• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2B

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2B"

Copied!
30
0
0

Texto

(1)

The Plethysm Tehnique Applied to the

Classiation of Nulear States

J.A. Castilho Alaras

InstitutodeFsiaTeoria,UNESP,01405-900, S~aoPaulo,Brazil

J. Tambergs, T. Krasta,J.Ruza,

NulearResearh Center,LV-2169,Salaspils,Latvia

and O.Katkeviius

InstituteofTheoretialPhysis andAstronomy,2600Vilnius,Lithuania

Reeivedon7August,2001

Ashortsummaryofthetheoryofsymmetrigroupandsymmetrifuntionsneededtofollowthe

theoryofShurfuntionsandplethysmsispresented. Onethendenesplethysm,givesitsproperties

andpresentsaproedureforitsalulation. Finally,someapliationsinatomiphysisandnulear

struturearegiven.

I. Introdution

The plethysm operation was introdued by

Littlewood[14℄ in 1936 as a third type of Shur

funtion[5, 6℄ multipliation and only later on it has

reeivedthisname.

PlethysmsplayafundamentalroleinPhysis

when-everone appliesgrouptheoryand anleadto

remark-ablesimpliationin thetheoryofomplexspetra.

Although plethysms havebeen extensivelystudied

by matematiiansin thepast[12℄-[20℄and even

nowa-days,surprisingly,withrareexeptions[2,3,35,38℄this

powerfultehniquehasbeenunreognizedbyphysiists.

Themainreasonofthisworkistopresentthis

pow-erful tehnique to the theoretial physiists omunity

andshowhowitanbeveryuseful. Basiallyitsutility

reliesinthedeterminationofthebranhingrulesof

irre-duible representations (irreps) of aontinuous group

when onsidered as irreps of one of its subgroups, a

veryommonsituationwhenoneappliesgrouptheory,

in partiularinthelassiationofstatesofaphysial

systemofidentialpartiles.

II. Shur Funtions and Plethysms

Inthis setion wewill initially introduethe basi

notionsofthesymmetrigroupS(n)neededtothe

un-derstanding ofthe notationused in theplethysm

the-ory. Laterwewill dene plethysm, expose its

proper-omputeplethysms of a given degree exploiting these

generalresultsandproperties.

II.1 Basi Notions of Symmetri Group and

Shur Funtions

The symmetrigroupS(n) is thegroupof

permu-tationsofnobjetsandhasn!elements. Eahelement

isdenotedby

P=

1 2 3 ... n

p

1 p

2 p

3

... p

n

(1)

withthemeaningthattheelement1isreplaedbyp

1 ,

the element 2 by p

2

and so on, p

1 ;p

2 ;:::;p

n

being a

permutationof1;2;:::;n.

Apermutationthathanges mnobjetilialy

isalledileoflengthm. Permutationswiththesame

ilestruturebelongtothesameonjugationlass. By

thisreasonthelasses ofS(n)are labeledbythe ile

strutureoftheirelements. Inthisway,agenerilass

() is written as () (1 1

;2 2;

:::) with the meaning

thattheirelementshave

1

ilesoflength1,

2 iles

oflength2,andsoon.

A partition [℄ of n is a set of n integers [℄

[

1 ;

2 ;:::;

n

℄satisfyingtherelations

1

2

:::

n ;

with

1 +

2

+:::+

n

=n: (2)

Ingeneraloneomitsthe

i

(2)

expo-[2 2

1 3

℄[221110:::0℄. Wewilldenote byGreeklettera

generi partition and by latin letter a partiular one.

Asexample,[n℄[n0:::0℄,[p;q℄[p;q;0:::0℄.

Toagivenpartition[℄oneassoiatesaYoung

dia-gramthatonsistsinagurewith

1

boxesintherst

line,

2

in the seond, and soon. Due to this

assoi-ation, its is usual to refer to the

i

's as the rows of

[℄.

When one lls these diagrams with the numbers

1;2;:::;nin suh awaythat thenumbersin theboxes

growfrom left to right andfrom up to down theyare

alled standard (or regular) Young tableau. When in

thellingproessthenumbersintherowsonlynot

de-reasebeingallowedtorepeatbutintheolumnsthey

ontinue to grow, the tableau is alled strit-olumn

tableau.

Given thepartition [℄ =[

1 ;

2; :::;

p

;0;:::;0℄ one

denesitsonjugatepartitionby

[ e

℄=

p p

;(p 1) p

1 p

;:::;2 2 3

;1 1 2

: (3)

TheYoungdiagram of [ e

℄is obtainedfrom theoneof

[℄byinterhangingrowsbyolumns.

Given n quantities

1 ;

2 ;:::

n

it is possible to

dene three types of symmetri funtions built with

them[1℄: a

r ;h

r ands

r .

The funtions a

i

are those that appear in the

ex-pansionofthepolynomialwithroots

1 ;

2 ;:::

n as

n

Y

i=1

(x

i )=

n

X

r=0 ( )

r

a

r x

n r

(4)

Therstthreeofthem aregivenby

a

1 =

X

i

i ; a

2 =

X

i<j

i

j ; a

3 =

X

i<j<k

i

j

k ; (5)

that is, eah a

i

is thesum of all linearly independent

produtsofrquantitieswithoutrepeatedindies.

Thefuntions h

r

aredenedbytheexpansion

1

Q

n

i=1

(1

i x)

= 1

X

r=0 h

r x

r

; (6)

resultingthateahh

r

isthesumofalllinearly

indepen-dentprodutsofrquantitiesallowingforrepeatings.

Itfollowsfrom (4)-(6)thatthersth

r 'sare

h

0

= 1; h

1 =a

1 =

X

i

i ; h

2 =a

2

1 a

2 =

X

i

2

i +

X

i<j

i

j ;

h

3 = a

3 2a

1 a

2 +a

3

1 =

X

i<j<k

i

j

k +

X

i<j (

i

2

j +

2

i

j )+

X

i

3

i :

Thefuntions s

r

aredened asthesumsofther-produtsofthe's.e.,

s

r =

n

X

i=1 (

i )

r

: (7)

GivenamatrixAofdimensionnnonedenesitsimmanantjAj [℄

bytherelation

jAj [℄

= X

P

[℄

(P)a

1p

1 a

2p

2 :::a

np

n

; (8)

where [℄

(P)is theharaterof thepermutationP (withomponentsp

1 ;p

2 ;:::;p

n

)intheirrep[℄ofS(n).

Sineintheirrep[1 n

℄theharaterofagivenpermutationisitsparity,jAj [1

n

isthedeterminantofA. Similarly,

jAj [n℄

isitspermanent.

TheShur funtionfg ofdegree r=

1 +

2 +

3

+:::+

n

in thequantities

1 ;:::;

n

isdened in termsof

immanantsas

fg= 1

r! jZ

r j

[℄

(3)

Z

r =

0

B

B

B

B

B

B

s

1

1 0 0 ... ... ... 0

s

2 s

1

2 0 ... ... ... 0

s

3 s

2 s

1

3 0 ... ... 0

... ... ... .. ... ... ... 0

s

r 1 s

r 2

... ... ... ... s

1 r-1

s

r s

r 1

... ... ... ... s

2 s

1 1

C

C

C

C

C

C

A

: (10)

ForthesymmetriandantisymmetripartitionstheShurfuntions assumeverysimpleexpressions,namely,

frg=h

r andf1

r

g=a

r

: (11)

Asexample,wegivebelowtheexpliitexpressionsoftheShurfuntions ofdegreer=3:

f3g = 1

6 (s

3

1 +3s

1 s

2 +2s

3 )=

X

i<j<k

i

j

k +

X

i<j (

i

2

j +

2

i

j )+

X

i

3

i h

3 ,

f21g = 1

3 (s

3

1 s

3 )=2

X

i<j<k

i

j

k +

X

i<j (

i

2

j +

2

i

j

), (12)

f1 3

g = 1

6 (s

3

1 3s

1 s

2 +2s

3 )=

X

i<j<k

i

j

k a

3 .

d

Usingthe expliitexpressions ofimmanantsin the

denitionoftheShurfuntiononeobtainstherelation

fg= 1

r! X

n()

[℄

()s 1

1 s

2

2

::: (13)

whih givesthefundamental link between Shur

fun-tions and haraters of the symmetri group. In the

equation above the sum is over the lasses ()

(1 1

;2 2

;:::) and n() is the numberelementsof lass

().

Shurfuntions ofdegreer 0

an be\multiplied"by

Shur funtions of degree r 00

in 3 dierent ways and

in eahof them the\produt"is expressedasalinear

ombinationof Shur funtions allof the samedegree

r 000

.

These3typesofmultipliationare:

1) Inner(or diret) produt: f 0

g f 00

g =

P

000

(f 0

gf 00

g!f 000

g)f 000

g,

2)Outer produt: f 0

gf 00

g= P

000

(f 0

gf 00

g!

f 000

g)f 000

g,

3) Plethysm: fgf 00

g= P

000

(fgf

00

g!

f 000

g)f 000

g,

where (:::) isa non-negativeintegerdenotingthe

multipliity of f 000

g in the expansion. Forlarity we

attahtoitanargumentdenotingthekindofoperation

thatproduedit.

Intheinner produtthedegreesof theShur

fun-tions involved are all equal, i.e., r 000

= r 0

= r 00

= n,

andthe expansionoeÆients aretheoeÆientsof

redutionofthe Kronekerprodutof S(n)irreps [ 0

and[ 00

℄.

In the outer produt one has r 000

= r 0

+r 00

and

the oeÆients are obtained simply by making the

produtofaShurfuntioninvariables(x

1 ;x

2 ;:::;x

n 0

)

by another in variables (y

1 ;y

2 ;:::;y

n 00

) and expressing

it as a linear ombination of Shur funtions in

vari-ables(z

1 ;z

2 ;:::;z

n 000)

with z

i =x

i

for1 i n 0

and

z

n 0

+i =y

i

for1in 00

. Littlewoodobtaineda

proe-duretondtheoeÆientsoftheouterprodutknown

intheliteratureas\Littlewood's rules".

Onendsintheliterature[1℄,[3℄,[37℄tables ofouter

produtsforn 0

+n 00

=1;2;:::;14. Tradiionallysuh

ta-blesareorganizedasthetablegivenbelowforn 0

+n 00

=

5.

f5g f41g f32g f31 2

g f2 2

1g f21 3

g f1 5

g

f4gf1g 1 1 f1

4

gf1g

f31gf1g 1 1 1 f21

2

gf1g

f2 2

gf1g 1 1 f2

2

gf1g

f3gf2g 1 1 1 f1

3

gf1 2

g

f21gf2g 1 1 1 1 f21gf1

2

g

f1 3

gf2g 1 1 f3gf1

2

g

f1 5

g f21 3

g f2 2

1g f31 2

g f32g f41g f5g

(4)

The numbers in the internal part of the table

givethe multipliityof theShurfuntions f 000

gthat

appear in the deomposition of the outer produt

f 0

gf 00

gand theemptyboxesmean zero. The Shur

funtionsintheupperedgeorrespondtotheproduts

that appear inthe leftedgewhile theones ofthe

bot-tomedgeorrespondtotheprodutsthatappearinthe

rightedge.

Plethysmswillbeonsideredinthenextsubsetion.

II.2 InvariantMatries and Plethysms

LetA(a

ij

)beanonsingularmatrixofdimension

nnrepresentingthelinearinversibletransformation

AofonepointX inapointX 0

ofan-dimensional

ve-torspae. Intermsofoordinatesonehas

[X 0

℄=A[X℄ (14)

where [X℄ = [x

1; x

2 ;:::;x

n ℄

T

and [X 0

℄ =

[x 0

1 ;x

0

2 ;:::;x

0

n ℄

T

are olumn vetors in the oordinates

of X and X 0

. One an onstrut ( n+r-1

r

)

homoge-neousprodutsofdegreerin theoordinatesx

i ofX:

x r

1

1 x

r

2

2 :::x

rn

n ; r

i 0;

n

X

i=1 r

i

=r: (15)

Eahofthoseprodutstransforms,underthe

trans-formation A, into a linearombinationof themselves.

Dening aolumn vetor[X℄ r

whose omponentsare

those produts enumerated in an arbitrary way, its

transformedunderAanbewrittenas

([X℄ r

) 0

=A [r℄

[X℄ r

; (16)

what denesamatrixA [r℄

alledther-induedmatrix

of thematrixA . The elementsof A [r℄

arelearly

ho-mogeneuspolynomialsofdegreerintheomponentsof

A.

Makingthesameoperationwithanonsingularnn

matrixB oneobtainsB [r℄

. IfC=AB, thenitanbe

provedthat

C [r℄

=(AB) [r℄

=A [r℄

B [r℄

(17)

what means that the set of matries D [r℄

(A) A [r℄

isa( n+r-1

r

)-dimensionalrepresentationofthegroup

GL(n)ofthenonsingularmatriesofdimensionnn.

Asexample,onehasforr=2:

x 0

i x

0

j =

X

k ;l a

ik a

jl x

k x

l =

X

k (a

ik a

jk )x

2

k +

X

k <l (a

ik a

jl +a

il a

jk ) x

k x

l

(18)

whatimpliesin

A [2℄

(ij)(k k ) =a

ik a

jk

; ij; A [2℄

(ij)(k l) =a

ik a

jl +a

il a

jk ;

ij;k<l.

Forn=2andhoosingtheordering(x 2

1 ;x

1 x

2 ;x

2

2

)onehas

A [2℄

= 0

a

2

11

2a

11 a

12

a 2

12

a

11 a

21 (a

11 a

22 +a

12 a

21 ) a

12 a

22

a 2

21

2a

21 a

22

a 2

22 1

A

; n=2 . (19)

Itshouldbenotied thatthetraeofA [2℄

is

tr

A [2℄

=a 2

11 +a

2

22 +a

11 a

22 +a

12 a

21 =

2

1 +

2

2 +

1

2 =h

2

=f2g();

wheref2g()istheShurfuntion f2gomputedwiththeeigenvaluesofA.

Foranyothernonsingular22matriesB;C ;D;:::oneanonstruttheirseondinduedmatriesB [2℄

;C [2℄

;D [2℄

;:::

asthematries whose omponentsare thesame polynomialsof degree2of A in whih nowthevariables are the

orrespondingelementsofmatriesB;C ;D;:::. Itisimmediateto prove,byhandalulation,that

A [2℄

B [2℄

=(AB) [2℄

; 8A;B; 22

whatagreeswithEq.(17). Letustakenowr(<n)opiesofthevetorX andbuildthe( n

r

)determinants

d

(e1e2:::ep) =

x

(1)

e1 x

(2)

e1

::: x (r)

e1

x (1)

e

2 x

(2)

e

2

::: x (r)

e

2

::: ::: ::: :::

x (1)

er x

(2)

er

::: x (r)

er

; 1e

1 <e

2

<:::<e

r

(5)

If eah X (s)

is transformedby the sametransformation A, these determinants will transform linearly among

themselvesbytherelation

[d℄ 0

=A (r)

[d℄ (21)

where[d℄istheolumnvetorwhoseomponentsarethed

(e

1 e

2 :::e

r )

enumeratedin anarbitraryway. Relation(21)

denes thematrixA [r℄

, therth ompound matrixofA. It followsfrom this denitionthat thematrixelementsof

A (r)

aretheminorsofdegreeroftheoriginalmatrixA.

IfC=AB,thenoneanalsodemonstratethat

C (r)

=(AB) (r)

=A (r)

B (r)

. (22)

Asexample,for r=2onehas

d

eiej 0

=

x

(1)

e

i x

(2)

e

i

x (1)

ej x

(2)

ej

=

P

k a

eik x

(1)

k P

k a

eik x

(2)

k

P

l a

ejl x

(1)

l P

l a

ejl x

(2)

l

=

= X

k ;l

a

e

i k

x (1)

k a

e

i k

x (2)

k

a

e

j l

x (1)

l a

e

j l

x (2)

l

=

X

k <l

a

ik a

jk

a

il a

jl

d

e

k e

l .

Then,forn=2onehas

A (2)

=a

11 a

22 a

12 a

21

=det( A) , n=2. (23)

For n=3,withtheorderingd

12 ;d

13 ;d

23

onehas

A (2)

= 0

a

11 a

22 a

12 a

21 a

11 a

23 a

13 a

21 a

11 a

23 a

13 a

23

a

11 a

32 a

12 a

31 a

11 a

33 a

13 a

31 a

12 a

33 a

13 a

32

a

21 a

32 a

22 a

31 a

21 a

33 a

23 a

31 a

22 a

33 a

23 a

32 1

A

; n=3. (24)

d

IfC=ABthen,againbyhandalulation,onean

provethat

C (2)

=(AB) (2)

=A (2)

B (2)

. (25)

The r-indued and r-ompound matries are

par-tiular asesofinvariant matrieswhosedenition are

givenin thefollowing.

Let T(A)be a matrixwhose elementsare

polyno-mials t

ij

havingasvariablesthematrixelementsofA.

LetT(B)beamatrixbuiltwiththesamepolynomials

ofT(A)nowin thematrixelementsofB. If

T(A)T(B)=T(AB) (26)

foranynonsingularnnmatriesA;Bthenthematrix

T(A)isalledainvariantmatrixofA.

Itfollowsfrom (26)that,onethesetof

polynomi-alst

ij

is xed,the setof matries D T

(A)T(A)is a

representationofGL(n).

Atrivialaseis the1-induedmatrix. Inthis ase

one has t

ij = a

ij and A

[1℄

A. As it is known, the

traeofAisthesumofitseigenvalues

i

,that is,

tr(A)= X

i

i =a

1

()=f1g() (27)

wheref1g()istheShurfuntionf1galulatedwith

theeigenvaluesofA. Thiswillbe,bydenition,D [1℄

.

SinetheKronekerprodutoftworepresentations

isalsoarepresentationandtheprodutoftwo

polyno-mialsisalsoapolynomial,itfollowsthatthekroneker

produtof twoinvariant matries is also an invariant

matrix.

Littlewood[1℄ showedthatif the produtof two

in-variant matriesis reduible, thenit will betotally

re-duible. Thisallowsus toobtainnewirreps by taking

multiple Kroneker produts of the irrep D [1℄

and

re-dutingthembysimilaritytransformations.

As asake of example, let us take n = p = 2. In

thisaseonehasA [2℄

andA (2)

givenby(19)and(23).

WritingAAintheform

AA= 0

B

B

a

11 a

11 a

11 a

12 a

12 a

11 a

12 a

12

a

11 a

21 a

11 a

22 a

12 a

21 a

12 a

22

a

21 a

11 a

21 a

12 a

22 a

11 a

22 a

12

a

21 a

21 a

21 a

22 a

22 a

21 a

22 a

22 1

C

C

A

(6)

M 1

(AA)M = 0

B

B

a

2

11

2a

11 a

12

a 2

12

0

a

11 a

21 a

11 a

22 +a

12 a

21 a

12 a

22

0

a 2

21

2a

21 a

22

a 2

22

0

0 0 0 a

11 a

22 a

12 a

21 1

C

C

A

= A

[2℄

+A (2)

d

with

M= 0

B

B

1 0 0 0

0 1 0 1

0 1 0 1

0 0 1 0

1

C

C

A .

Thisshowsthat,forn=2,A [1℄

A [1℄

redues into

A [2℄

+A (2)

.

Forr=2and anynonehas( n+2-1

2

)+( n

2 )=

n 2

. Sinetr(AA)=(tr(A)) 2

thisdrivesustosuppose

that

A [1℄

A [1℄

=A [2℄

+A (2)

for any n, what turns out to be true sine the

Kro-nekerprodut of twomatries anbedeomposed in

asymmetriandanantisymmetripartrelativetothe

omponentsoftherstandseondfatormatries.

An analogous analysis an be done for the

r-Kronekerprodut M M:::M . Based in this

analysis,Shur[4℄demonstrated that\If Ais annn

matrix, there are asmany irreduible invariant

matri-es ofA of degreer asarethe partitionsof r withno

morethannpartsandthetraeofthemaretheShur

funtionsofdegreerintheeigenvaluesofA."

Those irreduible matries anthen be labeled by

thepossiblepartitionsofrinnomorethannparts.In

thisnotationonewritesA (r)

A [1

r

. Clearly,forr>n

onlytheirrepswithuptonrowsarerealizable.

The details of theeetiveonstrution ofan

irre-duible invariantmatrixorrespondingtoagiven

par-titionanbefoundin Refs[8℄,[14℄.

Using theomponentsoftheShur funtionsto

la-beltheGL(n) irreps,theaboveresultshowsthat

\ The GL(n) irreps an be labeled by

[m

1n ;m

2n ;:::;m

nn

℄wherethem

in

satisfytherelations

m

in m

i+1n

;1inandthetraeofeahelement

A of GL(n) is theShur funtion fm

1n ;m

2n ;:::;m

nn g

evaluatedwiththeeigenvaluesofA."

SinetheGL(n) irrepsdonotredue underthe

re-stritionGL(n)!U(n)thesameresultholdsforU(n).

LetT 0

andT 00

betworepresentationsofGL(n) by

invariantmatries. From(26)itfollowsthat

T 00

(T 0

(AB))=(T 00

(T 0

(A))(T 00

(T 0

(B)). (28)

Sinetheprodutoftwopolynomialsisalsoa

poly-nomial, it follows that any invariant matrix of an

in-variant matrixis also an invariantmatrix of the

orig-inal matrixandtherefore anbeexpressed asadiret

sumofirreduibleinvariantmatries. Thisallowsusto

write

[A [℄

℄ [℄

= X

A

[℄

: (29)

Letusdenotebyr

;r

er

thedegreesof[℄;[℄and

[℄. SineA [℄

isobtainedbytheredutionof ther

-pleKronekerprodutofAand,byitsturn,[A [℄

℄ [℄

is

obtainedreduingther

-pleKronekerprodutofA [℄

itfollowsthattheirrepsthatappearintheRHSof(29)

havedegreer

=r

r

.

Sinethetraeofanirreduibleinvariantmatrixis

equal to the Shur funtion of the orreponding

par-tition, Eq.(29) allows us to stablish a orrespondene

fgfgbetweentwoShurfuntions fgofdegrees

r

andr

withShurfuntionsfgofdegreer

r

given

by

fgfg= X

fg; (30)

wheretheoeÆients

aregivenby(29).

This orrespondene was desovered by

Littlewood[14℄andlaterwasnamed plethysm.

Theplethysmoperationhastheproperties[3℄,[2℄,

(7)

fg(fgfg) = fgfgfgfg, (32)

(fg+fg)fg = X

0

00

(f 0

gf 00

g!fg)(fgf 0

g)

(fgff 00

g). (33)

(fg fg)fg = X

0

00

( ) r

00

(f 0

gf 00

g!fg)(fgf 0

g)

(fgf ~

00

g) (34)

fg(fgfg) = (fgfg)(fgfg) (35)

(fgfg)fg = X

0

00

(f 0

gf 00

g!fg)(fgf 0

g)

(fgf 00

g) (36)

(fgfg) T

= (

f e

gfg; forr

even,

f e

gfeg; forr

odd.

(37)

Thesumin Eq.(33)inludestheasesf 0

g=f0g1,f 00

g=fgand f 0

g=fg,f 00

g=f0g1. Symilarly

in Eqs(34)and(36). Also,r 00

andr

are thedegreesoff 00

gand fg.

InEq.(37)weusedthenotation

"

X

i a

i f

(i) g

#

T

= X

i a

i f

e

(i)

g; (38)

d

where a

i

are numerialfators, f

(i)

gShur funtions

andf e

(i)

gtheironjugate.

Thereisalsoadimensionformula[2℄,[3℄,[33℄

d

fgfg

X

(fgfg!fg)d

[℄ =

(rs)!

(r!) s

s! (d

[℄ )

s

d

[℄ ,

(39)

where randsarethedegreesof[℄and[℄ andd

[℄ is

thedimensionoftheirrep[℄ ofS(degreeof[℄).

Up to now we haveseen plethysms of Shur

fun-tions of GL(n). Onean obtain plethysms of

ontin-uous subgroups G of GL(n) simply by expressing the

irreduible haratersofGintermsofShurfuntions

and then omputing the plethysm of Shur funtions.

If neessary,theresultan bere-expressedin termsof

theirreduibleharatersofG. Thiswillbedonewhen

wewill onsidertheappliations.

IntheaseofG=S(n),anitesubgroupofGL(n)

of great importane in thestudy ofsystems of

identi-al partiles,thisproessinvolvestheoneptofinner

plethysm whih weshallonsiderinthefollowing.

As we have seen previously, the inner produt

fgfg of two Shur funtions of the same degree

r orresponds to the Kroneker produt of two irreps

[℄ and [℄ of S(r). The asefgfg anbe

anal-ysedin itssymmetriandantisymmetrionstituents.

TheKronekerprodutMMofamatrixMbyitself

deomposesas

MM :

=M [2℄

uM [1

2

: (40)

Taking by M the matrix that represents a given

permutation of S(n) in the irrep [℄, orrepondently,

theexpressionfgfganbeanalizedintwoparts,

denoted byfgf2gand fgf1 2

g. The operation

denoted by the symbol is alled inner plethysm[13℄

andwillbedened inthefollowing.

LetM

i

beamatrixofageneri permutation P

i of

S(n)and [℄

(P

i

)itstrae. Thentheinvariantmatrix

ofM

i

assoiatedtothepartition[℄,thatis,M [℄

i ,also

representsthe elementP

i

and itstraeisaompound

harater,say,

tr(M [℄

i )=

X

G

[℄

(P

i

) . (41)

Onedenes fgfg, theinner plethysm of

par-titions fg and fg of degrees n and m, as a linear

ombination of partitions fgof degree n with

oeÆ-ientsgivenbyEq.(41),that is,

fgfg= X

G

(8)

Notiethat although thedegreeof partitions [℄ and [℄ is n, there is norestrition onerningthe degreeof

partition[℄ .

Theinnerplethysmshavepropertiesanalogoustothoseofplethysms,roughlyhangingouterprodutsofShur

funtionsbyinnerproduts,thatis,

(fgfg)fg = fg(fgfg) ;

fg(fg+fg) = fgfg+fgfg ;

(fg+fg)fg = X

(fgfg!fg)(fgfg)(fgfg),

fg(fgfg) = (fgfg)(fgfg) ; (43)

(fgfg)fg = X

(fgfg!fg)(fgfg)(fgfg).

III. Plethysms Calulation

In[3℄onendsthefollowingexpressionforalulationofplethysm:

f 0

gf 00

g= X

( 00

) n

00

( 00

)

r 00

!

[ 00

( 00

)(S 00

1 )

00

1

(S 00

2 )

00

2

:::(S 00

n 00

)

00

n 00

, (44)

where

r 0

andr 00

arethef 0

gandf 00

gdegrees,( 00

)=(1

00

1

;2

00

2

;:::) aretheS(r 00

)lassesandn 00

( 00

)theirnumberof

elements,

S 00

i =

X

[℄

ir 0

fg

in 0

X

( 0

) n

0

( 0

)

r 0

!

[ 0

( 0

) [℄

ir 0

(

0 (

0

)) , (45)

0 (

0

)istheS(ir 0

)lasswith 0

1

ilesoflength1, 0

2

iles oflength2,et.

TheShurfuntionsf 000

g,havingdegreer 000

=r 0

r 00

,whihenterintheplethysmareobtainedafterreduing

theouter produtsof Shur funtions inside theS 00

i

. For smallvalues ofr 000

it is possibleto onstrutplethysms

tables with thesameorganizationof thetables of outer produts. Onehas, asanexample, forr 000

=6 thetable

below

f6g f51g f42g f41 2

g f3 2

g f321g f31 3

g f2 3

g

f2gf3g 1 1 1 f1

2

gf3g

f2gf21g 1 1 1 f1

2

gf21g

f2gf1 3

g 1 1 f1

2

gf1 3

g

f3gf2g 1 1 f1

3

gf1 2

g

f3gf1 2

g 1 1 f1

3

gf2g

f21gf2g 1 1 1 1 f21gf1

2

g

f1 6

g f21 4

g f2 2

1 2

g f31 3

g f2 3

g f321g f41 2

g f3 2

g

TableII:AllplethysmsthatprodueShurfuntionsofdegree6.

In[3℄oneanndplethysmstablesforr 000

upto10. Ibrahin[15℄,[16℄publishedtableswithr 000

=12;14and15.

Notiethatsuhtablesexist onlyforr 000

nonprime. Partialtables werepublishedin [2℄and[21℄.

Forgreatvaluesofr 000

theuseof(44)isunpratial,thentheneedforalternativeformulas. Forsomepartiular

asesof f 0

gandf 00

gthereexistexpliit(oralmost)formulaseasytouse. Theyarethefollowing:

fgf1g = f1gfg=fg; (46)

fgf0g = f0g; f0gfg=Æ

fg;frg

f0g; (47)

frgf2g = [r=2℄

X

(9)

frgf1 2

g =

[(r+1)=2℄

X

i=1

f2r (2i 1);(2i 1)g; (49)

f2gfrg = X

fg

even

; (50)

f1 2

gfrg = X

^

fg

even

; (51)

f1 r

gf2g = f1 2r

g+ [r=2℄

X

i=1 f2

2i

;1 2r 4i

g ,r even, (52)

f1 r

gf1 2

g = f1 2r

g+ [r=2℄

X

i=1 f2

2i

;1 2r 4i

g , rodd (53)

f1 r

gf1 2

g =

[(r+1)=2℄

X

i=1 f2

2i 1

;1

2r 2(2i 1)

g ,r even, (54)

f1 r

gf2g =

[(r+1)=2℄

X

i=1 f2

2i 1

;1

2r 2(2i 1)

g , r odd, (55)

d

Eq.(46) follows from plethysms denition while

Eq.(47) is set for onsisteny. In Eq.(50), fg

even

meanspartitionof 2rwithalllineseven. Eqs.(54)and

(55)followfromEqs.(48)and(49)byonjugation[see

Eq.(37).℄.

In [21℄ there are formulas for the alulation of

plethysms fgfg when both Shur funtions are

symmetrior/andantisymmetri. Toexplainthem we

needthefollowingdenition: ak-borderstripofagiven

Youngdiagram [℄isasequeneofk squaresin whih

the rst of them is the last one of therst line of [℄

andthenextsquaretoagivenoneistheonebelowit,

ifitexists, ortheonetoitsleft,otherwise.

For example,the3-borderstrips of [41 2

℄;[321℄ and

[2 2

1 2

℄arethesquareswiththesymbolin thegures

below,respetively:

,

,

.

Whenfgandfgarebothsymmetri,one has

fngfmg= 1

m m

X

k =1 fng(x

k

)(fngfm kg); m1; (56)

with

fng(x k

)= X

C

n;k ;

fg: (57)

In(57)thefgareallShurfuntionsofdegreenk. TheoeÆientsC

n;k ;

areobtainedfromtheYoungdiagram

assoiatedto fgremoving,in sequene,nk-borderstrips. Ifin allstepstheresultingdiagramberegularthen

C

n;k ; =( )

l

(58)

withl=(numberoflines in the k-border strips) n. Ifin anystep theresultingdiagram be notregular, then

C

n;k ;

=0. Asexample,fromtheguresaboveonehas

C

2;3;f41 2

g =( )

4 2

=1; C

2;3;f321g =( )

5 2

= 1; C

2;3;f2 2

1 2

g =0.

TheoeÆientC

2;3;f2 2

1 2

g

iszerobeauseafterremovingtherst3-borderstriptheresultingdiagramorresponds

(10)

Eq.(56)allowsoneto relate theplethysm of twosymmetriShur funtions with theplethysms of symmetri

Shur funtions of smaller degrees. In this way, using fngf1g fng as starting point oneomputes all the

plethysmsoftypefngfmg.

Usingtheresult

f1 m

g=( ) m+1

fmg+ m 1

X

k =1 ( )

k +1

fkgf1 m k

g; m1 (59)

andEqs.(32)oneobtains

fngf1 m

g=( ) m+1

fngfmg+ m 1

X

k =1 ( )

k +1

(fngfkg)(fngf1 m k

g) (60)

f1 n

gf1 m

g=( ) m+1

f1 n

gfmg+ m 1

X

k =1 ( )

k +1

(f1 n

gfkg)(f1 n

gf1 m k

g) (61)

Forf1 n

gfmgoneuses

f1 n

gfmg= (

[fngfmg℄ T

; forneven,

[fngf1 m

g℄ T

; fornodd.

(62)

In this way, using (56) and (60)-(62) one omputes plethysms with both Shur funtions symmetri and/or

antisymmetri.

Theasesinwhihfgfghasalosedandsimpleexpressionallowustoompute,using(32)and(35)relations

alsolosedfortheorrespondingplethysms. Inthisway,from

fpgfqg= q

X

i=0

fp+q i;ig; pq (63)

oneobtainsfp;qg=fpgfqg fp+1;q 1g. Fromthisequation,using (32),(35)anditeratingoneobtains

fgfp;qg= q

X

i=0 ( )

i

(fgfp+ig)(fgfq ig); (64)

whatallowsustoexpressaplethysmwithatwo-rowShurfuntionatrightintermsofplethysmswithsymmetri

Shur funtionsatright.

Inananalogousway,from

f1 p

gf1 q

g= q

X

i=0 f2

q i

;1 p q+2i

g; pq; (65)

oneobtains

fgf2 q

;1 p q

g=(fgf1 p

g)(fgf1 q

g fgf1 p+1

g)(fgf1 q 1

g; (66)

what expressaplethysmwithatwo-olumnShur funtionat rightin termsofplethysmswith one-olumnShur

funtionsat right.

An analogousproedureisusedtoomputeplethysmswithShurfuntionsatleftwithmixedsymmetryusing

(33),(35)and(36). Dueto themoreomplexnatureoftheseequationsasomparedwiththatforShurfuntions

totherightthealulationis moreompliated.

WhenthedegreenoftheShurfuntion atleftisaompoundintegeroneanusethetablesofplethysmswith

naldegreentoobtainrelationsingeneralsimplerthantheonehereexposed. Asexample,fromf2gf1 2

g=f31g

oneobtains

f31gfg=(f2gf1 2

g)fg=f2g(f1 2

gfg)

andalsof21 2

gfgbyonjugation.

(11)

A veryommon situation whih arrisesin

applia-tionsiswhenoneneedstoomputeplethysmsofasame

Shurfuntionbymany(sometimesall)Shurfuntions

of agivendegreeto theright.[This is the aseof the

appliation that we will makein Setion 4.℄ For suh

aseswepresentthefollowingalgorithmthatallowsto

ompute,in abuildupway,allplethysmsfgfg

m

with fg a xed Shur funtion and fg

m

all Shur

funtions of degreem, one the plethysms fgfmg

andfgfg

m 0,

withm 0

<mhavealreadybeen

om-puted:

1) Find all partitions of m and order them in

de-sending order of their omponents read from left to

right;

2) For eah partition fg = f

1 ;

2 ;:::;

t

;0;:::;0g

performtheouterprodut

f

1 ;

2 ;:::;

t 1 gf

t

g,ordertheirrepsin theredution

asinitem(1),thenuseEqs.(32)toobtaintheequation

fgfg = (fgf

1 ;

2 ;:::;

t 1

g)(fgf

t g)

X

f 0

gfg (f

1 ;

2 ;:::;

t 1 gf

t g!f

0

g)fgf 0

g (67)

d

wherethesymbolmeanspreeding,followingthe

or-deringin item1).

Sinef

1 ;

2 ;:::;

t 1

gandf

t

ghavesmallerdegree

than fg, the plethysms fgf

1 ;

2 ;:::;

t 1 g and

fgf

t

ghavealreadybeenomputedintheindution

proess. Ontheotherhand,theplethysmsfgf 0

g

alsohavebeenomputedsinef 0

gpreedesfg.

As an example of the proedure suggested above,

welistbelowthesequeneofequations[obtainedfrom

Table I℄ that allows us to ompute fgfg for all

Shurfuntionsfgwithdegree5,onefgf5gand

theplethysmswithtotaldegreelessthan5r

beknown.

fgf5g = input,

fgf41g = (fgf4g)fg fgf5g;

fgf32g = (fgf3g)(fgf2g) fgf5g fgf41g;

fgf31 2

g = (fgf31g)fg fgf41g fgf32g;

fgf2 2

1g = (fgf2 2

g)fg fgf32g; (68)

fgf21 3

g = (fgf1 2

g(fgf2g) fgf31 2

g;

fgf1 5

g = (fgf1 3

g)(fgf1 2

g fgf21 3

g fgf2 2

1g:

d

Sinefngf5goneobtainsfrom(56),weuseitto

obtainallthe plethysms fngfgof degreenm. For

seuritysake,wereommendtomakeadimensiontest

using(39)forallnewplethysmobtained.

IV. Appliations

Inappliations of grouptheory to problems of

nu-learandatomi spetrosopywearefrequentlyledto

onsider thedeomposition ofharatersof irrepsofa

thoseofoneofitssubgroup. Thesubgroupanalsoat

over a n-dimensional vetor spae but in a restrited

way. It analso be the diret produt of twogroups

thatatovern

1 -andn

2

-dimensionalvetorsubspaes

of the original spae. As example, Sp(4` +2) !

SU(2)R (2`+1);R (2`+1) ! R (3);R (6) ! R (5)

andGL(2)!R (3)havemanyappliations inthe

the-oryofomplexspetra[WewillusethenotationU for

unitary,O fororthogonal, R=O +

=SO for

unimodu-larorthogonalorrotation,SpforsympletiandGLfor

(12)

asimpleandompletesolutiontothisproblem.

This solutionisbasedinthetheorem[2℄

If under the restrition G!H the harater [1℄

of group Gdeomposesas

[1℄ =( ) +( ) +:::+ ( ! ) (69)

thentheharater[℄ ofGdeomposesintothe

har-aters() of H aording to the haraters ontained

inthe plethysm

[ ( )+( ) +:::+ ( ! ) ℄[℄ : (70)

Thisplethysmanbeobtainedexpressingthe

har-aters of G and H in terms of haraters of GL(n),

omputingtheresultingplethysmsofGL(n)haraters

andre-expressingtheresultintermsofharatersofH

in ordertoobtainthenal result.

Using theassoiation irrep $ harater this

theo-remgivesustheoeÆientsoftheredutionoftheirrep

[℄ of Gin thediret sumofirreps() ofH.

Let us onsider now some illustrative examples of

the apppliationsof thetheorem. To this end welist

belowthe deomposition of the harater [1℄ ofG in

termsofharaters[2℄() ofH:

U(n) ! U(n-1): f1g=f1g+f0g;

U(4`+2) ! SU(2)O +

(2`+1): f1g=[ 1

2 ℄

0

(1);

O +

(8`+4) ! SU(2)Sp(4`+2): (1)=[ 1

2 ℄

0

<1>;

Sp(4`+2) ! SU(2)R (2`+1): <1>=[ 1

2 ℄

0

(1);

O +

(2`+1) ! O +

(3): (1)=(`);

O +

(6) ! O

+

(5): (1)=(1)+(0);

GL(2) ! O

+

(3): f1g=(3);

U(n) ! O(n): f1g=(1);

U

ST

(6) ! U

S

(3)U

T

(3): f1g=f1g

S f0g

T +f0g

S f1g

T ;

U(nm) ! U(n)U(m) f1g=f1g

0

f1g 00

:

(71)

Bytheabovetheorem andthe rstline of (71), in order toobtain theU(n 1) irrepsontainedin theU(n)

irrepfgwemustevaluatetheplethysm

(f1g+f0g)fg = X

0

00

(f 0

gf 00

g!fg)(f1gf 0

g)(f0gf 00

g

= X

0

n 00

(f 0

gfn 00

g!fg)f 0

g (72)

d

whereusewasmadeof(33),(46)and(47). From

Little-wood's rules,theShur funtionsf 0

gthat anouple

with somesymmetri Shur funtion fn 00

gtogivefg

aretheonesthatsatisfy

1

0

1

::::

n 1

0

n 1

n

: (73)

Usingthisresultin Eq.(72)oneseesthatunderthe

restritionU(n)U(n 1)onehastheredution

fg= X

0

f 0

g (74)

in whihthef 0

garealltheU(n 1)irrepssatisfying

Eq.(73).

These arethe wellknownin-betweeness onditions

introduedbyGelfand[34℄inthelabelingofbasisstates

ofU(n)irreps.

Inthelastlineof(71)onehastheaseofaredution

ofanirrepofaunitarygroupintoirrepsofitssubgroup

whih is adiret produt of onegroupating in aset

ofvariablesbyanotherthatatsintheremainingones.

Inthisaseonehastheplethysm

(f1g 0

f1g 00

)fg = X

0

00

(f 0

gf 00

g!fg)(f1g 0

f

0

g)(f1g 00

f

00

g=

X

0 00 (f

0

gf 00

g ! fg)f

0

gf 00

(13)

Theinnerprodutf 0

gf 00

gintheRHSof(75)

re-quiresthattheirrepsf 0

gandf 00

gthatappearinthe

redutionoffghaveboththesamedegreeastheone

offg. Thisresulthasanimportantroleinappliation

to Nulear Physisin the treatment ofthe spin-isopin

part of a system of nuleons. In this ase the basis

funtionsarelabeledbythehainofsubgroups

U(4)U(2)

spin U(2)

isospin.

Using (75)it followsthat theredutionof anirrep

fgofU(4)intoirrepsfgfgof U(2)U(2)isgiven

by

fg=

X

(fgfg!fg)fg

spin fg

isospin

. (76)

Theorrespondenewithtotalspinandisospin isgivenby

S = 1

2 (

1

2 ); T =

1

2 (

1

2 );

1 +

2 =

1 +

2

=n . (77)

Inthe treatmentof systemsof idential partiles, in (75)one uses fg=fng for bosons and fg=f1 n

gfor

fermions. Forthese aseonehas

(f1g 0

f1g 00

)fng = X

fg

0

fg 00

;

(f1g 0

f1g 00

)f1 n

g = X

fg

0

f e

g 00

;

from whatfollowstheredution

fng ! X

fg

0

fg 00

; r

0 =r

00 =n; (78)

f1 n

g !

X

fg

0

f e

g 00

; r

0

=r

00

=n; (79)

wherewehaveusedthenotationfg 0

andfg 00

todenotepartitionswithnomorethann 0

andn 00

rows,respetively.

Consider,asanotherexample,theredutionoftheirrepf1 n

gU(4`+2)intoirrepsofSU(2)O +

(2`+1). Using

(70)and(71)oneshouldrstomputetheplethysm([1=2℄ 0

(1))f1 n

g. UsingtheisomorphismbetweenSU(2)and

GL(2)wetake[1=2℄ 0

=f1g. Using(34),

(f 0

gf 00

g!fng)=Æ

f 00

g;f 0

g

, (f 0

gf 00

g!f1 n

g)=Æ

f 00

g;fe

0

g

(80)

and(46),itfollowsthat

(f1g 0

f1g)f1 n

g = X

0

00

(fg 0

fg

00

!f1 n

g)(f1g 0

fg

0

)

(f1gfg 00

) = X

fg

0

f e

g 00

, (81)

where fgarepartitions ofn. Sinefgmustbeexpressedin termsofGL(2) irreps,onlytheirrepsfgoftype

fp;qgwithp+q=nontribute. Suhirrepsareexpressedin termsofSU(2)irrepsas[(p q)=2℄. Onehasthen,

f1 n

g! h

n

2 i

f1 p

g+

X

p>q1; p+q=n

1

2 (p q)

f2 q

;1 p q

g (82)

where f1 p

gandf2 q

;1 p q

gmustbeexpressedintermsofO +

(7) irreps. Asanexample,forn=3,onehas

f1 3

g!

3

2

0

f111g+

1

2

0

f210g=

3

2

0

[111℄+

1

2

0

(14)

where useismadeof (84)[givenbelow℄to expressthe

U(7)irrepsintermsoftheones ofO +

(7).

In ases in whih [1 ℄ = (1), due to property

(46), the theorem gives a trivial identity being of no

use. It is what happens, for example, in the

redu-tion U(n) ! O(n). For this ase one has the known

result[1,2,3℄:

\TheharaterfgofU(n)deomposesintoO(n)

haraters( 00

)bytherelation

fg= X

00

"

X

0

(f 0

gf 00

g!fg) #

( 00

) (84)

where the sum is made in the irreps f 0

g with even

omponents. " Forexample,

f0g = (0); f1g=(1); f2g=(2)+(0);

f311g = (311)+(21)+(111):

UsingatableofredutionU(n)!O(n)[Onesuh

a table an be found, for instane, in Ref.[3℄. ℄ one

anobtaintheinverseresult: toexpresstheharaters

of an O(n) irrep () in terms of U(n) irreps fg. A

generalproedure toexpresstheharatersofO(n)in

termsofthoseofU(n)isgivenin Ref.[9℄

Theplethysmtehniqueanbeapplied in the

var-ious versions of the Interating Boson Model(IBM)

whih haveaveryrih algebrai struture. For

exam-ple, in IBM-4 oneneedsthebranhing rulefor the

re-dutionofirrepsfgofU

ST

(6)intoirrepsfgfgofthe

semi-diretprodutU

S (t)U

T

(3) ofU

S

(t) byU

T (3).

Thisredutionisobtainedusingthe9thlineofEq.(71).

ProeedingsymilarlytotheaseU(nm)U(n)U(m)

oneobtainsforthisredutiontheresult

fg

ST =

X

fg

S fg

T (fg

S fg

T !fg

ST )fg

S fg

T ;

(85)

fg

S

andfg

T

beingU(3)irreps.

IV.1 Apliationin Nulear Struture

Inthetraditionalnonrelativistitreatmentthe

nu-leus isonsidered asasystem ofA fermions, the

nu-leons, with spin and isospin 1=2 and 3 spatial

de-greesoffreedominteratingthroughone-andtwo-body

fores. Thebound statesofsuhsystemaredesribed

by totallyantisymmetri wavefuntions sineits

on-stituentsarefermions.

TheintrodutionofJaobivetors

!

i =

1

p

i(i+1) 0

i

X

j=1 !

r

j i

!

r

i+1 1

A

; i=1;2;:::;A 1 , (86)

!

A =

1

p

A A

X

j=1 !

r

j

(87)

allowsustoremovetheenterofmassandfousattentiononlytotherelativemotiondesribedbythetranslationally

invariantJaobyvetors !

1 ;

!

2 ;:::;

!

A 1.

Todesribetheboundstatesofsuhsystemwewilluseasbasisthebasisfuntionsofirrep[1 7(A 1)

℄ofU(7(A

1))U (r)

(3(A 1))U (s)

(4(A 1)):Thespin-isospinpartisdesribedusingthehain

U (s)

(4(A 1)) U

(ST)

(4) U

(s)

(A 1)

[ [

U (S)

(2)U (T)

(2) O

(s)

(A 1)

[

S (s)

(A)

(88)

whilethespaepartisdesribedby

U (r)

(3(A 1) U(3) U

(r)

(A 1)

[ [

O +

(3) O

(r)

(A 1)

[

S (r)

(A) :

(15)

Itfollowsthentheinterestin studyingthe

branh-ingrulesofirrepsofhainsofkind

U(A 1)O(A 1)S(A): (90)

Thisnotationis abit misleadingsineitmayraise

the question:how is it possible that the permutation

group of A objets may be a subgroup of a

transfor-mation group of a smaller number A 1 of objets?

The answer is that the objets are not the same. In

U(A 1) and O(A 1) we onsider the radial

om-ponents of the A 1 translationally invariant Jaobi

vetors(86)whileinS (r)

(A)theobjetsare theradial

omponentsofthepositionvetors !

r

i

. Apermutation

ofthepositionvetors !

r

i

turnsouttobeaorthogonal

transformation of the translationally invariant Jaobi

vetorandthereforeonehasO (r)

(A 1)S (r)

(A).

Sine the basis funtions of the irrep fg of

U (r)

(3(A 1))arefuntions onlyoftheoordinatesof

therstA 1Jaobivetors,fghastobesymmetri.

Wethen write fg =fEg . Sine the wavefuntions

ofthep-dimensionalharmoniosillatorarrytheirrep

fEgofU(p), it isusual to assoiateE to the

ongu-rationenergyofthenulearstateswhosespaepartis

desribedbywavefuntionslabeledbythehain(89).

This assoiation allows us to stablish a link with

the harmoni osillator shell model. The basis

fun-tionsoftheirrepfEgouldalternativelybelabeledby

thehainofsubroups

U(3(A 1))U (1)

(3)U (2)

(3):::U (A 1)

(3) (91)

d

inwhiheahlinkU (i)

(3)atsonlyinthe3oordinates

of the Jaoby vetor !

i

. Inthis ase theirreps

asso-iated to those U (i)

(3) would be all symmetri [E (i)

and their basis funtions would beeigenstates of

har-moniosillatorswithenergyE (i)

=(E (i)

+3=2)~!and

itwouldresult

E = A 1

X

i=1 E

(i)

: (92)

Thenumberoflinearlyindependentwavefuntions

of the 3-dimensional harmoni osillator with energy

E=(E+3=2)~!isequaltothedimensionoftheirrep

fEgofU(3)givenby

dim

fEg =

1

2

(E+1)(E+2). (93)

Inthisway,byPaulipriniple,intheEshellonean

putatmost4dim

fEg

=2(E+1)(E+2)nuleons. The

minimalongurationenergyis obtainedbyllingthe

shellsE =0(s);E=1(p);E =2(s d);:::;E

0

1and

puttingtheremainingn

0

nuleonsintherstpartially

lledshellE

0

. Thellledshells(ore)will ontain

n

ore (E

0 )=

E

0 1

X

E=0

2(E+1)(E+2)= 2

3 E

0 (E

0 +1)(E

0

+2) (94)

nuleons. This equationallowsoneto nd, foragiven A, thevalueof E

0

astheoneforwhihn

ore (E

0

)A

n

ore (E

0

+1). Thenwewillhave

E

min =

E0 1

X

E=0 4Edim

fEg +E

0 (A A

ore (E

0 ))=E

0 A

1

6 E

0 (E

0 +1)(E

0 +2)(E

0

+3). (95)

d

Ouraimis tolabelthestatesofasystemofA

nu-leons with minimal onguration energy E = E

min

with the labels given by the unitary hain (89). This

labellinghasbeenextensivelyused in ourappliations

oftheRestritedDynamisModel[39℄.

The U(3(A 1)) irreps are labeled by E . For

1 A 4 one has E

0

= 0 and E = 0. For A 5

we put E = E

min

obtained by use of Eqs.(94) and

(16)

fE

1 ;E

2 ;E

3

gthat,aordingto(78)mustsatisfy

E

1 +E

2 +E

3

=E . (96)

Also,for (78),the U (r)

(A 1)irreps arethe same

of U(3), that is, fE

1 ;E

2 ;E

3

g . Eq.(84) give us the

O (r)

(A 1) irreps ontained in the U (r)

(A 1)

ir-repfE

1 ;E

2 ;E

3

g. Oneof them isby sure(E

1 ;E

2 ;E

3 )

and onlythis orrespondsto states ofminimal

ong-uration energy. This x us the O (r)

(A 1) irrep as

that of U (r)

(A 1) . It still remains the restrition

O (r)

(A 1)!S (r)

(A).

TheU (r)

(A 1)irrepsfE

1 ;E

2 ;E

3

garealltheones

that satisfy (96) . The Pauli priniple, however,

im-poses an additional restrition. The treatment of the

spin-isospin partby theWigner supermultiplet model

impliesthat theS (s)

(A)irrep[ e

℄musthaveat most4

lines,that is,

[ ~

℄=[ ~

1 ;

~

2 ;

~

3 ;

~

4

℄ : (97)

ThereforetheS (r)

(A)irrep[℄,beingitsonjugate,

musthaveatmost4olumns.

Wewill see in the following thebranhing rules in

thehainU(A 1)S(A). Theredutionofirrepsin

thehainO(A 1)S(A)isobtainedbyrst

express-ingtheO(A 1)haratersintermsofthoseofU(A 1)

and,after,makingtheredutionU(A 1)!S(A)of

theresultingU(A 1)irreps.

The S(A) irrepsontainedin the redutionof the

U(A 1) irrepf 0

g aregiven by theexpansionof the

innerplethysmfA 1;1gf 0

gintermsofS(A)irreps

[Refs.[13,38℄℄:

fA 1;1gf 0

g= X

00

V

0

00[A r

00

; 00

1 ;

00

2 ;:::;

00

A 1

℄ (98)

wherer 00

= P

i

00

i

isthedegreeofU(A 1)irrepf 00

g.

ToobtainthemultipliityoeÆientsV

0

00

thatappearin(98)oneneedsrsttodenetheoperators b

D and b

D

whihatonU(A 1)irreps

Theoperator b

D(fg) isdenedbyitsationoveranirrepf 0

g:

b

D(fg)f 0

g= X

00

(fgf 00

g!f 0

g)f 00

g. (99)

Asexample, b

D(f2g)f31g=f2g+f1 2

g.

FromthepropertiesoftheouterprodutofShurfuntions,itfollowsthattheoperators b

Dsatisfytherelations:

b

D(f 0

g) b

D(f 00

g) = b

D(f 0

gf 00

g), (100)

b

D(f 0

g)+ b

D(f 00

g) = b

D(f 0

g+f 00

g). (101)

Theoperator b

D isdened intermof b

Dby

b

D =

1

X

t2=0 X

t

2 1

X

t3=0 X

t

3 :::

1

X

j

2 =0

1

X

j

3 =0

:::(fg

t2 fg

t3 :::)(

b

D(f2gfg

t2 )

( b

D(f3gf

t

3 g):::(

b

D(f2gfj

2 g)(

b

D(f3gfj

3

g)::: . (102)

Thefj

2 g;fj

3

g;::: aresymmetriShurfuntions andthefg

t

2 ;fg

t

3

;:::aregeneralShurfuntions ofdegrees

t

2 ;t

3 ;::: .

Denotingby r;r 0

and r 00

the degreesof fg;f 0

gand f 00

g onesees from (99) that the Shur funtions f 00

g

produedby b

D(fg)whenatingin f 0

ghavedegreesr 00

=r 0

r. Siner 00

mustbenonnegative, thislimitsthe

sumsin t

2 ;t

3

;:::when b

D atsin anirrepf 0

g.

Byproperty(101)itfollowsthat

b

D(fkgfg

t

k ) =

b

D X

00

(fkgfg

t

k !f

00

g)f 00

g !

=

X

00

(fkgfg

t

k

! f

00

g) b

D(f 00

(17)

for eah plethysmthat appearsin (102) . After, byuseof (100), theprodut of b

D 'sis onverted into asingle b

D

withargumentequaltotheprodutoftheShurfuntionsofeahfator. MakingtheouterprodutoftheseShur

funtions andusingagain(101)onean rewrite b

D in aformlinearized inthe b

D'sandintheShurfuntions:

b

D= X

0

00

C

0

00f

0

g b

D(f 00

g) (103)

theC

0

00

beingonlynumerialoeÆients.

Inthelinearized formof b

D oneangatherthetermswhose b

D'sargumentshavethesamedegree,thatis,

b

D= 1

X

i=0 2

4 X

fgi X

00

C

00

fgi f

00

g !

b

D(fg

i )

3

5

1

X

i=0 Æ

i

. (104)

When b

D atsoverf 0

goneobtains

b

Df 0

g= 1

X

i=0 Æ

i f

0

g= 1

X

i=0 2

4 X

fg

i X

00

C

00

fg

i f

00

g !

b

D(fg

i )f

0

g 3

5

. (105)

d

Using(99),performingtheouterproduts,and

ol-leting similartermsoneobtainsalinearexpressionin

theShurfuntions

b

Df 0

g= X

00

V

0

00

f 00

g. (106)

This nal redution gives us the irreps f 00

g and

thenumerialoeÆientsV

0

00

whihappearin (98).

Thef 00

g'sgivetheS(A)irreps[A r 00

; 00

1 ;

00

2 ;:::;

00

A ℄

presentintheredutionofU(A 1)irrepf 0

gandthe

V 'saretheirmultipliities.

From theproeduredesribedabove,toobtainthe

Æ

1

'sgivenin(104)theonlyt

k andj

k

in(102)that

on-tributeforÆ

i

arethesolutionsbynonnegativeintegers

oftheequation

1

X

k =2 k(t

k +j

k

)=i. (107)

Fori=0onlyonesolutionexists,t

k =j

k

=0,and

therefore,Æ

1

=0. Fori=1thereis nosolution,then

Æ

1

=0. Fori=2;3and4thefollowingresultsfollow:

Æ

2

= (f0g+f1g) b

D(f2g), Æ

3

=(f0g+f1g) b

D (f3g),

Æ

4

= (2f0g+2f1g+f2g) b

D (f4g)+(f1g+f1 2

g) b

D(f31g)+

+(f0g+f1g+f2g) b

D (f2 2

g).

Fromthedenitionof the b

D 0

sitfollowsthatÆ

i f

0

g=0whenthedegreeoff 0

gis lessthaniand, therefore,

itresultsthat

b

Df 0

g

r =(Æ

0 +Æ

1

+:::+Æ

r )f

0

g

r

(108)

for aShur funtion of degreer. With theÆ 'slisted aboveoneanomputetheredution U(n 1) !S(n)for

irrepsofdegreelessorequalto4:

f0g = [n℄ ,

f1g = [n 1;1℄,

f2g = [n 2;2℄+[n 1;1℄+[n℄ ,

f1 2

g = [n 2;1 2

℄,

f3g = [n 3;3℄+[n 2;2℄+[n 2;1 2

℄+2[n 1;1℄+[n℄,

(18)

f1 3

g = [n 3;1 3

℄, (109)

f4g = 2[n℄+3[n 1;1℄+3[n 2;2℄+[n 2;1 2

℄+[n 3;3℄

+[n 3;2;1℄+[n 4;4℄,

f31g = 2[n 1;1℄+2[n 2;2℄+3[n 2;1 2

℄+[n 3;3℄+[n 3;2;1℄

+[n 3;1 3

℄+[n 4;3;1℄,

f2 2

g = [n℄+[n 1;1℄+2[n 2;2℄+[n 3;3℄+[n 3;2;1;℄+[n 4;2 2

℄,

f21 2

g = [n 2;1 2

℄+[n 3;2;1℄+[n 3;1 3

℄+[n 4;2;1 2

℄,

f1 4

g = [n 4;1 4

℄.

d

Usinga table of redution U(n)O(n) [Ref.[3℄℄,

oneanexpress,bysubtrations,theharatersofO(n)

intermsofthoseofU(n).

In Refs.[3, 38℄ there is a table of the redution

O(n 1) S(n) for ( 0

) of degree no more than 7

andwithnomorethan3rows.

The expansion(104) of b

D in terms of Æ

i

allowsus

to ompute all the S(A) irreps [ 00

℄ ontained in the

U(A 1)irrepf 0

g. Forgreatvaluesofr

0

thisproess

istoomuhlaborious.

InappliationsinNulear Physisonehasthatthe

U(A 1) irreps of interestare, aording to (96),the

ones with no morethan 3 rows, that is, those of the

formf 0

g=fE

1 ;E

2 ;E

3

g. Besides,Paulipriniple

im-poses that the only physially aeptable S(A) irreps

arethoseoftheform

[℄=[4 k4

;3 k3

;2 k2

;1 k1

℄ (110)

with

4k

4 +3k

3 +2k

2 +k

1

=A. (111)

The k

i

are interpreted[36℄ as the number of spae

levelsoupyedby1;2;3;and 4nuleons,respetively.

Fromnowonwewillrestritourselvestotheasesof

interest in Nulear Physis, that is, theones in whih

the U(A 1) irreps f 0

g are also U(3) irreps

satisfy-ing Eq.(96)and the S(A) irreps[℄ satisfy(110) This

means that f 0

g has at most 3 rows and [℄ at most

4 olumns. These restritions, as will be seen below,

simplify enormouslythealulations.

Havinginmindtheserestritions,letus ndwhih

t

k 'sandj

k

'sinEq.(102)maygiveaontribution. When

applyingthelinearizedform[Eq.(103)℄of b

DtoaShur

funtion fg (A)

E

of U(A 1) one has, using Eqs. (99)

and(103),

b

Dfg (A)

E =

X

0

00

C

0

00

X

(f

00

gfg!fg (A)

E )

X

000

(f 0

gfg!f 000

g)f 000

g

(112)

ByEq.(98)theShurfuntionsf 000

gwillgiveS(A)irreps

[℄=[A r

000;

000

1 ;

000

2 ;:::;

000

A 1

℄. (113)

[Herewereallthatr

denotesthedegreeofageneralShurfuntionfg.℄

Sinefg (A)

E

hasat most3rows,theouterprodutf 00

gfggivesanonzeroontributiononlywhenbothf 00

g

andfghaveatmost3rows,i.e.

f 00

g=f 00

1 ;

00

2 ;

00

3

g and fg=f

1 ;

2 ;

3

g. (114)

Sinef 00

gisaomponentoftheredution

(f2gfg

t

2

)(f2gfj

2

g)(f3gfg

t

3

)(f3gfj

3 g):::,

onlyontributetheomponentsinfkgfg

tk

andfkgfj

k

gwithnomorethan3rows.

Wethenintroduethenotationfmg _

fgtodenotewhat weallareduedplethysm:

fmg _

(19)

In our appliations to Nulear Physis the only

plethysms that one needsto ompute arethe redued

ones. Thesehavemuhlessomponentsthanthe

om-pleteplethysms,whatmakestheomputeralulations

feasible.

Therulesofouterprodutaresuhthatifoneofits

fatorshasmorethanprows,thesameourswithall

the Shur funtions in its redution. Due to that, all

the plethysms properties here presented, but Eq.(39),

applytoreduedplethysms.

ComputeralulationsusingEq.(60)showthat

fkg _

f1 m

g=0; form>(k+1)(k+2)=2. (116)

Fromthisresultoneprovesthat

fkg _

fg = 0forShurfuntions fgwithmorethan

m=(k+1)(k+2)=2 rows. (117)

d

Inorder to produeaphysially aeptable

ontri-bution,theShurfuntionsf 0

ginEq.(112)whenouter

multiplyedbyfgmustgive,byEq.(98)and (110),in

itsredutionaShurfuntionwithat most4olumns.

Bytherulesofouterprodut,itfollowsthatbothf 0

g

andfgmusthavethisproperty:

f ~

0

g=f

0

1 ;

0

2 ;

0

3 ;

0

4

g; f~g=f

1 ;

2 ;

3 ;

4

g: (118)

Sinef 0

gisatermoftheredutionoff

t2 gf

t3 g:::,

itfollowsthat alsothefg

tk

musthavethis property.

This implies that among the redued plethysms

fkg _

fg

tk

thatappearinEq(102),onlythoseinwhih

thelengthofthefg

tk

'srowsdonotexeed4mustbe

onsidered.

The analysis of degrees of the Shur funtions in

Eq.(112)givesfurther informations:

r

00 +r

=E; r

0+r

=r

000 . (119)

FromEq.(113)and(110)onehas

A r

000

4. (120)

CombiningEq.(119)and(120)itfollowsthat

ir

00

r

0

E A+4 (121)

what setsanupperbound ini:

i

max

=E A+4. (122)

FromEq.(114)and(118)oneonludesthat

r

12. (123)

This resulttogetherwiththerstofEqs.(119) implies

that

r 00

E 12. (124)

CombiningEq.(102)and(103)onehas

r

0

= X

k =2 t

k ; r

00

= X

k =2 k(t

k +j

k

) (125)

andtherefore

i= X

k =2 [k(t

k +j

k ) t

k ℄=t

2 +

X

k =2 k(t

k +1 +j

k

): (126)

Fromthese equationsoneonludesthat

i X

k =2 t

k

(127)

and

i= X

k =2 t

k )

t

2

=i; t

3 =t

4

=:::=0;

j

2 =j

3

=:::=0:

(128)

Eq.(127),ombinedwithEq.(125)and(124)gives

E 12r

00

2i (129)

fromwhih oneonludesthat

2iE 12. (130)

Thisgivesalowerboundto i:

i

min =

E+1

2

6. (131)

Summarizing: givenE andA,thet

k

'sandj

k 'sin

Eq.(102)appliedtofg (A)

E

thatmaygivephysially

a-eptableS(A)irrepsareobtainedfollowingthe2steps:

1)takeiintherange

E+1

(20)

2)foreahiin thisrange,nd thenonnegative

in-tegersj

k andt

k

thatsatisfy

t

2 +

P

k =2 k(t

k +1 +j

k )=i,

P

k =2 k(t

k +j

k )=r

00

,

(133)

wherer

00

mustbein therangegivenbyEq.(129).

Theseonditionsreduesdrastiallythenumberof

j

k

'sandj

k

'sthatmayontributeandalsotheirvalues,

beingvalidforanyvalueofAandEE

min .

One the t

k

's and j

k

's that have a hane to

ontribute are determined, one omputes the redued

plethysmsassoiatedto themandontinuesthe

alu-lations.

In any physial appliation one starts by

examin-ing rst the ase E = E

min

, so it deserves a speial

attention.

Forp nulei(5A16)onehasE

0

=1and,

a-ordingtoEq.(95),E

min

=A 4. InthisaseEq.(132)

givesonlythevalue0fori,andbyEq.(133)onehas

t

2 =t

3

=:::=0; j

2 =j

3

=:::=0 (p nulei).

(134)

Therefore

b

Dfg (A)

A 4 $fg

(A)

A 4

(135)

where here,andin thefollowing,thesymbol$means

that one onsiders in the RHS only those Shur

fun-tionsthatproduephysiallyaeptable S(A)irreps.

Then, byEq(98), for p-nulei in ground

ongura-tion,onehastheU(A 1)S(A)redution

fg (A)

A 4 $[4;

1 ;

2 ;

3

℄ p nulei (136)

with

1 +

2 +

3

=A 4 and

i

4 . (137)

InAppendix Aonelists theredutionU(A 1)

S(A) for p nulei in ground onguration. One

ob-serves that the results present the symmetry under

partile-holeexhangeintheopenshell:

A $ A=n

ore +n

0

A; (138)

(p E

1 E

2

; qE

2 E

3

)$(p;q)=(q;p): (139)

Forthisshellthese symmetryrelationsread as

A $ A=20 A

[℄

h

4; (0)

1 ;

(0)

2 ;

(0)

3 i

!

= h

4;4 (0)

3

;4 (0)

2

;4 (0)

1 i

. (140)

For(s d)-nulei(17A40), E

0

=2and E

min

=2A 20. Eq.(132)givesagainonlyonesolutionfori:

i=i

min =i

max

=A 16. (s d)-nulei (141)

Sinei=i

max

,byEq.(128)onehastheresult

t

2

=A 16; t

3 =t

4

=:::=0; j

2 =j

3

=:::=0(s d) nulei (142)

andtherefore

b

Dfg (A)

2A 20 $

X

fgA

16 fg

A 16 b

D(f2g _

fg

A 16 )fg

(A)

2A 20 =

X

fgA

16 fg

A 16

X

fg2(A

16) (f2g

_

fg

A 16 !fg

2(A 16) )

b

D(fg

2(A 16) )fg

(A)

2A 20

; (143)

for(s d) nulei.

Theonlyreduedplethysmsthatoneneedstoompute,forthewholeshell,aref2g _

fg

m

withm=1;2;:::;24.

Asseenpreviously,onlyontribute theShurfuntions fg

A 16

withno morethan(2+1)(2+2)=2 =6rows

andnomorethan4olumns.

Whenatingonfg (A)

2A 20

,theoperator b

D(fg

2(A 16)

)gives,byEqs.(114),(123)

b

D(fg

2(A 16) )fg

(A)

$(fg

2(A 16) f4

3

g!fg (A)

)f4 3

Imagem

Table I: All outer produts that produe Shur funtions of degree 5.
Table II: All plethysms that produe Shur funtions of degree 6 .

Referências

Documentos relacionados

If banks fail, government’s spending increases directly (bailout) or indirectly (recessionary economic impact). Therefore, the aim of this study is to assess the decomposition of

No CHBV a distribuição de medicamentos em ambulatório é feita de segunda a sexta-feira, no horário compreendido entre as 9 horas e as 19 horas, sendo que para assegurar o

Outrossim, o fato das pontes miocárdicas serem mais diagnosticadas em pacientes com hipertrofia ventricular é controverso, pois alguns estudos demonstram correlação

da hiperestesia, assim a fina camada de cemento e a região cervical geralmente expõem os túbulos dentinários pela escovação, dieta erosiva ácida (lesões cervicais não cariosas)

How does perceived constructiveness mediate the relationship between promotive and prohibitive voice behavior and the supervisor’s decision of idea endorsement, and what role

A definição das propriedades dos materiais para o cálculo numérico é extremamente relevante, uma vez que a fonte de calor utilizada se fixa na utilização da potência

Este diploma consagra variados crimes que, por habitualmente estarem ligados a uma certa organização e gerarem lucros avultados, vêm legitimar a aplicação da medida

Se nos primeiros encontros a conversa gira sobre quem são este Reis, já dito torna-viagem, e este Pessoa, espectador do mundo porque morto, e o processo de