• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número3"

Copied!
4
0
0

Texto

(1)

Theory of Gravitation

S.Ragusa and D. Bosquetti

Departamento deFsiaeInformatia,

InstitutodeFsiadeS~aoCarlos,

UniversidadedeS~aoPaulo,C.P.369,

13560-250 S~aoCarlos,SP,Brazil

e-mail: ragusaif.s.usp.br

Reeived29Marh,2000. Revisedversionreeivedon5June,2000

The eld equations of a proposed nonsymmetri theory of gravitation are derived when

eletro-magnetieldsare present,byadoptinga nonminimalouplingwhihensuresthevalidity ofthe

equivalenepriniple. Thestatiandspheriallysymmetrisolutionoftheeldofahargedpoint

partileisobtained.

I Introdution

In a previous work [1℄ a theory of gravitation based

on anonsymmetri metriwasformulated(pure

grav-itation with no assoiation of the antisymmetri part

of the metri to the eletromagneti eld strength).

The souresof themetrield are thematter

energy-momentum tensor T

and the matter fermioni

par-tile number urrent density S

. This is aonserved

urrent with partile number fermioni harge F =

R

p

gS 0

d 4

x,aonstantwhih measuresthe oupling

oftheurrenttothegeeometry. Thetheorywasshown

to be free of non-physial radiative negative-energy

modes evenwhen it is expanded about aRiemannian

bakground, being outside of the lass of ill-behaved

nonsymmetritheoriesanalyzedbyDamour,Deserand

MCarthy[2℄. Onlythesymmetripartofthe

onne-tionispresentintheeldequations,makingthetheory

asloseaspossibleto generalrelativity. A solutionof

theeldequationsforaspheriallyneutralpoint

parti-lehasbeenobtained[3℄,togetherwithitsimpliations

for the motionof light and testpartiles. The theory

is shown[3℄ to be onsistent with allfour general

rel-ativity solartests. Inthefollowingwe shallstudy the

eldequationswheneletromagnetieldsarepresent.

TheeletromagnetieldLagrangianthatweshalluse

istheonegivenbyMann,PalmerandMoat[4℄,whih

resues the validity of the weak equivalene priniple,

whih Will [5℄ showed to be violated if only a

mini-mal eletromagnetioupling(same formasingeneral

relativity) were adopted. This is beause with suh

aminimal ouplingthe gravitationalaelerationa of

aneletrially neutralbodyoftotalmassmomposed

of harged partiles turns out to depend on its

inter-naleletrostati energy E

e

. Spedially, the

aelara-tion is related to the one of gravity g by [6℄ a =g

(1+E

e =m

2

), where depends on the metri

oe-ients. Will thenshowsthat in thease ofa

nonsym-metritheorywithaminimaleletromagnetioupling

is not zero. With the oupling proposed by Mann

et al, aswritten in Eq. (1) below, turns out to be

null,ensuringthentheequivalenepriniple. Theeld

equationsontainonefreeparameter,Z. However,the

solution of the eld equations for a stati and

spher-iallysymmetri eld turns out to be independent of

Z.

InSe. IIweestablishtheexpressionofthe

gravita-tionallymodiedMaxwellinhomogeneousequationand

oftheeletromagnetienergy-momentum-stresstensor.

InSe. IIIwedisplaytheeld equationsofthetheory

whentheeletromagnetieldispresentandinSe. IV

wedeterminethesolutionoftheoupledeldequations

fortheaseofastatiandspheriallysymmetripoint

partile. WedrawouronlusionsinSe. V.

II The eletromagneti eld

equations

Mann et al [4℄ write the eletromagneti Lagrangian

densityL = p

(2)

L

em =

16 fg

g

[ZF

F

+(1 Z)(F

F

+F

F

) ℄; (1)

where,asusual,F

=A

; A

;

istheeletromagneti eldstrengthtensorand

f = p

g

p

g

s

: (2)

Thematrixg

istheinverseofthenonsymmetrigravitationaleldg

denedby

g

g

=g

g

; (3)

g=detg

andg

s =detg

()

. Theminimalouplingwouldorrespondtohavef andZbothequaltoone. Equation

(2)analsobewrittenas

L

em =

1

16 fF

F

h

g ()

g ()

+(2Z 1)g [℄

g [℄

+(1 Z)g [℄

g [℄

i

; (4)

whereround(square)braketsstandforsymmetri(antisymmetri)part.

VaryingtheLagrangiandensitywithrespetwithrespettoA

oftheeldplustheinterationLagrangiandensity,

L

em =

p

gJ

A

,weget,usingEq. (4)

h

p

gf

g ()

g ()

+(2Z 1)g [℄

g [℄

+(1 Z)g [℄

g [℄

F

i

= 4

p

gJ

; (5)

whih is the inhomogeneous Maxwell equation in the presene of the nonsymmetri eld. Next we onsider the

variationwithrespettog

. Weget

ÆL

em =

1

2 p

gÆg

E

(6)

where

E

=

1

4

1

4

fg

2

f

g

g

g

(ZF

F

+(1 Z)(F

F

+F

F

))

fg

( ZF

F

+(1 Z)(F

F

+F

F

))

(7)

d

istheenergy-momentumtensoroftheeletromagneti

eld. This is atraeless tensor, g

E

=0, beause

wehavetherelation

g

f

g

=0: (8)

This an be proved by diret alulation from the

relations g 1

= "

Æ g

0

g 1

g 2

g 3Æ

and g 1

s =

"

Æ g

(0)

g (1)

g (2)

g (3Æ)

, or from the relations g =

" Æ

g

0 g

1 g

2 g

3Æ and g

s = "

Æ

g

(0) g

(1) g

(2) g

(3Æ)

together with g

( g

=g

)= g

(to obtainthis

last relationjust write itsrighthand sideasag

and

thenontratwithg

toobtaina= 1).

III The gravitational eld

equa-tions

Whentheeletromagneti eldispresent,the

gravita-tionaleld equationsofthetheory[1℄beome

U

() +g

()

=8(T 0

() +E

()

); (9)

(g

[℄;

+:p:)=8(E

[℄; +T

0

[℄;

+:p); (10)

where T 0

=T

(1=2)g

T with T = g

T

; .p.

standfortheylipermutationoftheindies; and

,istheosmologialonstantand

U

=

();

(); +

()

()

()

() ; (11)

involvingonlythesymmetripartoftheonnetion,is

theanalogueoftheRiemannianRiitensor,and

p

gg [℄

; =4

p

gS

: (12)

Sine at innity the eld of loalized matter tends to

thatofatspae-time,g [℄

aswellasg

[℄

mustsatisfy

theboundaryonditionofvanishingatinnity.

Wealsohavetherelation

() =

1

2 g

()

(s

; +s

; s

; )

+ 1

4

ln s

g

g ()

s

Æ

Æ

Æ

Æ

(3)

inverseofg ()

,denedbyg ()

s

.

It is to be noted that T

, dened [1℄ by ÆL

m =

( p

g=2)Æg

T

where L

m

is the matter Lagrangian

density, is related to the ontravariant matter tensor

T

, dened by L

m = (

p

g)=2)Æg

T

as in

gen-eral relativity,by[1℄

T

=g

g

T

: (14)

ThisfollowsfromtherelationÆg

= Æg

g

g

,

re-sulting from the variation of Eq. (3). Therefore, T

will have a symmetri and an antisymetri part even

forasymmetriT

.

IV The eld of a harged point

partile

The statiand spheriallysymmetri metritensor in

spherialpolaroordinatesisoftheform

g

00

=(r);g

11

= (r);

g

22 = r

2

;g

33 = r

2

sin 2

;

g

01

= !(r)= g

10

; (15)

and allother omponentsequalto zero. Thenon-zero

elementsomponentsoftheinversematrixare

g 00

=

( !

2

) ;g

11

=

( !

2

) ;

g 22

= 1

r 2

;g 33

= 1

r 2

sin 2

;

g 01

= !

!

2 = g

10

: (16)

Outsidethesoure,invauum,thesolutionofEq. (12)

is [3℄,for=0,!r 2

( !

2

) 1

2

=F ,whereF isthe

onservednumberfermioniharge. Then,

! 2

=

F 2

F 2

+r 4

: (17)

As g =(! 2

)r 4

sin 2

and g

s

= r

4

sin 2

, we

getfrom Eq. (2),

f = s

1 !

2

=

s

1 g

01

g 10

g 00

g 11

: (18)

Theseondwayofwritingthevalueoffmakesiteasier

01

for=0,

r

r 2

E

p

=0; (19)

independentlyofZ. Uponintegrationweget

E= Q

r 2

p

; (20)

where the onstant of integration has been put equal

tothe hargeQof thepartile to reproduethe usual

Reissner-Nordstrom (RN) result when F = 0; whih

implies,from Eq. (27)below, =1. From Eqs. (7),

(18)and(20)weobtainthefollowingnon-zero

ompo-nentsofE

:

4E

00 =

1

2 Q

2

r 4

q

1 !

2

1+ !

2

; (21)

E

11 =

E

00

; (22)

4E

22 =

Q 2

2r 2

1

q

1 !

2

; (23)

E

33

= sin 2

E

22

; (24)

4E

01 =

Q 2

r 4

!

q

1 !

2

= 4E

10

: (25)

Wesee that theenergy-momentum tensor is

indepen-dent of Z and, therefore, the same will our for the

gravitationaleldequations.

FromnowonthealulationproeedsasinRef. [3℄.

FromEqs. (15)and(25)wesee thatEq. (10)is

iden-tially satised. From Eqs. (9) and (22) we obtain

U

00 +U

11

= 0; as in Ref. [3℄. It then follows the

samerelation

0

+

0

=

2

r F

2

F 2

+r 4

; (26)

derivedin[3℄,whihintegratesto

=

1+ F

2

r 4

1=2

: (27)

ReallingEq. (17)wethenobtain

!=

Fr

(F 2

+r 4

) 3=4

: (28)

From now one we shall negleted the small

ontribu-tionof theosmologialonstant in Eq. (9). TheU

(4)

( r

)

0

1+ r

2

0

+

0

+

4F 2

r( F 2

+r 4

) =

Q 2

r 4

F 2

+r 4

1=2

: (29)

UsingEq. (26)weget

( r

)

0

1+ 1

3F

2

( F 2

+r 4

) =

Q 2

r 4

F 2

+r 4

1=2

: (30)

Choosingtheonstantofintegrationin suhawaythat theRN resultisobtainedwhenF =0,weget

1

=

1+ F

2

r 4

1+ F

2

r 4

3=4

2m

r +

Q 2

r f(r)

; (31)

wheremisthemassofthehargedpartileand

f(r)= Z

dr

r(F 2

+r 4

) 1=4

; (32)

whihgoesto r 1

whenF vanishes. Then,fromEq. (27)weobtain

=

1+ F

2

r 4

1=2

1+ F

2

r 4

1=4

2m

r +

Q 2

r f(r)

: (33)

Equation(32)anbeputin losedform:

f(r)= 1

2jFj 1=2

2

6

4tan 1

1+ r

4

F 2

1=4

+ 1

2 ln

0

B

1+ r

4

F 2

1=4

1

1+ r

4

F 2

1=4

+1 1

C

A

2 3

7

5

; (34)

withtheterm =2togivetherightlimit, r 1

;whenF vanishes.

d

Theeletrieldis,from Eqs. (20)and(27),

E(r)= Q

r 2

1+ F

2

r 4

1=4

: (35)

Atlargedistanes,r>>jF j 1

2

;E(r)goesintotheRN

Coulomb eld but for small values of r, it behaves as

r 1

.

V Conlusions

Byadoptinganonminimalouplingthatensuresthe

va-lidity ofthe equivalenepriniple wehavederivedthe

eld equations of a proposed nonsymmetri theory of

gravitation[1℄wheneletromagnetieldsarepresent.

The nonminimal oupling ontains one free

parame-ter, Z. However, it is shown that for a stati

spher-ially symmetri eld the eletromagneti eld

equa-tions and the energy-momentum-stress tensor are

in-dependent of Z. Therefore, from this last fat, it

fol-equations. The solution of the eld equations for the

aseof hargedpointpartileis obtained. Apartfrom

destrongdeviationofthemetritensorfromtheusual

Reissner-Nordstrom(RN)solution,theeletrield

de-partsstronglyfromtheCoulombeldvalueobtainedin

theRN ase,to whihit approahesonlyat large

dis-tanes. Atsmalldistanes itbehavesasr 1

:

Referenes

[1℄ S.Ragusa,Phys.Rev.D56,864(1997).

[2℄ T. Damour, S. Deser and J. MCarthy, Phys.Rev. D

47,1541(1993).

[3℄ S.Ragusa,Gen.Relat.Gravit.31,1(1999).

[4℄ R.B.Mann,J.H.PalmerandJ.W.Moat,Phys.Rev.

Lett.62,2765(1989).

[5℄ C.M.Will,Phys.Rev.Lett.62,369(1989).

[6℄ A. P. Lightman and D. L. Lee, Phys. Rev. D 8, 364

Referências

Documentos relacionados

iations observed in the hemial omposition growth kinetis, arbon atom hybridisation and.. hemial bonding arrangements of

The hardness and stress of amorphous arbon lms prepared by glow disharge and by ion beam.. assisting deposition

higher arbon ontent the density of Si-C bonds should. derease and the C-C bonds

lms were grown on < 100 > silion using the neutral luster beam deposition tehnique). These lms were highly rystalline and

the tree level) of Fierz-Pauli higher derivative theory. T o begin with we analyze the poles to

The observed harateristis are explained using small signal a iruit analysis.. It is shown that the theoretial urve generated using the a iruit analysis gives

oupied moleular orbital (H), the next lower oupied level (H-1), their energy dierene value () and their relative. ontribution dierene to the LDOS ()

the present higher-derivative model the magneti eld restores hiral symmetry broken initially on.. the