• Nenhum resultado encontrado

Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

N/A
N/A
Protected

Academic year: 2021

Share "Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea"

Copied!
11
0
0

Texto

(1)

ht t p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Exploring

plant

growth-promotion

actinomycetes

from

vermicompost

and

rhizosphere

soil

for

yield

enhancement

in

chickpea

M.

Sreevidya

a,b

,

S.

Gopalakrishnan

b,∗

,

H.

Kudapa

b

,

R.K.

Varshney

b

aCentreforBiotechnology,JawaharlalNehruTechnologicalUniversity,Kukatpally500072,Telangana,India

bInternationalCropsResearchInstitutefortheSemi-AridTropics,Patancheru502324,Telangana,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19April2015 Accepted17August2015

AssociateEditor:JerriÉdsonZilli

Keywords: Chickpea Actinomycetes PGP Streptomyces Biocontrol Geneexpression

a

b

s

t

r

a

c

t

Themainobjectiveofthepresentstudywastoisolateandcharacterizeactinomycetesfor theirplantgrowth-promotioninchickpea.Atotalof89actinomyceteswerescreenedfor theirantagonismagainstfungalpathogensofchickpeabydualcultureandmetabolite pro-ductionassays.Fourmostpromisingactinomyceteswereevaluatedfortheirphysiological andplantgrowth-promotionpropertiesunderinvitroandinvivoconditions.Alltheisolates exhibitedgoodgrowthattemperaturesfrom20◦Cto40◦C,pHrangeof7–11andNaCl con-centrationsupto8%.ThesewerealsofoundhighlytoleranttoBavistin,slightlytolerant toThiramandCaptan(exceptVAI-7andVAI-40)butsusceptibletoBenlateandRidomilat fieldapplicationlevelsandwerefoundtoproducesiderophore,cellulase,lipase,protease, chitinase(exceptVAI-40),hydrocyanicacid(exceptVAI-7andVAI-40),indoleaceticacid and␤-1,3-glucanase.Whenthefouractinomyceteswereevaluatedfortheirplant growth-promotionpropertiesunderfieldconditionsonchickpea,allexhibitedincreaseinnodule number,shootweightandyield.TheactinomycetestreatedplotsenhancedtotalN,available PandorganicCovertheun-inoculatedcontrol.Thescanningelectronmicroscope stud-iesexhibitedextensivecolonizationbyactinomycetesontherootsurfaceofchickpea.The expressionprofilesforindoleaceticacid,siderophoreand␤-1,3-glucanasegenesexhibited up-regulationforallthreetraitsandinallfourisolates.Theactinomyceteswere

identi-fiedasStreptomycesbutdifferentspeciesinthe16SrDNAanalysis.Itwasconcludedthat

theselectedactinomyceteshavegoodplantgrowth-promotionandbiocontrolpotentials onchickpea.

©2015SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:s.gopalakrishnan@cgiar.org(S.Gopalakrishnan).

http://dx.doi.org/10.1016/j.bjm.2015.11.030

1517-8382/©2015SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Chickpea(CicerarietinumL.)isthesecondmostwidelygrown foodlegumecropaftercommonbean,withannualproduction of13.8mtworldwide.1 Globally,morethan 90%ofchickpea

productionoccursinthesemi-aridtropicsofAsiaandAfrica. Asiaaccountsfor88%ofglobalchickpeaproductionwhereas India is the largest producer accounting for 75% of Asia’s chickpeaproduction.2Severalbioticandabioticfactorswere

involved in low production ofchickpea. Thebiotic factors includefungi,bacteria,viruses,nematodes,mycoplasmaand insectpests.Fungiarethelargestgroupaffectingstems,roots, leaves,flowers and pods. Chickpea cropismainly affected byFusarium wilt, dry root rot, collar rot, Ascochyta blight andBotrytis graymoldcausedbyFusarium oxysporumf.sp.

ciceri(FOC),Macrophominaphaseolina,Sclerotiumrolfsii,Ascochyta

rabieiandBotrytiscinerea,respectivelyresultinginreducedcrop

yield.3,4

The microbes in rhizosphere help plants in growth-promotionandyield.Actinomycetesareoneofthemajor com-ponentsofrhizospheremicrobialpopulationsandareuseful insoilnutrientcycling5,6aswellasplantgrowth-promotion

(PGP).7Actinomycetesproducesecondarymetabolitessuchas

lyticenzymes,PGPsubstancesandantibiotics.8 The

actino-mycetes,mainlythosebelongingtoStreptomycesspp.,make upanimportantgroupofsoilmicrobes.Streptomycesare abun-dantinsoilandhelpinthedegradationofcomplexmolecules tosimplemoleculesforplantgrowth and development.9,10

Thesearealsoreportedtodecomposeorganicmatter,promote plantgrowthandcontrolplantpathogens.11

In the present study, actinomycetes isolated from rhi-zosphereand herbalvermicompostwerecharacterizedand evaluatedforPGPpropertiesandforbiocontrol-relatedtraits. Thepromisingstrainswere alsoevaluated fortheirPGP in chickpeaunderfieldconditions.

Materials

and

methods

Actinomycetesisolation

Actinomycetes were isolated from herbal vermicompost (Jatrophacurcas,Annonasquamosa,Partheniumhysterophorus,

Gli-ricidiasepiumandAzadirachtaindica)andchickpearhizosphere

soils.Tengramsofeachvermicompostandrhizospheresoils weresuspendedin90mLofsterilephysiologicalsaline(0.85% NaClindistilledwater)inabottleandkeptforshakingonan orbitalshaker(at100rpm)at28±2◦Cfor1h.Attheendof shaking,thesampleswereseriallydilutedupto105dilutions andsamplesfrom104 and105dilutionswerespreadplated (0.1mL)onactinomycetesisolation(AIA)agar(HiMedia Labo-ratories,Mumbai,India)andincubatedat28±2◦Cfor7days. ProminentcolonieswereisolatedandstoredonAIagarslants.

Selectionofantagonisticactinomycetesagainstfungal pathogensofchickpea

Atotalof89actinomyceteswerescreenedfortheir antago-nisticactivityagainstS.rolfsii,M.phaseolina(threestrainsviz.

MP-6,MP-24 andMP-115) and FOC(acquiredfrom legumes pathology, ICRISAT, Patancheru) by dual culture assay as per the protocols of Gopalakrishnan et al.12 on glucose

casaminoacidyeastextractagarplates.Theculturefiltratesof thepromisingisolates,basedonthedualcultureassay,were extractedbypartitioningagainstethylacetate(EtOAc)andthe resultantorganic(EtOAc)andaqueousfractionswere evapo-ratedonarotaryevaporatorandcollectedinaminimalvolume of methanol. Both the fractions were evaluated for their antagonisticpotentialagainstthethreefungalpathogensof chickpea(M.phaseolina,FOCandS.rolfsii).Forthis,afungaldisc of6mmdiameterwasboredandkeptatcenterofthepotato dextroseagarplateamendedwitheitherorganicoraqueous fractions(ataconcentrationof0.5%).Controlplatescontained onlymethanol.Theplateswereincubated at28±2◦Cfor5 days andinhibitionofthe pathogenwas recordedforboth dualcultureandmetaboliteproductionassaysonascaleof0–4 asfollows:0=noinhibition;1=slightinhibition;2=moderate inhibition;3=goodinhibitionand4=excellentinhibition. Colonymorphologyofselectedactinomycetes

SelectedisolatesofactinomyceteswerestreakedonAIagar by quadrant streakingtechnique and incubated for 5days at28±2◦C.Atthe end ofincubation, the isolatedcolonies wereobservedfortheirmorphology.Gramstainingwasalso performed13andobservedunderlightmicroscope.

Molecularidentificationoftheselectedactinomycetes The selected actinomycetes were sent to Macrogen Inc., Seoul, Korea for identification by 16S rDNA analysis. The sequencesobtainedfromMacrogenwerecomparedwith sim-ilar sequences from GenBank, compared using the BLAST program,14 alignedusing theClustal Wsoftware15 and the

dendrograminferredbyneighbor-joiningmethod.16Bootstrap

analysiswasperformedusingtheMEGAversion 4program toestimate thestatistical stabilityofthe branchesin clus-terwith1000replications.Thesequences(1460bpforSAI-13, 1474bpforSAI-291,475bpforVAI-7and 1472bpforVAI-40) weresubmittedtoNCBIandaccessionnumbersobtained. Invitroevaluationofactinomycetesfortheirphysiological traitsandfungicidetolerance

PhysiologicalpropertiessuchastolerancetopH,temperature, salinityandfungicideswerestudiedfortheselected actino-mycetes.TheactinomyceteswerestreakedonBennett’sagar (HiMediaLaboratories,Mumbai,India),adjustedtodifferent pH (5, 7, 9and 11) and saline concentrations (0–12% NaCl attheinterval of2%)andincubated at28±2◦Cfor5days. Fortemperature,theBennett’sagarplateswerestreakedwith the actinomycetesand incubated atdifferenttemperatures (20◦C,30◦C,and40◦C)for5days.Fortestat50◦C,theisolates were inoculated in Bennett’s broth and incubated at50◦C. Thefungicidetolerancewasevaluatedasperthe protocols ofGopalakrishnanetal.17Theactinomyceteswerestreaked

onAIagarplatesamendedwithfungicidesBavistin,Thiram, Benlate,CaptanandRidomilatfieldapplicationlevels(2500, 3000,4000,3000and3000ppm)andincubatedat28±2◦Cfor

(3)

5days.Attheendof5daysincubationthegrowthofthe acti-nomyceteswererated.TheratingscaleforpH,temperature andsalinitywererecordedonascaleof0–3asfollows:0=no growth;1=slight growth;2=moderate growth and 3=good growth.

Evaluationforproductionofextracellularenzymes, siderophore,indoleaceticacid(IAA)andhydrocyanicacid (HCN)

Selected actinomycetes were evaluated for their PGP and biocontroltraits including siderophore, chitinase,cellulase, lipase,protease, HCN,␤-1,3-glucanase and IAA production. Siderophoreproductionwasestimatedaspertheprotocolof SchwynandNeilands.18Chitinaseproductionwasestimated

byamendingagarplateswithcolloidalchitinsuspensionand mineralsaltsaccordingtothestandardprotocolsofHsuand Lockwood.19 Production ofcellulase was detectedbyusing

standard protocols of Hendricks et al.20 Theprotease and

lipaseproductions were estimatedas per the protocols of Bhattacharyaetal.21HCNwasqualitativelyassessedbythe

methoddescribedbyLorck.22EstimationofIAAwasdoneas

pertheprotocolsofPattenandGlick.23Theratingscalesfor

siderophore,chitinase,cellulase,lipaseandproteasewereas follows:0=nohalozone; 1=halozoneof1–10mm; 2=halo zoneof11–20mm;3=halozoneof21–30mm;4=halozoneof 31–40mm;and5=41–50mm.ForHCNproduction,the follow-ingratingscalewasused:0=nocolorchange,1=lightreddish brown,2=mediumreddishbrownand3=darkreddishbrown. EvaluationofPGPpotentialofactinomycetesby“ragdoll” method

Growth-promoting activity was evaluated by the ‘ragdoll’ methodasdescribedbyChambleeandGreen.24Inbrief,

chick-pea seeds (ICCV 2) were surface sterilized by using 2.5% sodium hypochlorite solution for 5min and washed thor-oughlywithsterilized distilled water.Sterilized seedswere soakedinindividualactinomycetes(108colonyformingunits (CFU)mL−1)for1handplacedinonehalfofawetpapertowel, foldedandrolledintoamoderatelytighttubeandplacedin aplasticbag.Thistubewaskeptat(28±2◦C)for5days.At theendofincubation,%germination,rootandshootlengths weremeasured.

EvaluationofPGPpotentialofactinomycetesunderfield conditions

Theselected actinomycetes were evaluatedfor PGP poten-tialonchickpeaunderon-stationfieldconditionsin2013–14 post-rainyseasonatICRISATPatancheru (17◦30N;78◦16E; altitude=549m),Hyderabad,Telangana,India.Chickpea vari-etyICCV2wasusedforthistrial.Soilsattheexperimentalsite wereofvertisolwhichcontained25%sand,21%siltand52% claywithalkalinepHof7.5–8.5.TheorganicCcontentofthis fieldwas 0.56%.Therhizospheresoil(top15cm)contained 642ppmoftotal Nand 9.03ppmofavailableP.The experi-mentwaslaidoutinarandomizedcompleteblockdesignwith threereplicateswithaplotsizeof4m×3ridges.The acti-nomyceteculturesweregrowninSCBat28±2◦Cfor5days.

Chickpeaseedsweretreatedwiththeactinomycetecultures (108CFUmL−1)for50minandsownon2ndNovember2013at arow-torowspacingof60cmandaplant-to-plantspacing of10cm.Theactinomycetecultures(1000mL;108CFUmL−1) werealsoappliedoncein15daystothesoilclosetotheplant until flowering stage. The control plots containedno acti-nomycetestrains.Noseriousphytopathogensorinsectpest attackswereobservedduringthecroppingperiod.Irrigation wasdoneon23daysaftersowing(DAS)and51DASwhereas weedingon22DASand49DAS.At60DAS,thenodule num-ber, stemweight,podnumber,podweight,leafweightand leafareawerenotedandcomparedwithun-inoculated con-trol.Thecropwasharvestedmanuallyon4thFeb2014and atharvest,stoveryield,grainyieldandtotaldrymatterwere noted.Rhizospheresoilsampleswerecollectedfromadepth of0–15cmatbothflowering(60DAS)andcropmaturitystages andanalyzedfortotalN(ppm),availableP(ppm)andorganicC %accordingtotheprotocolsofNovozamskyetal.,25Olsenand

Sommers,26andNelsonandSommers,27respectivelyandsoil

biologicalpropertiesincludingmicrobialbiomassC,microbial biomassNanddehydrogenaseactivitiesaspertheprotocolsof AndersonandDomsch,28Brooksetal.,29andCasida,30

respec-tively.

Colonizationstudies

Chickpea roots were examined for colonization by actino-mycetesunderscanningelectronmicroscope(SEM)atRUSKA lab,CollegeofVeterinaryScience,Rajendranagar,Hyderabad, Telangana,India,aspertheprotocolsofBozzolaandRussell.31

For this,the seeds ofchickpea (ICCV2) were surface ster-ilized as explainedearlier and allowed tosproutovernight. Thesproutedseedswere soakedinselected actinomycetes for50minandtransferredcarefullyintosandtubes contain-ingsterilizedcoarsesand(50g).Boosterdoseofactinomycete (1mL; 108CFUmL−1) was applied after 7 days. The tubes wereincubatedat24±2◦Cinalightchamberwithan aver-age illuminationof9600lxand photosynthetic photonflux of 350␮Em−2s−1. After two weeksof incubation, chickpea seedlingsweretakenoutandtherootswerewashedin0.1M phosphate buffer.Roottipsof4–5mmlengthwere cutand fixedinglutaraldehyde(2.5%)inphosphatebufferfor24hat 4◦C.At the endof 24h incubation, the rootsampleswere againwashed withphosphate buffer,postfixedinosmium tetraoxide(2%)for4handdehydratedusingagradedseriesof ethanol.Thedehydratedsamplesweredried,witha critical-pointliquidcarbondioxideasatransitionfluid,andadhered ontoaluminumspecimenmountswithdoublestickadhesive tape.Themountedsampleswerecoatedwithgold-palladium inanautomatedsputtercoater(JEOLJFC-1600)andexamined underSEM(JOEL-JSM5600).

Geneexpressionstudies

The selectedactinomycetes were grown inBennett’s broth for 72h. RNA was extracted from actinomycetes by con-ventionalTrizolmethod.32ThequalityandquantityofRNA

was estimated by Nanodrop (Thermo Scientific, USA) and RNA integrity by 2100 Bioanalyzer (Agilent, USA). Quan-titative real-time polymerase chain reaction (qRT-PCR)

(4)

Table1–Antagonisticpotentialofthefouractinomycetesagainstfungalpathogensofchickpea.

Isolate Dualcultureassay Metaboliteproductionassay

MP-6 MP-24 MP-115 FOC S.rolfsii RB-6 RB-24 RB-115 FOC S.rolfsii

SAI-13 3 2 1 1 3 2 1 1 1 1 SAI-29 2 3 2 2 0 3 4 2 1 1 VAI-7 2 2 1 3 0 2 3 0 1 0 VAI-40 3 3 4 3 1 2 4 0 1 0 Control 0 0 0 0 0 0 0 0 0 0 SE± 0.05*** 0.08 0.07*** 0.07*** 0.04*** 0.6*** 0.8*** 3.2*** 0 0 LSD(5%) 0 0 0 0 0 0 0 0 0 0

MP-6,MP-24andMP-115–threestrainsofMacrophominaphaseolina;FOC,Fusariumoxysporumf.sp.ciceri;S.rolfsii,Sclerotiumrolfsii.Therating scale0=noinhibition,1=slightinhibition,2=moderateinhibition,3=goodinhibition,4=excellentinhibition.LSD,leastsignificantdifference; SE,standarderror.

∗∗∗Statisticallysignificantat0.001.

was performed as per the manufacturer’s instructions using Applied Biosystems 7500 Real Time PCR System with the SYBR green chemistry (Applied Biosystems, USA). Gene specific primers for IAA, siderophore and ␤-1,3-glucanase were designed using Primer3 software.33

Primers for IAA (F: GTCACCGGGATCTTCTTCAAC; R: GATGTCGGTGTTCTTGTCCAG); siderophore (F: ATCCT-CAACACCCTGGTCTG; R: TCCTTGTACTGGTACGGGACTT) and ␤-1,3-glucanase (F: CCGAACACCACCTACTCCAC; R: CCAGGTTGAGGATCAGGAAG) were designed from the sequences collected from UniProtKB database

(http://www.uniprot.org/uniprot) as described in

Gopalakr-ishnanetal.34 RNApolymeraseprincipalsigmafactorHrdB

(SCO5820)(F:GGTCGAGGTCATCAACAAGC;R: CTCGATGAGGT-CACCGAACT)wasusedastheendogenouscontrol.qRT-PCR reactions and conditions were conducted as described earlier.34 PCRreactions were carried out in 10␮Lreactions

containing30ngoffirststrandcDNA,1XPCRbuffer,125mM dNTPs,1.5mMMgCl2,0.2mMprimersand1UTaqpolymerase and PCR cycle was programmed as, 50◦C for 2min and denaturation at 95◦C for 10min followed by 40 cycles of denaturationat95◦Cfor15sandannealingandextensionat 60◦Cfor1min.ThedataobtainedfromdifferentPCRrunsor cDNAsampleswasanalyzedusingthemeanoftheCTvalues ofthethreebiologicalreplicatesthatwerenormalizedtothe mean CT values of the endogenous gene. The expression ratioswerecalculatedusingthe2−Ctmethodandrelative transcriptionlevelswereplottedgraphically.

Statisticalanalysis

Data were analyzedbyusing analysisofvariance (ANOVA) technique,bySASGLM(GeneralLinearModel)procedure(SAS Institute2002-08, SASversion 9.3) consideringisolatesand

replicationasfixedinrandomizedcompleteblockdesign. Iso-latemeansweretestedforsignificanceandcomparedusing Fisher’sprotectedleastsignificantdifference.

Results

Screeningforpotentialactinomycetes

Of the 89 isolates screened for their antagonistic poten-tial againstimportantpathogens of chickpeasuchas FOC,

M. phaseolina and S.rolfsii by dual cultureassay, four

acti-nomycetes viz. SAI-13 and SAI-29 (isolated from chickpea rhizosphere), VAI-7 (from A. squamosa vermicompost) and VAI-40(fromJ.curcasvermicompost)werefoundtobemost promising. Whenthe culturefiltratesofthesefourisolates werepartitionedagainstEtOAc,bysolventextractionmethod, onlyorganicfractionswerefoundactive.Amongthefour iso-lates,theorganicfractionsofSAI-13andSAI-29werefoundto bepotentialagainstallthefungalpathogens(Table1).

AllthefourisolateswerefoundtobeGrampositiveand thecoloniesshowedsporulatingaerialmycelium.Thecolony morphology description of the four isolates is presented

(Table2).Analysisof16SrDNAsequencesbyneighbor-joining

methodrevealedthatallfourisolatesmatchedtoStreptomyces

spp.(100%).Thenucleotidesequencesweresubmittedto Gen-BankandNCBIaccessionnumberswereobtainedasfollows: SAI-13: KM220609,SAI-29:KM220608,VAI-7:KM220610;and VAI-40:KM220611(Fig.1).

Physiologicalandbiochemicaltraitsofselected actinomycetes

AllthefouractinomycetesgrewbetweenpH7and11,but max-imumsporulationwasobservedatpH9whilenogrowthwas

Table2–IndividualcolonymorphologyoffouractinomycetesonAIA.

Isolate Size Shape Margin Elevation Surface Opacity Color

SAI-13 Medium Circular Undulate Umbonate Rough,dry Opaque Dustwhite

SAI-29 Small Circular Lobate Raised Smooth,dry Opaque Dustwhite

VAI-7 Medium Circular Lobate Raised Rough,dry Opaque White

(5)

Streptomyces flavolimosus sj32

Streptomyces cyaneofuscatus NBRC 13190

Streptomyces globisporus NBRC12867

Streptomyces sporovirgulis M5

SAI-29

Streptomyces griseobrunneus NBRC 12775

VA

I-7

SAI-13

Streptomyces cavourensis NBRC13026

Streptomyces albo

longus J

CM 4716

Streptomyces flavo

fungini

NBRC

13371

VA

I-40

Streptomyces koya

ngensis VK

-A60

Streptomyces limosus strain NBRC 12790

Streptomyces sampsonii

Streptomyces griseo

planus (NRR

L B-3064)

Streptomyces microflavus NBRC 13

062

100 100 92 100 100 96 84 82 52 96 100 84 62 38

Fig.1–PhylogeneticrelationshipbetweenVAI-7,VAI-40,SAI-13andSAI-29andrepresentativespeciesbasedonfulllength 16SrDNAsequencesconstructedusingtheneighbor-joiningmethod.

observedatpH5.Theactinomyceteisolatesalsogrewwell attemperaturesbetween20◦Cand40◦Cbutunabletogrow at50◦Cand allisolatestoleratedNaClconcentrationof8% (SAI-13toleratedupto10%).Whentheisolatesweretestedfor fungicidetolerance,allthefourisolateswerefoundtolerantto BavistinandsusceptibletoBenlateandRidomilwhereastwo ofthem,SAI-13andSAI-29,werefoundmoderatelytolerant toThiramandslightlytoleranttoCaptan(Table3).

Underinvitroconditions,allthefouractinomyceteswere foundtoproducesiderophore,cellulase,lipase,protease,IAA, ␤-1,3-glucanase, chitinase(except VAI-40) andHCN (except VAI-40andVAI-7).Ofthefourisolates,SAI-29producedhigher amountsofHCN,IAA,and␤-1,3-glucanasewhileSAI-13 pro-ducedhigheramountsoflipaseandprotease(Table4).

PGPofchickpeabyselectedactinomycetes

Theeffectofactinomycetesonchickpeagrowthwas demon-strated by“ragdoll”method inwhich all isolatesexhibited increase in root (17%) and shoot (3%) lengths when com-paredwiththecontrol.Ofthefouractinomycetestested,VAI-7 significantlyenhancedbothrootandshootlengthswhereas VAI-40andSAI-29 significantlyenhancedonlyrootlengths whencomparedtocontrol(Fig.2).

Under field conditions, a considerable increase in agro-nomicandsoilmineralpropertieswereobservedin actino-mycetestreatedplotsovercontrolplots.At60DAS,therewas anincrease innodulenumber (upto19%), leafarea (upto 27%),podnumber(upto26%),leafweight(upto16%),plant height(upto3%)andstemweight(upto16%).Whileatfinal harvest,theactinomycetestreatedplotsexhibitedenhanced thestoveryield(upto23%),grainyield(upto20%),totaldry matter(upto17%),seedweight(upto16%)andseednumber

(upto22%)(Table5).Therhizospheresoilfromactinomycetes

treatedplotsenhancedupto11%oftotalN,27%ofavailable P,8%oforganicC,33%ofdehydrogenaseactivityand22%of microbialbiomasscarbon,atfloweringstageand3%oftotal N,19%ofavailableP,11%oforganicC,26%ofdehydrogenase activityand29%ofmicrobialbiomasscarbonatharvestwhen comparedwiththecontrol(Table6).

Colonizationandgeneexpressionstudies

Colonization ofactinomycetes on chickpea roots was con-firmedbyimagesofSEMinactinomycetestreatedroots.Allthe isolatesexhibitedgoodcolonizationonchickpearoots with-outanydamagetorootsurface.ThehyphaeofStreptomyces

werealsoseentogrowandadheretothesurfaceoftheroot (Fig.3).

(6)

Table3–Effectoftemperature,pH,salinityand fungicidesonthegrowthoffouractinomycetes.

Trait SAI-13 SAI-29 VAI-7 VAI-40

Temperature 20◦C 2 2 2 2 30◦C 3 3 3 3 40◦C 3 3 3 3 50◦C 0 0 0 0 pH 5 0 0 0 0 7 3 3 3 3 9 3 3 3 3 11 2 2 2 2 13 0 0 0 0 Salinity(%NaCl) 0 3 3 3 3 2 3 3 3 3 4 3 3 3 3 6 2 2 3 3 8 2 2 2 3 10 2 0 0 0 12 0 0 0 0 Fungicidetolerancea Bavistin(2500ppm) 3 3 3 3 Thiram(3000ppm) 1 2 0 0 Benlate(4000ppm) 0 0 0 0 Captan(3000ppm) 1 1 0 0 Ridomil(3000ppm) 0 0 0 0 0=no growth; 1=slight growth; 2=moderate growth; 3=good growth.

a Atfieldapplicationlevel.

InPGPgeneexpressionprofilestudies,goodqualityRNA wasisolatedfromallthefouractinomycetestrains.qRT-PCR analysis on selected PGP genes of actinomycetes revealed up-regulationofallthethreegenesandonallthefour acti-nomycetes.␤-1,3-Glucanasegenewashighlyup-regulatedin SAI-29(5 folds)followedbyVAI-7,VAI-40and SAI-13while IAAgenewashighlyup-regulatedinSAI-13(4folds)followed byVAI-7, VAI-40and SAI-29. Siderophore gene was highly

up-regulatedinSAI-13(1fold)followedbySAI-29,VAI-7and VAI-40(Fig.4).

Discussion

Actinomycetes are used for PGP and biocontrol of plant pathogensinagriculture.Forinstance,Streptomycesspp.were reportedtoenhancePGPofcropssuchastea,35wheat,36rice,34

bean,11 tomato37 andpea.38 Inthepresentstudy,whenthe

89 actinomycetesscreenedfortheir antagonisticpotentials againstimportantfungal pathogens ofchickpea. Ofwhich, fourisolates(SAI-13,SAI-29,VAI-7andVAI-40)werefoundto bepromising.TherewasnoinhibitionofS.rolfsiibySAI-29in dualcultureassayhowever,whenthepathogenreachedthe antagonistthegrowthofthepathogenwasarrested.Hence, SAI-29wasfurtherselectedformetaboliteproductionassay inwhichtheorganicfractionwasfoundtobeeffectivein con-trollingS.rolfsii.Similarly,VAI-40wasfoundtobeeffectivein dualcultureassaywhilenoteffectiveinmetabolite produc-tionassay,perhapsthemetaboliteproducedwasofvolatilein nature.Ofthefourisolates,SAI-13andSAI-29werefoundto havebroadspectruminhibitionagainstalltestedpathogens ofchickpea.Thesefourisolatesfoundtovaryintheirshape, elevation,opacity,margins,colorandsize.Molecular identifi-cationofthefourisolates,basedontheir16SrDNAsequence analysis, revealed that all actinomycetes belong to

Strepto-mycesspp.SimilarobservationswerenotedbyAraújo39where

heobservedStreptomycesasdry,smoothorhairycolonieswith airbornemyceliumofdifferentcolors.However,these pheno-typiccharacteristicsofStreptomycesvarywiththecomposition oftheculturemedium.40

In the present investigation,all the Streptomyces strains grew well attemperatures 20◦C to40◦C,analkalinepHof 11 and salineconcentrationsofup to8%.Hence,it canbe concluded thatthe Streptomycesisolates usedin this study can beused insemi-arid tropics, alkaline and salinesoils. The distributionofStreptomycesspp. indiverse ecosystems is one of the mainreasons for ability to adapt to a wide range of environmental conditions, allowing them to sur-viveinhightemperatures,saline,acidicandalkalinesoils.39

ThesetraitshelptheStreptomycesspp.incompetingwiththe

Table4–Productionofextracellularenzymesandplantgrowthpromotingtraitsbyfouractinomycetes.

Isolate Productionscorefor IAA ␤-1,3-Glucanase

Siderophore Chitinase Cellulase Lipase Protease HCN (␮g/mL) (mg/mL)

SAI-13 1 2 4 3 6.0 1 12.4 0.25 SAI-29 2 2 4 2 5.5 2 14.6 0.32 VAI-7 2 2 4 2 4.3 0 6.6 0.16 VAI-40 1 0 4 2 5.7 0 3.6 0.12 SE± 0 0 0 0 0.24* 0 0.32*** 0.012*** LSD(5%) 0 0 0 0.3 1.2 0 1.51 0.038

HCN,hydrocyanicacid;IAA,indoleaceticacid.Theratingscalesforsiderophore,chitinase,cellulase,lipaseandproteasewereasfollows:0=no halozone,1=halozoneof1–10mm,2=halozoneof11–20mm,3=halozoneof21–30mm,4=halozoneof31–40mm;5=41–50mm.ForHCN production,thefollowingratingscalewasused:0=nocolorchange,1=lightreddishbrown,2=mediumreddishbrown,3=darkreddishbrown. LSD,leastsignificantdifference;SE,standarderror.

Statisticallysignificantat0.05. ∗∗∗Statisticallysignificantat0.001.

(7)

Fig.2–Effectofactinomycetesstrainsonrootandshootlengthsofchickpeaseedlings.

nativemicroflorawhenintroducedintotherhizosphereofthe host.41ThesalinityandpHlevelsoftherhizospheresoilare

importantfactorsforthemicrobestocompeteandsurvivein rhizosphere.Therefore,thetoleranceforhighsalinityandpH shouldbethecriteriaforselectionofmicroorganisms.42

Inthisstudy,all thefourStreptomycesspp.weretolerant toBavistinwhereasSAI-13andSAI-29weretolerantto Thi-ramandCaptanatfieldapplicationlevels.Thesefungicides were generallyusedto controlsoilborne fungal pathogens. Hence,itisconcludedthatthefourStreptomycesspp.are com-patiblewithBavistin,ThiramandCaptanandhencecanbe treated together on the seeds tocontrol soil borne fungal pathogensandthusreducingtheuseoffungicidesin control-lingpathogens.

TheselectedfourStreptomycesspp.possessbiocontrolas wellasPGPpropertiessuchasproductionofIAA,siderophore, ␤-1,3-glucanase,lipase,protease,cellulase,chitinase(except VAI-40) and HCN (except VAI-7and VAI-40).IAA is a phy-tohormone which comes under auxins group and helps in improving plant growth by stimulating cell elongation, root initiation, seed germination and seedling growth.43

Siderophoresareusuallyproducedbyvarioussoilmicrobes including Streptomyces spp. to bind Fe3+ from the environ-mentand makeit availableforits owngrowth;plantsalso utilizetheseasanironsource.44Streptomycesspp.from

rhizo-spheresoilhasbeen reportedtoproducesiderophoresand inhibitthe growthofphytopathogens.38 HCNproductionis

alsoreportedtoplayarole indiseasesuppression.45 Some

of the recent studies indicated that metabolites produced by microbes such as HCN may enhance plant establish-ment in rhizosphere.46 The isolates from the rhizosphere

soilof chickpea were observed to exhibit HCN production

potentialwhichpromotedplantgrowthdirectlyorindirectly or synergistically.47 Suwan et al.48 proposed that

actino-mycetesactaspotentialasbiologicalcontrolagentsbecauseof itsintenseantagonisticactivityviatheproductionofvarious antifungalsubstancessuchaschitinaseand␤-1,3-glucanase. Inthepresentinvestigation,theeffectofthefour

Strepto-mycesspp.onthegrowthofchickpeaseedlingswasstudied

by “ragdoll” method, in which VAI-7 exhibited maximum increaseinshootandrootlengths.Thisobservationwas fur-therconfirmedinthefieldtrials.Underfieldconditions,the

Streptomycesspp.increasednodulenumberoverun-inoculated

controldemonstratingadirectproofforenhancingnitrogen fixation.TheStreptomycesstrainsusedinthisstudyexhibited increaseinagronomicpropertiessuchastheshootweight, leafweight,leafarea,plantheight,grainyieldandstoveryield overtheun-inoculatedcontrol.Theyalsoincreasedthetotal N,available P,organic C%, microbial biomassC, microbial biomassNanddehydrogenasepropertiesinplotstreatedwith

Streptomycesspp.Thephosphatemineralizationismainly

pro-videdbyphosphatasesorphosphohydrolases.Theseenzymes converttheunavailablephosphatetoavailableformbyslow mineralizationofphyticacid andpolyphosphates.49 Inthe

presentstudyalltheactinomycetesproducedlyticenzymes indicatingtheirabilitytoconvertcomplexmoleculesto sim-pleravailableforms,whichmaybeattributedtotheincreased levelsoftotalNandavailablePintheinoculatedplots.The substrate usedin measuringthe dehydrogenase activity is 2,3,5triphenyltetrazoliumchloride(TTC)andwasconverted totriphenylformazan(TPF)bytheactionofdehydrogenase, whichisdirectlyproportionaltothenumberof microorgan-isms insoil.28 In the present study,all the plots exhibited

(8)

Fig.3–SEMimagesofchickpearootscolonizedwithactinomycetesstrains.

un-inoculated control plots indicates that the Streptomyces

spp.applied inthe field were able tosurviveinthe rhizo-sphereandconferPGP.AmongthefourstrainsofStreptomyces

usedinthisstudy,VAI-7wasfoundtoenhancehighestgrain yieldandtotaldrymatter(by20%and17%,respectively).The enhancementinyieldbyVAI-7couldbeitsbothdirectand indirectPGPtraitsincludingIAA,siderophore,chitinase, cellu-lase,lipase,␤-1,3-glucanaseandprotease(Table4).Further,as mentionedearlier,VAI-7alsoenhancedhighestshootaswell asrootlengthsofchickpeaseedlings(Fig.2).VAI-7wasalso foundtoenhancegreatlysoilbiologicalandmineralnutrient properties including microbial biomass carbon, dehydroge-nase,totalN,availablePandorganiccarbon(Table6).Hence,

theStreptomycesstrainVAI-7couldbeexploitedforitsPGPand

yieldenhancementtraits.

TheSEMimages, inthisstudy,showedthat allthe four

Streptomyces strains colonized the roots of chickpea

with-outcausinganydamage.Compoundssuchasaromaticand phenoliccompounds,sugars,aminoacids,organicacidsand carbohydratesfromrootexudatesactsaschemoattractants that helps in root colonization.50,51 Colonization accounts

to the proliferation of microbes but not their movement.1

Weller52reportedthatamicroorganismthatcolonizesrootis idealforuseasbiocontrolaswellasplantgrowth-promoting agents.53 Actinomycetes strains like Micromonospora spp.,

Streptomyces spp., Streptosporangium spp., and Thermobifida

spp., were reported as best to colonize the plant rhizo-sphere,showinganimmensepotentialityasbiocontrolagent against wide range ofroot pathogenic fungi.54 Association

(9)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 7 (2 0 1 6) 85–95

93

Nodule number (plant−1) Leafarea (cm−2plant−1) Leafweight (gplant−1) Podnumber (plant−1) Shootweight (gplant−1) Plantheight (cm) Seedweight (gplant−1) Seednumber (plant−1) Stoveryield (tha−1) Grainyield (tha−1) Totaldry matter (tha−1) SAI-13 50 660 4.13 62 4.17 48 196 77 1.70 1.70 3.40 SAI-29 59 665 3.82 64 3.99 49 199 80 2.17 1.85 4.01 VAI-7 60 692 4.41 79 4.69 49 202 70 1.89 2.09 3.98 VAI-40 61 855 4.09 61 4.05 48 196 85 1.72 1.82 3.53 Control 49 626 3.71 59 3.96 47 195 66 1.68 1.67 3.34 SE± 2.1** 36.4** 0.134* 3.2** 0.159* 0.4* 0.448** 1.6*** 0.059*** 0.089* 0.129** LSD(5%) 6.7 118.8 0.436 10.4 0.490 0.6 3.7 5.2 0.175 0.249 0.346

LSD,leastsignificantdifference;SE,standarderror.

Statisticallysignificantat0.05. ∗∗ Statisticallysignificantat0.01. ∗∗∗Statisticallysignificantat0.001.

Table6–Effectofthefouractinomycetesonrhizospheresoilmineralpropertiesofchickpeaunderfieldconditions(2013–2014)–atfloweringandcropmaturity.

Isolate Atflowering Atcropmaturity

TotalN (ppm) AvailableP (ppm) Organic carbon (%) Dehydrogenase activity (␮gTPFg−1 soil24h−1) Microbial carbon (␮gg−1soil) TotalN (ppm) AvailableP (ppm) Organic carbon (%) Dehydrogenase activity (␮gTPFg−1 soil24h−1) Microbial carbon (␮gg−1soil) SAI-13 759 9.6 0.56 61.5 634 725 7.1 0.56 76.0 584 SAI-29 685 9.3 0.56 43.5 649 729 7.1 0.56 71.0 778 VAI-7 742 12.6 0.59 50.5 777 736 8.5 0.59 74.5 608 VAI-40 726 9.5 0.57 60.0 782 747 7.5 0.62 68.0 568 Control 675 9.2 0.54 41.0 612 721 6.9 0.55 55.0 551 SE± 11.9* 0.26** 0.005** 2.37** 29.7* 4.6* 0.14** 0.01* 2.51* 24.9** LSD(5%) 46.8 1.03 0.018 9.31 116.7 15.3 0.52 0.038 9.87 97.9

LSD,leastsignificantdifference;SE,standarderror;TPF:triphenylformazan.

Statisticallysignificantat0.05. ∗∗ Statisticallysignificantat0.01.

(10)

0 1 2 3 4 5 6 SAI-29 VAI-7 VAI-40 SAI-13

Associate editor: Jerri Édson Zilli

β-1.3 glucanase IAA Siderophore

Fig.4–ExpressionprofileofIAA,␤-1,3-glucanaseand siderophoregenesoffouractinomycetesstrains.

productionof antibiotics, extracellular enzymes, phytohor-mones,siderophoresandphosphatesolubilization,protects plantagainstbioticandabioticstress.55Itisconcludedthatall

thetestedStreptomycesstrainsnotonlycolonizedontheroots butalsoproliferatedand enhancedPGP inchickpea.Inthe presentstudy,geneexpressionstudiesforIAA,siderophore and ␤-1,3-glucanase genes exhibited up-regulation of the threegenes,supportingthebiochemicalresults.The impor-tanceofgeneexpressionhasbeenwidelyrecognizedingene function.56

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WethankCouncilofScientificandIndustrialResearch,New Delhi,India,forthe financialsupportprovidedtoM Sreev-idyaduringherPhD.Thiswork was undertakenaspart of theCGIAR ResearchProgramonGrainLegumes. ICRISATis amemberofCGIARConsortium.Wewouldalsoliketothank ICRISATandallofthestaffmembersofthebiocontrolunit, includingAlekhyaG,SatyaA,PrasadPVS,ManoharP,Nagappa B,BharathDandJabbarAfortheirsignificantinputsinthe laboratoryandfieldexperiments.

r

e

f

e

r

e

n

c

e

s

1. FAOSTAT.FoodandAgricultureOrganizationStatistical

Databases.Rome:FoodandAgricultureOrganization;2014.

2. RaoPP,BirthalPS,BhagavatulaS,BantilanMCS.Chickpeaand

PigeonpeaEconomiesinAsia:Facts,TrendsandOutlook.

Patancheru,AndhraPradesh,India:InternationalCrops

ResearchInstitutefortheSemi-AridTropics;2010:76.

3.AkhtarMS,SiddiquiZA.EffectofAMfungionplantgrowth

androot-rotdiseasesofchickpea.AmEurasianJAgricEnviron

Sci.2010;8:544–549.

4.SharmaM,ManglaUN,KrishnamurthyM,VedezV,PandeS.

DroughtandDryRootRotofChickpea.Paperpresentedin5th

InternationalFoodLegumesResearchConference(IFLRCV)

andEuropeanconferenceonGrainLegumes;2010:26–30.

5.HalderAK,MishraAK,ChakarbartyPK.Solubilizationof

inorganicphosphatesbyBradyrhizobium.IndianJExpBiol.

1991;29:28–31.

6.ElliotLF,LynchJM.Theinternationalworkshopon

establishmentofmicrobialinoculainsoils:cooperative

researchprojectonbiologicalresourcemanagementofthe

organizationforeconomiccooperationanddevelopment

(OECD).AmJAlternAgric.1995;10:50–73.

7.MerzaevaOV,ShirokikhIG.Colonizationofplantrhizosphere

byactinomycetesofdifferentgenera.Mikrobiologiia.

2006;75:271–276.

8.CattelanAJ,HartelPG.Traitsassociatedwithplant

growth-promotingrhizobacteria(PGPR).In:Sociedade

BrasileiradeCiênciadoSolo.Tópicosemciênciadosolo.Vic¸osa:

SociedadeBrasileiradeCiênciadoSolo;2000:213–234.

9.PetrosyanP,García-VarelaM,Luz-MadrigalA,HuitrónC,

FloresME.Streptomycesmexicanussp.nov.,axylanolytic

micro-organismisolatedfromsoil.IntJSystEvolMicrobiol.

2003;53(Pt1):269–273.

10.DingCH,JiangZQ,LiXT,LiLT,KusakabeI.Highactivity

xilanaseproductionbyStreptomycesolivaceoviridisE-86.World

JMicrobiolBiotechnol.2004;20:7–10.

11.NassarAH,El-TarabilyKA,SivasithamparamK.Growth

promotionofbean(PhaseolusvulgarisL.)bya

polyamine-producingisolateofStreptomycesgriseoluteus.

PlantGrowthRegul.2003;40:97–106.

12.GopalakrishnanS,SureshP,MamtaS,etal.Evaluationof

actinomyceteisolatesobtainedfromherbalvermicompost

forthebiologicalcontrolofFusariumwiltofchickpea.Crop

Prot.2011;30:1070–1078.

13.AnejaKR.Stainingmethods:Gramstainingofbacteria.In:

NewAge.ExperimentsinMicrobiologyPlantPathologyand Biotechnology.NewAgeInternationalLimitedPublishers; 2003:102–106.

14.AltschulSF,GishW,MillerW,MyersEW,LipmanDJ.Basic

localalignmentsearchtool.JMolBiol.1990;215:

403–410.

15.ThompsonJD,GibsonTJ,PlewniakF,JeanmouginF,Higgins

DG.TheCLUSTALXwindowsinterface:flexiblestrategiesfor

multiplesequencealignmentaidedbyqualityanalysistools.

NucleicAcidsRes.1997;25:4876–4882.

16.SaitouN,NeiM.Theneighbor-joiningmethod:anew

methodforreconstructingphylogenetictrees.MolBiolEvol.

1987;4:406–425.

17.GopalakrishnanS,UpadhyayaH,VadlamudiS,etal.Plant

growth-promotingtraitsofbiocontrolpotentialbacteria

isolatedfromricerhizosphere.Springerplus.2012;1(1):71.

18.SchwynB,NeilandsJB.Universalchemicalassayforthe

detectionanddeterminationofsiderophores.AnalBiochem.

1987;160:47–56.

19.HsuSC,LockwoodJL.Powderedchitinagarasaselective

mediumforenumerationofactinomycetesinwaterandsoil.

ApplMicrobiol.1975;29:422–426.

20.HendricksCW,DoyleJD,HugleyB.Anewsolidmediumfor

enumeratingcellulose-utilizingbacteriainsoil.ApplEnviron

Microbiol.1995;61:2016–2019.

21.BhattacharyaA,ChandraS,BarikS.Lipaseandprotease

producingmicrobesfromtheenvironmentofsugarbeet

field.IndJAgricBiochem.2009;22:26–30.

22.LorckH.Productionofhydrocyanicacidbybacteria.Plant

(11)

23.PattenCL,GlickBR.RoleofPseudomonasputidaindoleacetic

acidindevelopmentofthehostplantrootsystem.Appl

EnvironMicrobiol.2002;68:3795–3801.

24.ChambleeDS,GreenJT.Productionandutilizationof

pasturesandforagesinNorthCarolina.NCAgricResServ

TechBull.1995;305:153.

25.NovozamskyI,HoubaVJG,vanEckR,vanVarkW.Anovel

digestiontechniqueformultipleelementanalysis.Commun

SoilSciPlantAnal.1983;14:239–248.

26.OlsenSR,SommersLE.Phosphorus.In:MethodsofSoil

Analysis,Part2,ChemicalandMicrobialProperties.Agronomy MonographNo.9,2nded.Madison,WI,USA:ALPage,

AmericanSocietyofAgronomy;1982:403–430.

27.NelsonDW,SommersLE.Totalorganiccarbonandorganic

matter.In:PageAL,MillerRH,KeeneyDR,eds.MethodsofSoil

Analysis.Part3:ChemicalandMicrobiologicalProperties.

Madison,WI:SoilScienceofAmerica,Inc.;1982:539–579.

28.AndersonTH,DomschKH.Ratiosofmicrobialbiomass

carbontototalorganiccarboninarablesoils.SoilBiol

Biochem.1989;21:471–479.

29.BrooksPC,LandmanA,PrudenG,JenkinsonDS.Chloroform

fumigationandthereleaseofsoilnitrogen;arapiddirect

extractionmethodtomeasuremicrobialbiomassnitrogenin

soil.SoilBiolBiochem.1985;17:837–842.

30.CasidaLEJr.Microbialmetabolicactivityinsoilasmeasured

bydehydrogenasedeterminations.ApplEnvironMicrobiol.

1977;34:630–636.

31.BozzolaJJ,RussellLD.ElectronMicroscopy:Principalsand

TechniquesforBiologists.2nded.Sudbury,MA:Jonesand

BarlettPublishers;1999:19–24,54–55,63–67.

32.ChomczynskiP,MackeyK.Substitutionofchloroformby

bromo-chloropropaneinthesingle-stepmethodofRNA

isolation.AnalBiochem.1995;225:163–164.

33.RosenS,SkaletskyHJ.Primer3ontheWWWforgeneral

usersandforbiologistprogrammers.In:KrawetzS,Misener

S,eds.BioinformaticsMethodsandProtocols:Methodsin MolecularBiology.Totowa,NJ:HumanaPress;2000: 365–386.

34.GopalakrishnanS,VadlamudiS,BandikindaP,etal.

EvaluationofStreptomycesstrainsisolatedfromherbal

vermicompostfortheirplantgrowth-promotiontraitsin

rice.MicrobiolRes.2014;169:40–48.

35.PhukanI,MadhabM,BordoloiM,etal.ExploitationofPGP

microbesofteaforimprovementofplantgrowthandpest

suppression:anovelapproach.TwoBud.2012;59:69–74.

36.HamdaliH,HafidiM,VirolleMJ,OuhdouchY.Rock

phosphate-solubilizingActinomycetes:screeningforplant

growth-promotingactivities.WorldJMicrobiolBiotechnol.

2008;24:2565–2575.

37.El-TarabilyKA.Promotionoftomato(Lycopersiconesculentum

Mill.)plantgrowthbyrhizospherecompetent1-aminocyclo

propane-1-carboxylicaciddeaminase-producing

Streptomyceteactinomycetes.PlantSoil.2008;308:161–174.

38.TokalaRK,StrapJL,JungCM,etal.Novelplant–microbe

rhizosphereinteractioninvolvingStreptomyceslydicus

WYEC108andthepeaplant(Pisumsativum).ApplEnviron

Microbiol.2002;68:2161–2171.

39.AraújoJM.Strategiesforselectiveisolationofactinomycetes.

In:MeloIS,AzevedoJL,eds.MicrobialEcology.Jaguariuna:

EMBRAPA–CNPMA;1998:351–367.

40.CrossT.Growthandexaminationofactinomycetes:some

guidelines.In:WilliamsST,SharpeME,HoltJG,eds.Bergey’s

ManualofSystematicBacteriology.Baltimore:Williamsand

Wilkins;1989:2340–2343.

41.HabeMH,UesughiCH.Aninvitromethodforevaluatingthe

abilityofbacteriacolonizingontomatoroots.Braz

Phytopathol.2000;25:657–660.

42.DrozdowiczAG.Microbiologiadosolo.In:RoitmanI,

TravassosLR,AzevedoJL,eds.Tratadodemicrobiologia.São

Paulo:Manole;1987:17–28.

43.El-TarabilyKA,NassarAH,HardyGE,SivasithamparamK.

PlantgrowthpromotionandbiologicalcontrolofPythium

aphanidermatum,apathogenofcucumber,byendophytic

actinomycetes.JApplMicrobiol.2009;106:13–26.

44.WangY,BrownHN,CrowleyDE,SzaniszloPJ.Evidencefor

directutilizationofasiderophore,ferrioxamineB,in

axenicallygrowncucumber.PlantCellEnviron.

1993;16:579–585.

45.WeiG,KloepperJW,SadikT.Inductionofsystemicresistance

ofcucumbertoColletotrichumorbicularebyselectedstrainsof

plantgrowthpromotingrhizobacteria.Phytopathology.

1991;81:1508–1512.

46.BhosaleHJ,KadamTA.Genericdiversityandacomparative

accountonplantgrowthpromotingcharacteristicsof

actinomycetesinrootsandrhizosphereofSaccharum

officinarum.IntJCurrMicrobiolApplSci.2015;4:230–244.

47.JosephB,PatraRR,LawrenceR.Characterizationofplant

growthpromotingrhizobacteriaassociatedwithchickpea

(CicerarietinumL).IntJPlantProd.2007;1:141–152.

48.SuwanN,BoonyingW,NalumpangS.Antifungalactivityof

soilactinomycetestocontrolchillianthracnosecausedby

Colletotrichumgloeosporioides.JAgricTechnol.2012;8:725–737.

49.RodríguezH,FragaR.Phosphatesolubilizingbacteriaand

theirroleinplantgrowthpromotion.BiotechnolAdv.

1999;17:319–339.

50.KloepperJ,TuzunS,KucJ.Proposeddefinitionsrelatedto

induceddiseaseresistance.BiocontrolSciTechnol.

1992;2:347–349.

51.vanOverbeekLS,vanElsasJD.Rootexudates-induced

promoteractivityinPseudomonasfluorescensmutantsinthe

wheatrhizosphere.ApplEnvironMicrobiol.1995;61:890–898.

52.WellerDM.Biologicalcontrolofsoil-borneplantpathogens

intherhizospherewithbacteria.AnnuRevPhytopathol.

1988;26:379–407.

53.YoussefYA,El-TarabilyKA,HusseinAM.Plectosporium

tabacinumrootrotdiseaseofwhitelupine(Lupinustermis

Forsk.)anditsbiologicalcontrolbyStreptomycesspecies.J

Phytopathol.2001;1490:29–33.

54.Franco-CorreaM,QuintanaA,DuqueC,SuarezC,Rodriguez

MX,Jose-MiguelB.Evaluationofactinomycetestrainsforkey

traitsrelatedwithplantgrowthpromotionandmycorrhiza

helpingactivities.ApplSoilEcol.2010;45:209–217.

55.BaileyBA,BaeH,StremMD,etal.Fungalandplantgene

expressionduringthecolonizationofcacaoseedlingsby

endophyticisolatesoffourTrichodermaspecies.Planta.

2006;224:1449–1464.

56.MutoH,WatahikiMK,YamamotoKT.Whatmakeseach

aux/IAAgeneuniqueinitsgenefamily,expressionpattern

orpropertiesofthegeneproduct?PlantSignalBehav.

Referências

Documentos relacionados

angustifolia grown under -P, the K relative concentration in the spongy mesophyll of needles was higher than other specialized tissues and when compared to the control and

Shoot and root lengths and total plant fresh and dry weights in seedlings of Exagone (A) and Toccata (B) for the four combinations of “germination-growth” conditions (O-O, O-S,

The improvement of cassava is possible based on the following evaluated traits: shoot plant weight, number of roots per plant, number of rotten roots per plant, fresh root

Total and marketable plant fresh weight, marketable yield, discard rate, plant diameter and height and plant dry weight from two mini lettuce cultivars cultivated in four

Apesar desta porcentagem, estar dentro dos limites adequados, o aumento da população de plantas acima de 60.000 pl ha -1 , contribuiu para aumentos significativos

§ 89 — De fato, o Direito Internacional Privado é intima- mente ligado ao Direito Processual Civil, do qual se distingue porque, ao contrário dêste, que tem normas formais e

O anime Saint Seiya conta a história do protagonismo de Seiya de Pégaso, Shun de Andrômeda, Shiryu de Dragão, Hyoga de Cisne e Ikki de Fênix, todos jovens cavaleiros

Os dados foram recolhidos através de uma observação estruturada sobre o comportamento lúdico-motor, uma entrevista sobre as suas preferências lúdicas e por