• Nenhum resultado encontrado

REPOSITORIO INSTITUCIONAL DA UFOP: Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21.

N/A
N/A
Protected

Academic year: 2019

Share "REPOSITORIO INSTITUCIONAL DA UFOP: Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21."

Copied!
7
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Hazardous

Materials

jou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t

Batch

and

fixed-bed

assessment

of

sulphate

removal

by

the

weak

base

ion

exchange

resin

Amberlyst

A21

Damaris

Guimarães

,

Versiane

A.

Leão

Bio&HydrometallurgyLaboratory,DepartmentofMetallurgicalandMaterialsEngineering,UniversidadeFederaldeOuroPreto,CampusMorrodoCruzeiro, s.n.,Bauxita,OuroPreto,MG,35400-000,Brazil

h

i

g

h

l

i

g

h

t

s

AmberlystA21(weakbaseresin)wasappliedforthefirsttimeinsulphateremoval.Itisacomprehensivestudyofthemainaspectsofsulphateadsorption,neverdonebefore.SulphateadsorptionprocessbyAmberlystA21isfastandfeasibleinacidmedium.Efficientsulphateelutionwasobtainedusingsimpleandaccessibleconditions.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20February2014

Receivedinrevisedform4July2014

Accepted26July2014

Availableonline13August2014

Keywords:

Sulphateremoval

Sorption

Ionexchange

AmberlystA21

Weakbaseresins

a

b

s

t

r

a

c

t

ThispaperinvestigatedsulphateremovalfromaqueoussolutionsbyAmberlystA21,apolystyreneweak baseionexchangeresin.BoththepHandinitialsulphate concentrationwereobservedtostrongly affectsorptionyields,whichwerelargestin acidicenvironments.Working underoptimum opera-tionalconditions,sulphatesorptionbyAmberlystA21wasrelativelyfastandreachedequilibriumafter 45minofcontactbetweenthesolidandliquidphases.Sorptionkineticscouldbedescribedbyeither thepseudo-firstorder(k1=3.05×10−5s−1)orpseudo-secondordermodel(k2=1.67×10−4s−1),and boththeFreundlichandLangmuirmodelssuccessfullyfittedtheequilibriumdata.Sulphateuptakeby AmberlystA21wasaphysisorptionprocess(H=−25.06kJmol−1)thatoccurredwithentropyreduction (S=−0.042kJmol−1K−1).Elutionexperimentsshowedthatsulphateiseasilydesorbed(100%)from theresinbysodiumhydroxidesolutionsatpH10orpH12.Fixed-bedexperimentsassessedtheeffectsof theinitialsulphateconcentration,bedheightandflowrateonthebreakthroughcurvesandtheefficiency oftheAmberlystA21inthetreatmentofarealeffluent.Inallstudiedconditions,themaximumsulphate loadingresinvariedbetween8and40mg(SO42−)mL(resin)−1.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Whenoxidizing conditions are present,sulphate is the pre-dominantsulphurspeciesinliquideffluentsassociatedwiththe processingsulphur-ladenrawmaterials[1,2].Highsulphatelevels inwaterandwastewatersarerelatedtotheoccurrenceofpiping andequipmentcorrosion,and,whensucheffluentsaredischarged intotheenvironment,theymayincreasetheacidityofbothsoils andbodiesofwater[1,3].

Amongwastewaterscontaininghighsulphateconcentrations,

acidminedrainage(AMD)isoneofthemostimportant.AMDis

generatedwhensulphidemineralsareoxidizedinthepresenceof

Correspondingauthor.Tel.:+553135591102;fax:+553135591561.

E-mailaddress:guimaraes.damaris@yahoo.com.br(D.Guimarães).

waterandoxygen,eitherwithorwithouttheaidofbacteria.This acidicsolutionactsasaleachingagentfordifferentminerals, pro-ducingadrainagerichindissolvedmetals,whichcanrendernatural waters unsafefor use,even after miningactivitieshave ceased

[4]. Highsulphate concentrations indrinkingwater cause taste alteration and, when the sulphate content exceeds 600mgL−1, diarrhoea[2].Becauseoftheseadverseeffectstohumanhealthand theenvironment,miningcountriesusuallysetlimitsforsulphate concentrationsinwatersandwastewatersrangingfrom250mgL−1 to500mgL−1[2,5].

Sulphate emissions can be controlled by combinations of

differenttechniquessuchaslimeneutralizationandgypsum pre-cipitation, reverse osmosis, electrodialysis and adsorption [1]. Althoughtheapplicationofadsorptionisoftenlimitedtothe pol-ishingstepofwastewatertreatment,itisapromisingmethoddue toitsabilitytoreducesulphateionconcentrationstoverylowlevels

http://dx.doi.org/10.1016/j.jhazmat.2014.07.071

(2)

[6].Moreover,itsrelativecostcanbereducedbyselectinga suit-ableresinandworkingunderconditionsthatmaximizeadsorption andalsofacilitateregeneration.Sulphateremovalbyshrimp peel-ings[7],modifiedcellulosecontainedinbothsugarcanebagasse

[8]andricestraw[9],coconutpith[10],limestone[11]and mod-ifiedzeolites[12]havebeenproposed.Fengetal.[13]deviseda processforAMDtreatmentcomprisedofmetalprecipitationand sulphatesorptiononionexchangeresins.Nevertheless,a funda-mentalassessmentofsulphatesorptionmechanismsisyettobe carriedout.Withinsucha context,thepresentstudysoughtto investigatetheutilizationofAmberlystA21,aweakbaseresin,for sulphatesorptionbecausethismaterialconferstheadvantageof easyelutionviapHshift.

2. Experimental

2.1. AmberlystA21resin

AmberlystA21isa weakbase(tertiaryamine)macroporous

polystyreneresin withanexchangecapacity of1.25eqL−1 [14]. Priortotheexperiments,theresinwassievedusingTylersieves,

and a particle size range between 0.71mm and 0.84mm was

selectedforallexperiments.Sampleswerekeptunderwaterfor atleast40hbeforeuseintheexperiments.

2.2. Batchsorptionandelution

TheinfluenceofbothpH(2,4,6,8and10)andinitialanion concentrationonsulphateuptakewasstudiedbyplacing1mLof hydratedresin incontactwith100mLofsodiumsulphate solu-tionswithSO42−concentrationsrangingfrom100to1200mgL−1. Theexperimentswereperformedover5h,duringwhichthe sys-temwasstirredat180min−1 whiletemperature(34C,50Cor

70◦C)andsolutionpHwereconstant.Attheendofthe

experi-ments,thesampleswerefiltered,andthesulphateconcentration intheaqueousphasewasdeterminedbyICP–OES(Inductively Cou-pledPlasma–OpticalEmissionSpectroscopy).Sulphateloadingsin theresinsweredeterminedbymassbalance.

Thekineticofthesorptionwasalsostudied.Inthisstep,5mL

of hydrated resin were mixed with 1L of solution containing

160mg(SO42−)L−1 at28±1◦CandpH4,whichwerekept

con-stantthroughouttheexperiment.Thesystemwassampledevery

5mininthefirsthour,every10mininthesecondhour,andat140, 160,180,210,240and360min.Sorptiondatawerethenfittedto pseudo-firstorder,pseudo-secondorderandintraparticlediffusion models[15].

Thepseudo-firstordermodelassumesthatthesorptionprocess isreversibleandreachesequilibrium.Thismodelisrepresentedby Eq.(1),wherek1 istheoverallrateconstantforthepseudo-first ordermodel,tistimeandUtthefractionalattainmentof equilib-rium.UtisobtainedbyEq.(2).Suchamodelcanonlybeapplied todatafromtothelowerpartoftheresinloadingcurve;i.e.,the modeldoesnotapplytoequilibriumdata[15].

ln (1−Ut)=−k1t (1)

Ut= q

qeq

= Co−C

Co−Ceq (2)

Thepseudo-secondordermodel(Eq.(3))wasproposedbyHo andMcKay[18]todescribesorptionprocessesinwhichthe rate-determiningstepisthesorptionreaction.In thisequation,k2 is therateconstantofthepseudo-secondordermodel,andqt and

q∞arethesulphateloadingachievedattimetandatequilibrium,

respectively.

qt= tk2(q∞) 2

1+tk2q

(3)

TheintraparticlediffusionmodelproposedbyWeberand Mor-ris[19]isvalidifadsorbatediffusionintheliquidfilmistheonly controllingstepoftheprocess.ThismodelisdescribedbyEq.(4), inwhichkipistherateconstantofintraparticlediffusion,andCis aconstantrelatedtothethicknessoftheboundarylayer.

q=kip(t)1/2+C (4)

Sorption equilibrium was investigated using adsorption

isothermsproduced atdifferent temperatures,which enabled a

thermodynamicanalysisofsulphatesorption.Theisothermswere producedbymixing1mLofhydratedresinwith100mLofsodium sulphate solutions whose initialsulphate concentrations varied between30mgL−1 and1800mgL−1.Eachsystemwasstirredat 180min−1,pH4andatemperatureof34C,50Cor70Cuntil

equilibrium wasreached.The aqueousphase wassubsequently

separated from the solid phase, and the residual aqueous

sul-phateconcentrationwasdeterminedbyICP-OES.Resinloadingwas determinedbymassbalance.Equilibriumdatawerethenfittedto theFreundlichandLangmuirmodels[14]priortothermodynamic analysis.

TheLangmuirmodel(Eq.(5))wasoriginallydevelopedto rep-resentmonolayeradsorptiononidealsurfaces.Itassumesthatthe heatofadsorptionisindependentofsurfacecoverageandissimilar tothatobservedinchemicalreactions.Furtherassumptionsare:(i) thereisalimitedandmeasurableareaforadsorption;(ii)the mono-layerisonemoleculethick;and(iii)adsorptionisreversible,and equilibriumconditionsareattained[6].Conversely,theFreundlich isotherm(Eq.(6))isanempiricalequationthatdescribesnon-ideal adsorptionprocesses.Itassumesheterogeneoussurfacesand mul-tilayeradsorption[20],resultinginanexponentialdistributionof theheatsofadsorption[6].

qeq=qmaxbCeq

1+bCeq (5)

qeq=Kf

Ceq

1/n

(6)

InEqs.(5)and(6),qeqistheresinloadingatequilibrium,Ceqis theequilibriumconcentrationoftheadsorbateinsolution,qmaxis themaximumloading,bisaconstantrelatedtotheaffinitybetween theresinandtheadsorbate,Kfisthecapacityfactor,andnisthe intensityparameter[6].

Athermodynamicanalysisuseddataproducedfortheinitial sulphateconcentrationof300mgL−1wascarriedouttoassessthe influenceoftemperatureonthesorptionprocess.Equilibrium con-stant(Keq)valuescorrespondingtothesorptionprocessdeveloped atdifferenttemperaturesweredeterminedutilizingEq.(7):

Keq= qeq

Ceq (7)

Theequilibriumconstant, aswrittenin Eq.(7),is alsocalled thedistributioncoefficient(KD)[24–26].AfterobtainingKeq,the enthalpy(H)andentropy(S)ofsulphatesorptionwere deter-minedfromthevan’tHoffequation(Eq.(8)),andtheGibbsfree energywascalculatedbyEq.(9).

lnKeq=−H RT +

S

R (8)

G=−RTlnKeq (9)

In Eqs. (8) and (9), R is the universal gas constant

(3)

Table1

Compositionoftheindustrialeffluentusedexperimentally.

Element/ion Concentration(mgmL−1)

SO4 98.41

F 1.30

Cl 10.11

Al 0.02

Astotal 0.24

Cd <0.05

Ca 27.52

Pb <0.05

Cu <0.05

Fe 0.02

Mg 3.12

Mn 0.08

Ni <0.05

K 0.96

Na 0.92

Zn <0.05

SulphateelutionfromAmberlystA21wasassessedbymixing 100mLofsodiumhydroxidesolutions(atpH10andpH12)with 1mLofpre-loadedresin(10.4mg(SO42−)mL(resin)−1).Thesystem waskeptunderagitationfor24hat30◦C,andthefinalsulphate

concentrationintheaqueousphasewasdeterminedbyICP–OES priortocalculatingresinelutionefficiencies

2.3. Fixed-bedexperiments

Sulphateadsorptioninfixed-bedcolumnswereperformedin ordertoinvestigatetheeffectsofconcentration,bedheightand flowrateonbedloading.Differentvolumesofresin(0.71–0.84mm particlesizes)weretransferredtoaglasscolumn(13mm diam-eter×142mmheight)toproducedifferentbedlengths,Z(6cm, 9cmand12cm).Afterloading,distilledwaterwaspassedthrough thecolumn(60min)toremovefineparticlesthatcouldhavebeen loadedinthecolumn.Thecolumnwasfedupwardsbyperistaltic pumpssothatanypreferentialpathwayforthesolutionwouldbe avoided.Theflowrate(Q)wasvariedbetween10and20mLmin−1. Sampleswerecollectedregularlyfromthecolumneffluent.The sul-phateconcentrationsinthesesampleswereanalysedbyICP–OES. Theinlet sulphate concentration(C0)rangedfrom55mgL−1 to 160mgL−1,andtheanionloadingontheresinwasdeterminedby massbalance.TheexperimentswerecarriedoutatapHof4.0and atemperatureof28±1C.

ToassesstheefficiencyofAmberlystA21inthetreatmentofa realeffluent(fromtheminingindustry),adsorptionexperiments wereperformedina fixed-bedcolumn.The compositionofthe acidiceffluent(pH3.2)ispresentedinTable1andtheexperiments werecarriedoutat25±1◦C,usingabedheightof9cm,whichwas

fedataflowrateof10mLmin−1.Immediatelyafterloadingthebed, itwaselutedfor3hwithapH12sodiumhydroxidesolutionata flowrateof10mLmin−1.Thesampleswerecollectedinintervals of10minandthechlorideandfluoridecontentweredetermined

byionchromatography(Metrohm).

3. Resultsanddiscussion

3.1. Batchexperiments

AscanbeseeninFig.1,sulphateloadingsinAmberlyst A21 weresignificantlyreducedasthesolutionaciditydecreased.This outcomewasexplainedbythepresenceoftertiaryaminegroups, whichmustbepositivelychargeinordertobindsulphate(Eq.(10)). Therefore,theconcentrationofprotonatedaminegroupsincreased with increasing acidity, resulting in greater sulphate loading (Eq.(11)).Fig.1 also indicatesthat increasingthe initialanion

2 4 6 8 10

5 10 15 20 25 30 35

(a)

Su

lpha

te

c

on

c.

in

th

e

re

si

n

(m

g

m

L

-1

)

pH

Initial Sulpha

te con

c.

100 mg L

-1

300 mg L

-1

700 mg L

-1

1200 mg L

-1

2 4 6 8 10

0 5 10 15 20 25 30 35

Su

lpha

te

c

on

c.

in

th

e

re

si

n

(m

g

m

L

-1

)

(b)

pH

Initial Sulpha

te con

c.

100 mg L

-1

300

mg L

-1

700

mg L

-1

2 4 6 8 10

0 5 10 15 20 25 40 42 44

Su

lpha

te

c

on

c.

in

th

e

re

si

n

(m

g

m

L

-1

)

(c)

pH

Initial Sulpha

te con

c.

100

mg L

-1

300

mg L

-1

700

mg L

-1

Fig.1.EffectofpHonsulphatesorptionbyAmberlystA21resinat34◦C(a),50C(b)

and70◦C(c).Experimentalconditions:1mLofhydratedresin,100mLofsolution

andstirringrateof180min−1.

concentrationresultedinlargersulphate loadingsonAmberlyst A21.Conversely,sulphateloadingswereslightlyreducedathigher temperatures;thiswillbefurtherdiscussedduringtheanalysisof theeffectoftemperatureonsorptionequilibrium.

R–NH3(resin)+H2O⇆RNH4+(resin)+OH−(aq) (10)

(4)

0 50 100 150 200 250 300 0

3 6 9 12 15

k = 1.67

x 10

-4

min

-1

q

eq

= 13

.9 mg mL(res

in)

-1

R

2

= 0.96

Time (min)

q

t

(m

g (S

O

4 2-

) m

L(r

es

in

)

-1

)

Fig.2. Loadingsulphate(qt)infunctionoftimeandfitofpseudo-secondorder

modelfromadsorptionessaysbyAmberlystA21.Experimentalconditions:5mLof

hydratedresin,1Lofsodiumsulphatesolution(150mg(SO42−)L−1),at28±1◦C,pH

4,stirringrateof200min−1.

ThepH4 wasselected for furthersulphatesorption studies

becausethis pHis encounteredinmanyAMDsites.Workingat

thispH,Fig.2 depictstheprofileof thesulphateconcentration intheresinasafunctionoftimeinabatchstudy.Thesorption process,whichwascomprisedoftwodifferentstages,resin pro-tonation(Eq.(10))andsulphatesorption(Eq.(11)),wasrelatively fast,attaininganequilibriumconcentrationof11.6mgmL(resin)−1 innearly45min.

The kinetic data were fitted to pseudo-first order,

pseudo-second order and intraparticle diffusion models. Among these

models, only the pseudo-second order model showed a good

fit to the experimental data and described all thedata gener-atedinthekineticexperiments.Thus,itcanbeinferredthatthis

model describes the adsorption of sulphate by Amberlyst A21

resin.AsshowninFig.2,thepseudo-secondorderrateconstant was1.67×10−4s−1andthetheoreticalequilibriumsulphate load-ing(q∞)was13.9mgmL(resin)−1,which isconsistentwiththe

experimentalvalue(11.6mgmL(resin)−1).Instudiesofsulphate adsorptionbyanothertypeofadsorbent,Oliveira[12]investigated theadsorptionof sulphatein zeolites functionalizedbybarium salts.Inthiscase,theprocesswasdescribedbythepseudo first-ordermodelwithanoverallrateconstantof0.4s−1.

Subsequently, sorption equilibrium was investigated utiliz-ingisotherms produced at differenttemperatures and fittedto both Langmuir(Eq.(5))and Freundlich (Eq.(6))models.Fig. 3

presentsthe fittingsof the experimentaldata to theLangmuir

0 200 400 600 800 1000 1200 1400

0 5 10 15 20

Aqueou

s sulpha

te con

c.

(mg L

-1

)

Su

lpha

te

c

on

cen

tr

a

tion

(m

g

m

L

(r

es

in)

-1

)

34o

C

50o

C

70o C

Fig.3.AdsorptionisothermsfittedtoLangmuirmodel,constructed withdata

obtainedfromessayscarriedoutindifferentconditionsoftemperature,pH4and

stirringrateof180min−1,withtheAmberlystA21resin.

Table2

AdsorptionisothermsparametersofLangmuirmodelobtainedatdifferent

temper-atures,pH4andstirringrateof180min−1,withAmberlystA21resin.

Temperature Langmuir

Parameters R2

34◦C q

max=16.18 0.83

b=0.16

50◦C

qmax=12.78 0.98

b=0.15

70◦

C qmax=10.11 0.92

b=0.06

0.0029 0.0030 0.0031 0.0032 0.0033

3.6 3.8 4.0 4.2 4.4 4.6 4.8

Y=3014

,25

*X-5,02

R

2

=0,99

1/T

ln

(K

eq

)

Fig.4.van’tHoffplotforsulphatesorptiononAmberlystA21.

equationat differenttemperatures(34◦C, 50C and 70C); the

Langmuirisothermcanbeutilized todescribesulphate adsorp-tionbyAmberlystA21,withqmaxvaluescloseto15mgmL(resin)−1 (Table2).Theobservedbconstantvalues,alsolistedinTable2, gen-erallydecreasedwithincreasingtemperature.Asthisconstantis relatedtotheaffinitybetweensulphateandresin,itcanbeinferred thattheaffinitydecreasesastemperatureincreases[6].Sorption datawerealsofittedtotheFreundlichmodel,however,agood fit-tingwasnotobservedinthiscase. Basedontheanalysisofthe

R2 values,itcanbestatedthatsulphateadsorptioninAmberlyst A21isdescribedbytheLangmuirmodel.Thisway,thesurfaceof theloadedresiniscomposedofamonolayerofsulphateanions. SimilarresultswerealsoobservedbyHaghshenoetal.[21]forthe

ionexchangeresinLewaitK6362,byNamasivayamandSangeetha

[10]usingZnCl2activatedcarbonproducedfromcoconutshell,and byOliveira[12]instudieswithzeolites.Intheseworks,the maxi-mumsulphateloadingsobservedwere55.6mgg−1,4.9mgg−1and 53.8mgg−1,respectively.

Aspredictedbyconstant bin theLangmuirmodel,thevan’t Hoffequation(Eq.(8))[27]confirmedthatsulphatesorptionby AmberlystA21is anexothermicprocess (H=−25.06kJmol−1) related to a decrease in entropy (S=−0.042kJmol−1K−1) of

the system (Fig. 4, Table 3). A study of sulphate sorption

on activated carbon revealed it to be an endothermic process

Table3

Changesofenthalpy,H,Gibbsfreeenergy,Gandentropy,S,relatedtosulphate

adsorptionprocessbyAmberlystA21resin,atpH4andstirringrateof180min−1.

Temperatura(◦C) H(kJmol−1) S(kJmol−1K−1) G(kJmol−1)

34 −12.21

50 −25.06 −0.042 −10.25

(5)

0 50 100 150 200 250 0.0

0.2 0.4 0.6 0.8 1.0

Time (min)

C

t

/C

o

C

o

= 55

mg(SO

42-

) L

-1

C

o

=80

mg(SO

42-

) L

-1

C

o

=160

mg(SO

42-

) L

-1

(a)

0 50 100 150 200 250

0.0 0.2 0.4 0.6 0.8 1.0

C

t

/C

o

Time (min)

H = 6 cm

H = 9 cm

H = 12

cm

(b)

0 50 100 150 200 250

0.0 0.2 0.4 0.6 0.8 1.0

C

t

/C

o

Q = 10

mL min

-1

Q = 15

mL min

-1

Q = 20

mL min

-1

Time (min)

(c)

Fig.5.BreakthroughcurvesforsulphatesorptionbyAmberlystA21resin,at

differ-entinletconcentrations(C0)(a),bedheight(H)(b)andflowrate(Q)(c).Experimental

conditions:pH4,28±1◦Cand0.35bedporosity.Fixedconditions:inletsulphate

concentrationof80mgL−1,bedheightof9cmandflowrateof15mLmin−1.

(H=15.4kJmol−1) that occurred with an increase in entropy (S=0.133kJK−1mol−1)[10].

TheHvaluelowerthan40kJmol−1(inabsoluteterms)implied

that physisorption was the main sorption mechanism [6,28],

whereas thenegativeSvalueswere interpretedtoindicate a

reductioninsulphateaccessibilitytotheresincorewithincreasing temperature[27].ItisalsoworthnotingthattheGibbsfreeenergy relatedtosulphatesorptionbyAmberlystA21wasalsomeasured (Eq.(9)),andtheresultsarepresentedinTable3.Such thermody-namicparameters,however,refertotheoverallsorptionprocess, i.e.,theyincludeboththeprotonationofthefunctionalgroupsand sulphateadsorptionsteps.

AnimportantfeaturetobeaddressedinapplyingAmberlystA21 inthetreatmentofsulphate-ladeneffluentsisresinelution[29].As observedinthestudyoftheinfluenceofpHonsulphateadsorption byAmberlystA21,aminefunctionalgroupsarenotprotonatedin

Table4

SulphateelutionofAmberlystA21resin,at30◦

Candstirringrateof180min−1.

Initialsulphateloading

(mg(SO42−)mL(resin)−1)

Dessorption

efficiency(%)

Eluant

10.4 ∼100 SolutionofNaOH

(pH10)

∼100 SolutionofNaOH

(pH12)

alkalineconditions,resultinginlowsulphateloadings.Therefore, elutionwascarriedoutbysettingthepHoftheeluentsolutionto 10and12,whichgaveyieldsapproaching100%(Table4).Similar tothecurrentstudy,Fengetal.[13]observedelutionyieldsfor theionexchangeresinsDuoliteA161,DuoliteA375andAmberlite IRA67between90%and95%whenapplyingCa(OH)2solutions con-taining2%NaOH.Moreover,MoretandRubio[7]observednearly 96%sulphateelutionfromshrimppeelingsfunctionalizedwith ter-tiaryaminegroupsafterincreasingthepHto12.Efficientsulphate desorptionfromcarbonproducedfromcoconutshellandactivated withZnCl2wasalsopromotedinanalkalinemedium(pH11)with 90%efficiency[10].

3.2. Fixed-bedexperiments

Fig.5(a)and (b)presentsthebreakthrough curvesproduced fromsolutionscontainingdifferentsulphate concentrationsand beddepths, respectively,ata flow rateof15mLmin−1.Table5 depictsthemeasuredsorptionparameters.Thecurvesdemonstrate that either increasingthe solution concentration or decreasing thebeddepthresultedinreachingbreakthroughandsaturation pointsmorerapidly;thus,asmallervolumeofsolutionistreated at breakthrough.Theseoutcomes werea resultof thefactthat theadsorption capacity isfinite and wasreachedmore rapidly atlargerinletconcentrationsorlowerbedheights.Irrespectiveof theparameterinvestigated,thesamecapacitiesofapproximately 10mg(SO42−)mL(resin)−1weredetermined.Fig.5(c)andTable5 demonstratethatincreasingtheflowratereducedthetimeneeded toreachthebreakthroughandsaturationpoints.Becauseincreased flowratesimplylesscontacttimebetweentheresinandthe solu-tion,therewasaslightreductioninsorptioncapacitytoavalue around8mgmL(resin)−1,whichisconsistentwiththestudyby Haghshenoetal.[21]ontheresinLewaitK6362.

0 20 40 60 80 100 120 140 160 180 200 0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

C

t

/C

o

Time (min)

SO

4

Cl

F

-Fig.6.Breakthroughcurvesfortheadsorptionofthemajoranionspresentinthe

metallurgicalindustryeffluenttreatedinafixed-bedofAmberlystA21.

Experimen-talconditions:pH3.2,25±1◦C,bedheightof9cm,0.35bedporosityandflowrate

(6)

Table5

Experimentaldataobtainedwithfixedbedexperimentscarriedoutat28±1◦C,pH4,porosityof0.35,varyingthesulphateinletconcentration,bedheightandflowrate.

Varied experimental condition

Breakthrough

volume(mL)

Breakthrough

time(min)

Saturation

volume(mL)

Saturationtime

(min)

Bedcapacityof

adsorption

(mg(SO42−))

Maximumloadingofresin

(qmax)

(mg(SO42−)mL(resin)−1)

Sulphateinletconcentration

(mg(SO42−)L−1)

55 600 40 1500 100 93.8 8.52

80 450 30 1200 80 105.7 9.61

160 150 10 750 50 126.7 11.5

Bedheight

(cm)

6 150 10 1200 80 101.6 12.7

9 300 20 1350 90 111.6 10.1

12 450 30 1650 110 138.7 9.6

Flowrate

(mLmin−1)

10 400 40 1100 110 88.5 8.1

15 450 30 1200 80 95.6 8.7

20 400 20 1200 60 96.8 8.8

0 20 40 60 80 100 120 140 160 180

0 100 200 300 400 500 600

Su

lpha

te

c

on

cen

tr

a

tio

n

mg

mL

(r

es

in)

-1

Time (min)

Fig.7.Desorptioncurveofthebedloadedbythemetallurgicaleffluentbyusingof

sodiumhydroxide(pH12).Experimentalconditions:25±1◦C,bedheightof9cm,

0.35bedporosityandflowrateof10mLmin−1.

Fig.6 showsthebreakthroughcurveobtainedinthe experi-mentsperformedwithanindustrialeffluent(Table1).Atlowresin loadings,therewerefreetertiaryaminefunctionalgroupsandthus bothchlorideandsulphateionswereadsorbed.Asthesegroups wereoccupied,acompetitionbetweenchlorideandsulphatewas thenobserved.Becausesulphatehasahigheraffinityfortheresin, chlorideovershootingwasobservedduringtheloadingasindicated byCt/Co ratioslargerthan1,forchloride.Therefore,nochloride loadingontheresinwasobservedattheendoftheexperiment. Thatwasconfirmedbythedesorptionexperimentswhoseresults arepresentedinFig.7andrevealednochlorideintheeluate,i.e. onlysulphateanionsweredetected.Furthermore,theindustrial effluentalsocontainedfluorideionsbutthelatterwasnotadsorbed

atanymoment.

Approximately 150min were necessary to saturate the

resinwhosemaximumloadingwas14.27mg(SO42−)mL(resin)−1 whereasapproximately80minwererequiredduringelution.Resin loadingintheexperimentwiththeindustrialeffluentwashigher

thanthoseobtainedinbatchtests(carriedoutatpH4).Itislikely thatthehigherloadingobservedintheexperimentwithareal efflu-entisduetothepHoftheeffluentwhichwas3.2.AccordingtoFig.1, thelowerthepH,thehighertheloadingcapacityoftheresindue toitsfunctionalgroupsprotonation(Eqs.(1)and(2)).

4. Conclusions

Thepresentstudyshowedtheapplicationoftheionexchange resin Amberlyst A21in sulphate sorption for thefirst time. By

a comprehensive investigation of different parameters related

to its sulphate sorption performance, it was possible to

con-cludethattheprocesshaspositivefeatures thatmakeitagood

candidate for use in sulphate removal applications. In acidic

conditions, the process is fast (k=1.67×10−4s−1), exothermic (H=−25.06kJmol−1)andcanbecarriedoutinbothbatchand fixed-bedcolumnswithnodifferenceinthemaximumadsorption capacity(11.6mg(SO42−)mL(resin)−1).Althoughthisadsorption capacityis lowcompared tostrongbaseresins,100%resin elu-tioniseasilyaccomplishedbyincreasingthepHto10and12with sodiumhydroxidesolutions.Theexperimentswithanindustrial effluentindicatedthatfluorideionsdonotinterfereonthesulphate loading.Conversely,althoughchloridewasalsoloaded,itwaslater desorbedasthebedbecamesaturatedwithsulphate,whichhada higheraffinityfortheresin.

Acknowledgements

FinancialsupportfromthefundingagenciesFINEP,FAPEMIG, CNPq,CAPESandValeisgratefullyappreciated.

References

[1]INAP,Treatmentofsulphateinmineeffluentes,in:InternationalNetworkfor

AcidPrevention,2003,p.129.

[2]WHO,in:GuidelinesforDrinking-WaterQuality,Genebra,2008,p.668.

[3]R.J.Bowell,Sulphateandsaltminerals:theproblemoftreatingminewaste,in: MineEnvironmentalMangazine,2000,pp.11–13.

(7)

[5]USEPA,in:SulfateinDrinkingWater,U.S.EnvironmentalProtectionAgency,

Washington,DC,1999.

[6]T.D.Reynolds,P.Richards,UnitOperationsandProcessesinEnvironmental Engineering,2nded.,PWSPublishingCompany,Boston,1995.

[7]A.Moret,J.Rubio,Sulphateandmolybdateionsuptakebychitin-basedshrimp shells,Miner.Eng.16(2003)715–722.

[8]D.R.Mulinari,M.L.C.P.daSilva,Adsorptionofsulphateionsbymodificationof sugarcanebagassecellulose,Carbohydr.Polym.74(2008)617–620. [9]W.Cao,Z.Dang,X.-Q.Zhou,X.-Y.Yi,P.-X.Wu,N.-W.Zhu,G.-N.Lu,Removalof

sulphatefromaqueoussolutionusingmodifiedricestraw:preparation, charac-terizationandadsorptionperformance,Carbohydr.Polym.85(2011)571–577. [10]C.Namasivayam,D.Sangeetha,Applicationofcoconutcoirpithfortheremoval

ofsulfateandotheranionsfromwater,Desalination219(2008)1–13. [11]A.M.Silva,R.M.F.Lima,V.A.Leão,Minewatertreatmentwithlimestonefor

sulfateremoval,J.Hazard.Mater.221–222(2012)45–55.

[12]C.R.Oliveira,Adsorc¸ão–remoc¸ãodesulfatoeisopropilxantatoemzeólita

nat-uralfuncionalizada,MSc,UniversidadeFederaldoRioGrandedoSul,Porto

Alegre,2006,107pp.

[13]D.Feng,C.Aldrich,H.Tan,Treatmentofacidminewaterbyuseofheavymetal precipitationandionexchange,Miner.Eng.13(2000)623–642.

[14]D.Guimarães,TratamentodeEfluentesRicosemSulfatoporAdsorc¸ãoem

ResinadeTroca-Iônica,MasterThesis,UniversidadeFederaldeOuroPreto,

OuroPreto,MG,Brasil,2010,170pp.

[15]H.Qiu,L.Lv,B.C.Pan,Q.J.Zhang,W.M.Zhang,Q.X.Zhang,Criticalreviewin adsorptionkineticmodels,J.ZhejiangUniv.Sci.A10(2009)716–724.

[18]Y.S.Ho,G.McKay,Pseudo-secondordermodelforsorptionprocesses,Process Biochem.34(1999)451–465.

[19]J.Weber,J.C.Morris,Kineticsofadsorptiononcarbonsolution,J.Sanit.Eng.89 (1963)31–59.

[20]M.Chabani,A.Amrane,A.Bensmaili,Kineticmodellingoftheadsorptionof nitratesbyionexchangeresin,Chem.Eng.J.125(2006)111–117.

[21]R.Haghsheno,A.Mohebbi,H.Hashemipour,A.Sarrafi,Studyofkineticand fixedbedoperationofremovalofsulfateanionsfromanindustrialwastewater byananionexchangeresin,J.Hazard.Mater.116(2009)961–966.

[24]S.S.Tahir,N.Rauf,ThermodynamicstudiesofNi(II)adsorptionontobentonite fromaqueoussolution,J.Chem.Thermodyn.35(2003)2003–2009. [25]H.Zheng,L.Han,H.Ma,Y.Zheng,H.Zhang,D.Liu,S.Liang,Adsorption

char-acteristicsofammoniumionbyzeolite13X,J.Hazard.Mater.158(2008) 577–584.

[26]B.Kemer,D.Ozdes,A.Gundogdu,V.N.Bulut,C.Duran,M.Soylak,Removalof fluorideionsfromaqueoussolutionbywastemud,J.Hazard.Mater.168(2009) 888–894.

[27]E.L.Schineider,Adsorc¸ãodecompostosfenólicossobrecarvãoativado,93pp., UniversidadeEstadualdoOestedoParaná,Toledo,2008.

[28]G.Bayramoglu,B.Altintas,M.Y.Arica,Adsorptionkineticsandthermodynamic parametersofcationicdyesfromaqueoussolutionsbyusinganewstrong cation-exchangeresin,Chem.Eng.J.152(2009)339–346.

Imagem

Fig. 1. Effect of pH on sulphate sorption by Amberlyst A21 resin at 34 ◦ C (a), 50 ◦ C (b) and 70 ◦ C (c)
Fig. 3. Adsorption isotherms fitted to Langmuir model, constructed with data obtained from essays carried out in different conditions of temperature, pH 4 and stirring rate of 180 min −1 , with the Amberlyst A21 resin.
Fig. 5. Breakthrough curves for sulphate sorption by Amberlyst A21 resin, at differ- differ-ent inlet concentrations (C 0 ) (a), bed height (H) (b) and flow rate (Q) (c)

Referências

Documentos relacionados

Lag time of the onset of superoxide anion generation by PMN (1 x 10 6 /mL) stimulated by PMA in the absence and presence of different concentrations of GM1 (A, open columns) and

the highly significant correlations observed between the contents of total Ca and P extracted by Mehlich-1 (M-1) and by ion-exchange resin (IER) indicate pronounced influence of

Leaching solutions were prepared from analytical grade chemicals (ferric sulphate, cupric sul- phate, sulphuric acid and sodium chloride) and distilled water and the effect of

Embora a extração de cobre tenha elevado-se de 16,4% na ausência para 29,4% na presença de 1mol/L de NaCl, a alteração na concentração de cloreto de sódio teve um

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

morphologies of as- synthesized In 2 O 3 nanoparticles were highly affected by γ-irradiation of indium acetyl acetonate precursor and by addition of sodium dodecyl sulphate

The influence of metal ion sorption on modified γ-alumina was investigated by varying the flow rate of the sample solution in the range of 1–6 mL min −1 , and by passing the solution

As preparation for the procedure, patient was advised to intake 2 bottles of Coloprep TM composed of sodium sulphate 17.5 g, potassium sulphate 1.6 g and magnesium sulphate 3.13