalues ofsteviosideand rebaudiosideAcontentindried extract, DST and DREB, respectively are given in Table 1. The steviosidecontentvariedfrom0.76to6.19%dependingon turbo-extractioncondition,but wasaffected significantly only bythe solventtodrugratio,S/D.Ontheotherhand,DREBwasaffected significantlybyS/DandalsoD50.ThemodelswerefittedtoDST andDREBwithadjustedRsquaredof99.6and99.8%,respectively, andaregivenbyEqs.(10)and(11).

DST (%)=3.787−2.669

SD−20 10

(10)

DREB (%)=2.049+0.059

D50−480.5 299.5

−1.415

SD−20 10

(11)

Recently,theapplicationofmultivariateanalysisfor pharma-ceuticaldevelopmenthasbeenrecommendedbytheICH-Q8-R2 (ICH,2009)becausethissortofapproachturnspossiblethe opti-mizationoftheprocess.Somemethodsofoptimization,suchas thedesirabilityfunctions,allowthedeterminationofthemost suit-ableconditionwithintherangeoffactorsstudied(Huetal.,2008). Consideringthis,themodelsfittedinEqs.(6)–(11)wereusedto carryoutadesirabilityfunctionsanalysis(Huetal.,2008)using Minitab14(Minitab,StateCollege,USA).Thesettingstosolvethe

(8)

Table4

Summaryofdesirabilityfunctionsoptimization.

Settingsforoptimization Desirability Maximizedvalue

Responses GOAL LO TGT WT IMP

YST(%) Maximize 3.00 5.20 1 1 0.8998 4.980

YREB(%) Maximize 2.00 2.80 1 1 0.8633 2.691

DST(%) Maximize 5.00 6.50 1 1 1.000 6.488

DREB(%) Maximize 3.00 3.50 1 1 1.0000 3.513

Globaldesirability:0.9388.

LO,lowervalue;TGT,targetvalue;WT,weightofresponse;IMP,importanceofresponse.

OptimumsetofconditionsforturboextractionofSTEVIA:D50=780␮m,S/D=10(g/g);t=18min;T=23◦C;SS=5000rpm. SteviosideandrebaudiosideyieldsYST(%)andYREB(%).Steviosideandrebaudiosidecontentsindriedextract,DST(%)andDREB(%).

Conclusions

The GRASand green solventethanol 70% showed tobethe

bestsolventforglycosidesextractionfromS.rebaudiana leaves,

accordingtotheturbolysisatroomtemperature.Highyieldsof

glycosidesextractioncanbeattainedbylowsolventtodrugratios

inturbo-extraction,coarsedrugpowder,lowtemperatures, low

shearratesandshortertimes.ThesteviosideandrebaudiosideA

yieldsobtainedinthisworkaresuperiortotheonesfound

previ-ouslyusingothersolventsandothertechniques.Theresultsforthe

twoglycosidesturbolysisextractionarecomparable totheones

recentlypublishedfordynamicmaceration,butwiththe

advan-tageofshorterextractiontimes.Theresultshereinstimulatenew

researchonS.rebaudianaglycosidesextractionbyturbolysisand

theevaluationofthoseextractsinfurtherpurificationsteps.

Authors’contributions

PMMcontributedinrunningthepharmacognostic

characteri-zation,extractionsandmanuscriptpreparation.ADLcontributed

to the chromatographic analysis and quantification of the

gly-cosides.BNTcontributedtomanuscript preparationand critical

reading.LAPFcontributed toexperimentaldesign,dataanalysis

andmanuscript preparation.Alltheauthorshaveread thefinal

manuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

FinancialsupportfromCNPqforgrant401044/2013-0underthe

“CooperationAgreementMCTI-CNPq(Brazll)&DST(India)”andthe

scholarship(CNPq202564/2014-1)toProfP.M.Martins

(Universi-dadedeBrasília)aregratefullyacknowledged.

References

Abou-Arab,A.E.,Abou-Arab,A.A.,Abu-Salem,M.F.,2010.Physico-chemical assess-mentofnaturalsweetenerssteviosidesproducedfromSteviarebaudianaBertoni plant.Afr.J.FoodSci.4,269–281.

Ahmad,S.,Farooq,A.K.,Abdul,H.,Muhammad,S.N.,2014.Areviewonpotential toxicityofartificialsweetnersvssafetyofStevia:anaturalbio-sweetner.J.Biol. Agric.Healthc.4,137–147.

Aranda-Gonzalez,I.,Moguel-Ordonez,Y.,Betancur-Ancona,D.,2014.RapidHPLC methodfordeterminationofrebaudiosideDinleaves ofSteviarebaudiana

BertonigrowninthesoutheastofMéxico.Am.J.Anal.Chem.5,813–819. Araújo,A.A.,Soares,L.A.L.,Ferreira,M.R.A.,Neto,M.A.S.,Silva,G.R.,AraújoJr.,R.F.,

Guerra,G.C.B.,Melo,M.C.N.,2014.Quantificationofpolyphenolsand evalu-ationofantimicrobial,analgesicandanti-inflammatoryactivitiesofaqueous andacetone–waterextractsofLibidibiaferrea,ParapiptadeniarigidaandPsidium guajava.J.Ethnopharmacol.156,88–96.

Ausfood, 2015. Australia Food News, Stevia to Take Off Globally Through CokeLife Expansion http://www.ausfoodnews.com.au/2015/03/30/stevia-to-take-off-globally-through-coke-life-expansion.html(accessed11.08.16). Capello,C.,Fischer,U.,Hungerbuhler,K.,2007.Whatisagreensolvent?A

compre-hensiveframeworkfortheenvironmentalassessmentofsolvents.GreenChem. 9,927–934.

Chemat,F.,Rombaut,N.,Fabiano-Tixier,A.S.,Pierson,J.T.,Bily,A.,2015.Green extrac-tion:fromconceptstoresearch,educationandeconomicalopportunities.In: Chemat,F.,Struhe,S.(Eds.),GreenExtractionofNaturalProducts:Theoryand Practice.,1sted.Wiley-VCHVerlagGmbH&Co,Berlin,pp.1–36.

Chemat,F.,Vian,M.A.,Cravotto,G.,2012.Greenextractionofnaturalproducts: conceptandprinciples.Int.J.Mol.Sci.13,8615–8627.

Chhaya,C.S.,Majumdar,G.C.,Sirshendu,D.,2013.PrimaryclarificationofStevia

extract:acomparisonbetweencentrifugationandmicrofiltration.Sep.Sci. Tech-nol.48,113–121.

Chhaya,C.S.,Sourav,M.,Majumdar,G.C.,Sirshendu,D.,2012a.Clarificationof ste-viaextractbyultrafiltration:selectioncriteriaofthemembraneandeffectsof operatingconditions.FoodBioprod.Proc.90,525–532.

Chhaya,C.S.,Sourav,M.,Majumdar,G.C.,Sirshendu,D.,2012b.Clarificationofstevia extractusingcrossflowultrafiltrationandconcentrationbynanofiltration.Sep. Pur.Technol.89,125–134.

Costa-Machado,A.R.M.,Bastos,J.K.,Freitas,L.A.P.,2013.Dynamicmacerationof

Copaiferalangsdorfiileaves:a technologicalstudy usingfractionalfactorial design.Rev.Bras.Farmacogn.23,79–85.

FarmacopeiaBrasileira,2010.MétodosGerais,volI.,5thed.AgênciaNacionalde VigilânciaSanitária,Brasília,DF.

Gasmalla,M.A.A.,Yang,R.,Musa,A.,Hua,X.,Ye,F.,2014.Influence of sonica-tion processparameters to thestate of liquidconcentration ofextracted rebaudosideAfromstevia(SteviarebaudianaBertoni)leaves.Arab.J.Chem., http://dx.doi.org/10.1016/j.arabjc.2014.06.012.

Hu,Z.,Cai,M.,Liang,H.,2008.Desirabilityfunctionapproachfortheoptimizationof microwave-assistedextractionofsaikosaponinsfromRadixbupleuri.Sep.Purif. Technol.61,266–275.

Jamal,P.,Azmi,S.M.N.,Amid,A.,Salleh,H.M.,Hashim,Y.Z.H-Y.,2014. Develop-mentandimprovementofanti-goutpropertyfromaqueous-methanolextractof

Morindaellipticausingcentralcompositedesign.Adv.Environ.Biol.8,734–742. Jentzer,J.B.,Alignan,M.,Vaca-Garcia,C.,Rigal,L.,Vilarem,G.,2015.Responsesurface methodologytooptimiseacceleratedsolventextractionofsteviolglycosides fromSteviarebaudianaBertonileaves.FoodChem.166,561–567.

Kienle,U.,2010.WelchesSteviahaettenSiedenngerne?AnbauundHerstellung– Perspektivenweltweit.J.FoodProt.FoodSaf.5,241–250.

Koubaa,M.,Rosello-Soto,E.,Zlabur,J.S.,Jambrack,A.R.,Brncic,M.,Grimi,N., Bous-setta,N.,Barba,F.J.,2015.Currentandnewinsightsinthesustainableandgreen recoveryofnutritionallyvaluablecompoundsfromSteviarebaudianaBertoni.J. Agric.FoodChem.63,6835–6846.

ICH-Q8,2009.ICHTripartiteGuidelines:PharmaceuticalDevelopment,Q8(R2). ICH Expert Working Group, http://www.ich.org/fileadmin/PublicWebSite/ ICH Products/Guidelines/Quality/Q8R1/Step4/Q8R2Guideline.pdf (accessed 29.12.16).

Liu,J.,Li,J.W.,Tang,L.,2010.Ultrasonicallyassistedextractionoftotalcarbohydrates fromSteviarebaudianaandidentificationofextracts.FoodBioprod.Proc.88, 215–221.

Madan,S.,Ahmad,S.,Singh,G.N.,Kohli,K.,Kumar,Y.,Singh,R.,Garg,M.,2010.Stevia rebaudiana(Bert.)Bertoni–areview.IndianJ.Nat.Prod.Res.1,267–286. Martins,R.M.,Pereira,S.V.,Siqueira,S.,Salomão,W.F.,Freitas,L.A.P.,2013.

Curcum-inoidcontentandantioxidantactivityinspraydriedmicroparticlescontaining turmericextract.FoodResInt.50,657–663.

Martins,P.M.,Lanchote,A.D.,Thorat,B.N.,Freitas,L.A.P.,2016.Greenextraction ofglycosidesfromSteviarebaudiana(Bert.)withlowsolventconsumption:a desirabilityapproach.Resour.Effic.Technol.2,247–253.

Mondal,S.,Chhaya,S.D.,2012.Predictionofultrafiltrationperformanceduring clar-ificationofsteviaextract.J.Membr.Sci.396,138–148.

Muanda,F.N.,Soulimani,R.,Diop,B.,Dicko,A.,2011.Studyonchemical composi-tionandbiologicalactivitiesofessentialoilandextractsfromSteviarebaudiana

Bertonileaves.LWTFoodSci.Technol.44,1865–1872.

(9)

Paulucci,V.P.,Couto,R.O.,Teixeira,C.C.C.,Freitas,L.A.P.,2013.Optimizationofthe extractionofcurcuminfromCurcumalongarhizhomes.Rev.Bras.Farmacogn. 23,94–100.

Periche,A.,Koutsidis,G.,Escriche,I.,2014.Compositionofantioxidantsandamino acidsinStevialeafinfusions.PlantFoodsHum.Nutr.69,1–7.

Periche,A.,Castelló,M.L.,Heredia,A.,Escriche,I.,2015.Influenceofextraction meth-odsontheyieldofsteviolglycosidesandantioxidantsinSteviarebaudiana

extracts.PlantFoodsHum.Nutr.70,119–127.

Puri,M.,Sharma,D.,Barrow,C.J.,Tiwary,A.K.,2012.Optimisationofnovelmethod fortheextractionofsteviosidesfromSteviarebaudianaleaves.FoodChem.132, 1113–1120.

Rajab,R.,Mohankumar,C.,Murungan,K.,Harish,M.,Mohanan,P.V.,2009. Purifica-tionandtoxicitystudiesofsteviosidefromSteviarebaudianaBertoni.Toxicol. Int.16,49–54.

Rao,A.B.,Prasad,E.,Roopa,G.,Sridhar,S.,Ravikumar,Y.V.L.,2012.Simpleextraction andmembranepurificationprocessinisolationofsteviosideswithimproved organolepticactivity.Adv.Biosci.Biotechnol.3,327–335.

Reis,M.H.M.,daSilva,F.V.,Andrade,C.M.G.,Rezende,S.L.,Wolf-Maciel,M.R., Berga-maso,R.,2009.Clarificationandpurificationofaqueoussteviaextractusing membraneseparationprocess.J.FoodProc.Eng.32,338–354.

Sardhara,A.M.,(MasterThesis)2015.Extraction,PurificationandFormulationof ExtractFromNaturalProduct.InstituteofChemicalTechnology,Mumbai,India, pp.90.

Sharma,R.,Yadav,R.,Manivannan,E.,2012.StudyofeffectofSteviarebaudiana

Bertonionoxidativestressintype-2diabeticratmodels.Biomed.AgingPathol. 2,126–131.

Singh,S.D.,Rao,G.P.,2005.Stevia:theherbalsugarof21stcentury.SugarTechnol. 7,17–24.

Sonaglio,D.,Ortega,G.G.,Petrovick, P.R.,Bassani,V.L.,2003.Desenvolvimento tecnológicodeproduc¸ãodefitoterápicos.In:Simões,C.M.O.,etal.(Eds.), Farma-cognosia:Daplantaaomedicamento.UFRGS/UFSC,PortoAlegre/Florianópolis, pp.289–326.

Torri,L.,Frati,A.,Ninfali,P.,Mategna,Cravotto,G.,Morini,G.,2016.Comparison ofreducedsugarhighqualitychocolatessweetenedwithsteviosideandcrude stevia‘green’extract.J.Sci.FoodAgric.,http://dx.doi.org/10.1002/jfsa.8045. Urban,J.D.,Carakostas,M.C.,Taylor,S.L.,2015.Steviolglycosidesafety:arehighly

purifiedsteviolglycosidesweetenersfoodallergens?FoodChem.Toxicol.75, 71–78.

WHO,2004.JointFAO/WHOExpertCommitteeonFoodAdditives.Sixty-Third Meet-ing.WorldHealthOrganization,Geneva,pp.1–18.

Yadav,A.K.,Singh,S.C¸.,Dhyani,D.,Ahuja,P.S.,2011.Areviewontheimprovement ofsteviaSteviarebaudiana(Bertoni).Can.J.PlantSci.91,1–27.

Yan,B.,Yao,L.,Guo,Z.,Qu,H.,2014.Qualitybydesignforherbaldrugs:a feedfor-wardcontrolstrategyandanapproachtodefinetheacceptablerangesofcritical qualityattributes.Phytochem.Anal.25,59–65.

Zhang,S.Q.,Kumar,A.,Kutowy,O.,2000.Membrane-basedseparationschemefor processingsweetenersfromstevialeaves.FoodRes.Int.33,617–620. Woelwer-Rieck,U.,Lankes,C.,Wawrzun,A., Wuest,M.,2010. ImprovedHPLC

Imagem

Fig. 1. HPLC-PDA chromatogram of Stevia rebaudiana leaf extract obtained by turbolysis using ethanol 70%, solvent to drug weight ratio 1:10, drug powder size 780 ␮m, temperature 50 ◦ C, turbolysis speed 20,000 rpm and 1 h extraction
Fig. 3. Contour plots for rebaudioside A content (CREB, mg/ml) in fluid extract as functions of: (A) drug granulometry (D50) and high shear speed (SS); and (B) drug granulometry (D50) and solvent to drug ratio (S/D).
Fig. 4. Contour plots for stevioside extraction percent yield (YST, %) from Stevia rebaudiana leaves as functions of: (A) solvent/drug ratio (S/D) and temperature (t); and (B) solvent to drug ratio (S/D) and extraction temperature (T).
Fig. 6. Plot showing the desirability responses for stevioside and rebaudioside yields, YST and YREB, and their contents in dried extract, DST and DREB, for each of the following studied factors

Referências

Documentos relacionados

An aliquot of hexane phase of CEFL (10 g) was submitted to column chromatography using hexane, EtOAc and MeOH pure or in gradient mixtures.. From this column, 82 fractions collected

These results corroborate with study from the same species using the croton oil-induced and arachidonic acid-induced ear edema in mice ( Pietrovski et al., 2008 ), that also observed

marrubioides light quality is an important parameter that can be utilized to optimize seedlings growth and accumulation of rutin, in particular the red and blue lights, which

In the present work extracts and constituents from two species of the Celastraceae family, Maytenus distichophylla and Salacia cras- sifolia , were investigates in relation to the

The isolated diter- penoids showed in vitro cytotoxic activity against MOLT-4, HT-29 and MCF7 human cancer cell lines.. The obtained evi- dence showed the roots

Only the EtOAc extract showed strong inhibitory effects at a concentration of 50 ␮ g/ml, with 83% against pancreatic lipase and 96% against ␣ -glucosidase enzymes while the butanol

Histogram representing the effect of the alcohol extracts, hexane extracts isolated pectin and aqueous homogenates of the four tested citrus peels on the plasma

tionation, Santos (2008) showed that the concentrated fraction in clerodane diterpenes (SPECs2) and clerodane diterpenes (casearins B, D, O and X and caseargrewiin F)