• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2B

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2B"

Copied!
12
0
0

Texto

(1)

Brownian Rathets and the Photoalignment

of Liquid Crystals

P.Paly-Muhoray a

, T. Kosa a

, and Weinan E b

a

LiquidCrystalInstitute,KentStateUniversity,Kent, OH44242

b

Mathematis Department, PrinetonUniversity,Prineton,NJ08544

Reeivedon11Deember,2001

Moleular motorsplaykeyrolesinareasrangingfrom biologialtransporttoemerging

nanoteh-nology. Theyprodueurrentasaresultoftransferofenergybutnotofmomentumfromasoure;

manymoleularmotorsenariosarebasedonthetranslationalBrownianrathetmehanism. Here

weonsiderthemehanismofphotoalignmentofliquidrystalsbothinthebulkandatthesurfae

byaphotosensitivealignment layer. Weshowthatthe photoalignmentis dueto anorientational

rathet mehanism, where the azo-dye moleules, funtionalized into a polymer alignment layer,

whenirradiated by polarizedlight at as the rotors of Brownianmotors whihreorient the bulk

liquidrystalagainstanelastirestoringtorque.Resultsofthisphotoalignmentexperimentanbe

obtaineddiretlyfromaremoteexperimentsetupattheLiquidCrystalInstitute,viatheWWW.

Inadditiontoexperimentalresults,wepresentadetailedFokker-Plankdesriptionofthissystem.

Wedisusstheimplementationand theresults ofnumerialsimulations, andomparethesewith

theexperimentallyobserveddynamis.

I Introdution

Itiswellknownthat lightanexertaforeonmatter;

radiation pressure on a reeting metal surfae, or a

blakabsorbingsurfaearewellknownexamples. Itis

perhapslesswellknownthat lightfallingfromvauum

onadieletriinterfaeexertsaforewhihattratsthe

interfaetowardsthesoureoflight[1℄. In1936, R.A.

Bethshowedthatlightanalsoexertatorque[2℄;inhis

example,thetorque,alongthewavevetoroflight,was

due to thetransferof intrinsi(spin) angular

momen-tum from the radiationeld to thematerial. In1969,

A. Saupe showed that light an also exert a torque,

perpendiulartothewavevetor,onliquidrystals[3℄;

thiseethassubsequentlybeenredisoveredbyothers

[4-7℄andhasbeenthesubjetofonsiderableattention.

InSaupe'sexperiment,the torqueisdue to the

trans-fer of extrinsi (orbital) angular momentum from the

radiationeldto thematerial[8℄.

In 1990, Janossy showed that by adding a small

amountofdihroidyetotheliquidrystal,the

thresh-old intensity for the light indued reorientation is

re-dued by sometwoorders ormagnitute [9℄[10℄. Sine

in this ase the transfer of extrinsi angular

momen-tum from light is also redued by some two orders of

magnitude while the elasti restoring torques remain

unaltered,it is learthat thetorque felt by theliquid

rystal annot originate in angular momentum

trans-balane in this systemposed an interesting and

hal-lenging problem. We have suggested that this

`rota-tion without torque' is anorientationalversion of the

translationalrathetmehanism, apableofproduing

`motionwithoutfore',proposedbyAstumian[11℄and

Prost [12℄,and thatthetorque isarriedfrom theell

wallsby visousshear tothe dyemoleules,whihat

asrotors of aBrownian motor [8℄. Subsequently, this

model hasbeensigniantlyexpanded[13,14℄.

In this paper, we argue that photoalignment by

dyedopedphotosensitivealignmentlayersan alsobe

due to therathetmehanism,where thedihroidye

moleulesin thealignmentlayeratasrotorsof

Brow-nianmotors.

I.1. Biologial transport

It is interesting to explore parallels in the

under-standing of angular momentum balane in the

pho-toalignment of liquid rystals, and of the mehanism

oftransportinbiologialsystems. Essentiallyallliving

organisms (the eukaryoti ells of yeasts, plants,

ani-mals)ontain`motorproteins'. Twowellknown

exam-ples are kinesins andmyosins. Kinesin hastwoative

heads,ithydrolyzesATP,andmovesalongproessively

alongmitotubules.

Myosinalsohastwoativeheads,italsohydrolyzes

ATP,and itmovesproessivelyalongatin bers.

(2)

fun-tissue. The atin bers in musleare onnetedto

Z-membranesforming theend ofsaromeres;themotion

of the myosin headson theatin bersresults in

ten-sion ofthe myosin strands,ontrationofthe

sarom-eres,andofthemusleber[15℄. Themyosinbersare

approximately15m long,exertaforeof5pNper

attahed head,thestep-sizeis 5:5nmandthereisone

step/ATP-asereation.

Figure 1. Shematiofkinesin arryingargo alonga

mi-rotube.

The mehanisms responsible for the transport of

both kinesin and atin has been the subjet of

on-siderabledisussionintheliterature. Theonventional

viewhasbeenthat myosintransporttakesplaeviaa

`lever-armswinging'model,whileatintransporttakes

plae via`hand-over-hand'motion[16℄.

myosin

actin

sarcomere

muscle fiber

Figure2. Shematiofmyosinmovementresulting in

mus-leontration.

Reent experimental results have however ast

doubt on the validity of these models. Ishii and

Yanagidashowed[17℄thatproessivetransportanbe

observedinmyosinsubfragmentswhiharewithoutthe

full mehanial`lever-arm'omponent,indiatingthat

the `lever-arm' model annot adequately explain the

mehanism of the observed motion. Similarly, Okada

and Hirokawadeveloped amutantsuperfamily of

one-[18℄. Theirresultsuggestedthat the `hand-over-hand'

motionannotadequatelyexplainthemehanismofthe

observedmotion. Theonventionalmehanialmodels

thus apparentlyfailedto explainthedetails ofthe

ob-servedproessivetransport.

It hasnowbeenproposed that both in thease of

atin and of myosin, the mehanism for the observed

`motionwithout fore' is the biasedBrownian rathet

[19,20℄;that is, essentiallythesamemehanismwhih

isresponsiblefortheanomalousthresholdredutionin

the Janossy eet, and, as we argue below, for

pho-toalignmentbydyedphotosensitivealignmentlayers.

I.2 Motors and diusive transport

Inviewofonsiderablereentdisussionof

moleu-larmotorsin theliterature, itis interestingtoinquire

intothedenition ofamotor. Wenote thateven

on-ventionalmotorshavethefeaturethattheygiveriseto

`motion without fore'. For example, in the road-ar

system,thear typiallymoves,not asaresultsof an

externallyapplied fore, but beause themotor ofthe

ar auses onepart of the system (the road) to exert

afore ontheother (thear) withoutanymomentum

transferfromoutsidethesystem. Aworkingdenition

ofmotormaythereforebe: thatwih ausesmotion in

asystemwithoutmomentumtransferfromtheoutside,

or,alternately,amahine thatusesenergybutnot

mo-mentumtodriveaurrent.

Diusivetransportisthenamegiventomodel

pro-esses[21℄whihandriveaurrentofpartilesagainst

anopposing visous fore. Unlikein onventional

mo-tors, intertiadoesnot play arole. Oneearly example

of diusive transport is the beautiful model proposed

byR.Landauer[23℄,whih hasbeomeknownas

Lan-dauer'sBlowtorh. Herepartilesexperieneaspatially

periodisymmetrisinusoidalpotentialaswellasa

pe-rioditemperatureeld,asshowninFig. 3.

Sinethetemperatureisshiftedrelativeto the

po-tential, partiles near the left side of the valleys are

at a higher temperature than those near the right;

onsequently they aremore likelyto be thermally

ex-itedoverthe potentialbarrier and diuseto theleft.

The heat soure in this arrangement therefore drives

asteady urrent of partiles against an opposing

(3)

trans-x

T(x)

x

U(x)

Figure 3. Landauers's Blow torh. Partiles experiene

a stati sinusoidal temperature eld: the temperature is

shifted=4relativetothepotential.

A shemati of the translational rathet of

Astu-mian[11℄andProst[12℄isshownin Fig. 4.

U

x

U=0

x

U

x

U

x

U=0

x

U

x

Figure4.Shematiofthetranslationalrathet.

WhentheasymmetripotentialisturnedOFF,

par-tiles diuse evenly in both left and right diretions,

and the net urrent is zero. When the potential is

turnedON,thepartilesundergodireteddiusion

un-der the inuene of the potential, resulting in a net

urrentto the left. A salientfeature of therathetis

aspatiallyperiodiasymmetripotentialwhihis

peri-odiintime. Theproessisdiusiveratherthan

inter-tial;thepotentialdrivesaurrentagainstanopposing

visous fore. Turning the potential ONand OFF

re-quiresatransferofenergy,but notofmomentum.

We now onsider the Janossy eet (bulk

pho-toalignment) and a photoindued twist experiment in

moredetail,andarguethatthekeyunderlyingproess

isanorientationalrathetmehanism.

II Liquid rystals

Liquid rystalsareanisotropiuids, haraterized by

orientationalorder oftheonstituentmoleules. They

are responsive `soft' materials, sine their inherent

anisotropyprovidesamehanismofouplingto elds,

andtheiruidityallowsalargeresponse.

Moleulesofnematiliquidrystalsprefertobe

par-allel;thediretionofaverageorientationofthe

moleu-larsymmetryaxesisdesribedbytheunitvetor

dire-tor eld. Nematis with positivedieletri anisotropy

also prefer to align with an applied eletri eld; this

eetplaysakeyroleinliquidrystaldisplays.

Mole-ularanisotropyalsoresultsindiretiondependent

sur-fae interations.

Thefreeenergydensity,in theoneelastionstant

approximation,isgivenby[22℄

F= Z

1

2

K[(r^n ) 2

+(r^n) 2

℄ "(^nE) 2

dV Z

W ( ^

N^n) 2

dA (1)

d

where K isan elastionstant, thedyad"^n^n isthe

anisotropi part of the dieletri tensor, E is the

ap-pliedeletrield, W is ananhoringstrength and ^

N

istheeasyaxisofalignmentatthesurfae. Inasample

of lineardimension R ,the rstterm onthe r.h.s.

de-sribingtheenergyostofanon-uniformdiretoreld,

isproportionaltoR ,whilethelasttermdesribing

sur-fae interationsisproportionalto R 2

. Consequently,

in largesamples(R >K =W), in theabseneof elds,

surfaeinterationsdominateanddeterminethe

orien-tation. FromEq. (1), thetorque pervolumedue to a

statieletrield isgivenby

DC

="(^nE)^nE=DE (2)

When the diretor is parallel to the eletri eld, the

torquevanishes.

If light is propagating in the liquid rystal, the

torquedensityduetomomentum transferfromlightis

the anisotropipartof theMaxwellstress tensor; this

givesthediretoptialtorque

(4)

whose formisthesameasin thestatiase.

II.1 Experimental observations

II.1.1 Optial reorientation in thebulk

Theoptial Freederiksztransition. Ifplanepolarized

light is normallyinident on anemati ell where

an-horingonditionsaresuhthatthediretorisnormal

to theellwalls,then,aboveathresholdintensity, the

diretor tendsto align alongthe eletrield;that is,

along the diretion of polarization of the light. This

is the optial Freederiksz transition. A shemati is

shownin Fig. 5. Due to anisotropy,D is notparallel

to E, and theray isdeeted. Angularmomentum is

transferred fromthelighttotheliquidrystal.

laser

ray

table

_

h

p =

λ

laser

ray

table

_

h

p =

λ

Figure5. ShematioftheoptialFreederiksztransition.

Theoptialtorque

OPT

isbalaned bytheelasti

torque

ELAST

=K^nr 2

^

n (4)

ingoodagreementwithexperimentalobservations[24℄.

The Janossy Eet. In 1990, Janossy showedthat if

a small amount (< 1%) of adihroi dye is dissolved

intheliquidrystal,thethresholdintensityforthe

op-tial Freederiksz transition an be redued by up to

twoordersofmagnitude[9℄. Theanomalousredution

of thethreshold intensityis theJanossy eet. Inthe

Janossyeet,theelastitorqueremainsessentiallythe

sameasinthepurematerial,sinetheelastionstant

isnotaetedsigniantlybythepreseneofthesmall

amountofdye[10℄,however,sinethethreshold

inten-sity is redued by sometwo orders of magnitude, the

diretoptialtorqueisorrespondinglyredued. Sine,

aspointedoutbyJanossy[10℄,thediretoptialtorque

isnotsuÆienttooverometheelastitorque,a

dier-entsoureof torquemustexist.

II.1.2 Optial alignment atsurfaes

Photoalignment.

Sine surfae interations often determine the

ori-isofgreatpratialimportane. Inmostliquidrystal

displays, thin mehanially bued polymer layers

es-tablishsurfaealignmentofthediretor. Beauseofits

potentialfordisplayand optialmemoryappliations,

the photoalignment of liquid rystals by

photosensi-tivealignmentlayersgeneratedagreatdealofinterest.

Oneirreversiblesheme usespolarized lightto ahieve

diretion-seletive ross-linking [25,26℄ or breaking of

polymerhains[27℄. Areversibleshemeusesa

photo-sensitivealignmentlayerwheredyemoleulesareeither

ovalentlyattahedto thesubstratesurfae[28℄ or

in-orporatedinto apolymermatrix[29℄. Herepolarized

illuminationalterstheorientationofthehromophores,

whihresultsinthehangeofthediretionoftheeasy

axis. This latter sheme shows onsiderable potential

forappliations[30℄,thephotoinduedtwistexperiment

disussedbelowmakesuseofit.

Azo dyes

Azo dyes are ompounds ontaining-N=N- (azo)

groupswhiharelinkedtovarious organigroups

(sub-stituents) through sp 2

hybridized arbon atoms [31℄.

Withrespettobothprodutionandvariety, azodyes

arebyfarthelargestgroupofommerial olorants.

Due to the presene of the lone-pair eletrons on

the nitrogens, the azo bond, although planar, is not

linear. Therearetwostereoisomersofazoompounds,

dependingontherelativepositionofthelone-pairsand

substituents as shown in Fig. 6. Interestingly,

al-thoughazodyes were ommeriallyprodued asearly

as1861,the trans-is isomerizationwasdisoveredby

G.S.Hartlyonlyin1937.

Figure 6. Trans- and is- isomers of azobenzene. (The

emptyirles onthe doublybondednitrogens indiatethe

lone-pairseletrons.

The elongated trans-isomer is thermodynamially

stable,whilethehigherenergyis-isomerismetastable.

The lowest energy optial exitation of azobenzene

derivatives promotes non-bonding lone-pair eletrons

to anti-bonding -like moleular orbitals, and is

des-ignated as (n;

) transition. The next higher energy

exitation indues a (;

) transition. Following the

exitation,atransitionbetweenthetwoisomeriforms

is possible. In general, there are two pathways

avail-ablefortheisomerization;rotationandinversion.

(5)

isomer-mehanism is greatly inuened by the nature of the

substituent groups and by the exitation energy.

Re-entresultsoffemtoseondspetrosopimeasurements

supporttheideathat (n;

) exitation ofazobenzene

leadstoisomerizationviainversionatoneofthe

nitro-genatoms[32℄.

Due to the nature of the proess, there are three

propertiesthathangeuponisomerization: absorption,

dipole momentand geometri dimension. These light

induedhangeslend azobenzeneontainingmaterials

great potential in appliations requiring

photorespon-sivity. Possible appliations range from image and

information storage to biologial appliations suh as

photoregulation ofenzymeativity.

Whenasmallamountofdyewithelongated

mole-ular shape is dissolved in a liquid rystal, the dye

moleules tend to align parallel to the nemati

dire-tor. By hangingthe orientation of the diretor, say,

by applying an external eletri eld, the orientation

of thedyemoleules anbe hangedaswell. This so

alled 'guest-host' eet has been utilized for display

appliations prior to the invention of the twisted

ne-matidisplay[33℄.

With the disoveryof the photoalignment method

using azo dye-polymer systems[29℄, azo dyes beame

subjetsof renewedsientiinterestintheliquid

rys-tal eld.

III Photoindued twist

experi-ment

In the photoindued twist experiment, a nemati ell

with one mehanially bued and one photosensitive

alignmentlayeris irradiated with polarized light.

Al-though the polarization is along the initially uniform

diretoreld,whihisparallelto thebuÆngdiretion,

thediretoreld developsaphotoindued twist

defor-mation[13℄.

Thesampleells usedin the experimentonsist of

twoglassplates,separatedby20mspaers,and

on-tainingtheliquidrystal5CBbetweentheplates. One

platewasoatedwithamehaniallybuedpolyimide

layerwhihisexpetedtogivestrongplanaranhoring.

Theotherplatewasoatedwitha300

Athik

photosen-sitivelayerof PMMAinto whih theazo-dyeDisperse

Red1hasbeenfuntionalized. Thehemialstruture

of the photosensitivealignment layeris shown in Fig.

7.

Figure7. Chemialstrutureofthe PMMAlayerwiththe

funtionalizedDR1dye.

A shemati of thephotoindued twist experiment

is showin Fig. 8. If there is no light inident on the

photosensitivealignmentlayer,thealignmentofthe

di-retorin the ellis everywhereparallel to thebuÆng

diretionofthestronglyanhoringmehaniallybued

polyimide layer. When the ell is irradiated by plane

polarizedlightat =514nmandat20 mWof power

from a CW Ar+ laser, with polarization parallel to

the diretor, a twist deformation develops in the ell

asshowninFig. 8.

nematic

photosensitive

alignment layer

strong anchoring

dye

laser OFF

nematic

photosensitive

alignment layer

strong anchoring

dye

nematic

photosensitive

alignment layer

strong anchoring

nematic

photosensitive

alignment layer

strong anchoring

dye

laser OFF

nematic

photosensitive

alignment layer

strong anchoring

E

polarized

light

dye

θ

laser ON

nematic

photosensitive

alignment layer

strong anchoring

E

polarized

light

dye

θ

nematic

photosensitive

alignment layer

strong anchoring

E

polarized

light

dye

θ

laser ON

nematic

photosensitive

alignment layer

strong anchoring

dye

laser OFF

nematic

photosensitive

alignment layer

strong anchoring

dye

nematic

photosensitive

alignment layer

strong anchoring

nematic

photosensitive

alignment layer

strong anchoring

dye

laser OFF

nematic

photosensitive

alignment layer

strong anchoring

E

polarized

light

dye

θ

laser ON

nematic

photosensitive

alignment layer

strong anchoring

E

polarized

light

dye

θ

nematic

photosensitive

alignment layer

strong anchoring

E

polarized

light

dye

θ

laser ON

(6)

To measure the twist, a pump-probe arrangement

wasimplemented;aHe-Nelaser illuminatingthe

sam-ple betweenrossed polarizers wasused as theprobe.

TheexperimentalsetupisshowninFig. 9.

Ar laser

(514nm)

Shutter

HeNe laser

(633nm)

Polarizer

Sample

PC

Analyzer

Detector

Ar laser

(514nm)

Shutter

HeNe laser

(633nm)

Polarizer

Sample

PC

Analyzer

Detector

Analyzer

Detector

Figure9. Shematioftheexperimentalsetup.

When the ell is in the uniform planar state, the

detetor reeivesnosignal,sinethepolarizerand

an-alyzerarerossed. Asthephotoinduedtwistdevelops

undertheinueneofthepumpbeam,thetransmitted

intensityinreases;thetransmitedintensity thus gives

ameasureofthetwistintheell.

III.1 Remote experiment on the Web

EquipmenthasbeensetupattheLiquidCrystal

In-stitute atKentStateUniversitywhih allowsthe

pho-toinduedtwistexperimenttobearriedoutremotely,

via theWorld Wide Web. Any user withInternet

a-ess and a Webbrowser an aess the experimentat

http://experiment.li.kent.edu. In addition to

obtain-ing aess to bakground material desribing the

ex-perimentandtheequipment,remoteusersanontrol,

in real time, the shutter, the pump polarization and

the pump intensity. They an also obtain the signal

fromthedetetoraswellasrealvideoimagesofthe

ex-periment. A typialframe, showingtheuserinterfae,

detetor signalasfuntion oftime and videoframeof

theequipmentisshowninFig. 10.

Thedata shown in Fig. 11. is theintensity at the

detetor,inresponsetopumpbeamturnedonatt=0,

withpolarizationparalleltothemehanialbuÆng

di-retion on the bak plate. The pump beam was shut

o att=110s.

III.2Experimentalresultsand disussion

Without photoexitation, the ell adopts the

uni-form planarstate,with thediretoreverywhere

paral-lel to the buÆng diretion of the mehaniallybued

polyimide layer. As the plane polarized pump beam,

inident on the ell, a twist deformation develops, as

indiatedbytheinreasedintensitydetetedbythe

de-tetor. Typialsignalsobtainedin theexperimentare

areshowninFig. 11.

Charateristis of the signal are a nite indution

time,followedbyrapid andpump-intensity dependent

inrease in the twist whih tends to saturate; this is

followedby slowdeay ofthetwistasthepumpbeam

isturnedOFF.

Wenote that when thepump beamis turned ON,

thediretoptialtorqueDEonthediretoriszero;

henethetwistannotbeausedbythediret optial

torque. Seond,wenotethatthesurfaetorquedensity

atingonthenematitoproduetwistthroughan

an-gle

t is

t

K =dwhereKisanelastionstant,andd

istheellthikness. The intrinsiangularmomentum

urrent density of the pump is I= , where I is the

intensity, so if torqueto ause thetwist were to

origi-natefrom angularmomentum transferfromthepump

beam,itwould requirepower

P '

t w

2

o K

d

(5)

where w

o

is the beam waist. Estimating

t

= =2,

w

o

= 1 mm, K = 10 11

N, we obtain P 400 mW.

Experimentally, however,P = 20 mW;and it is lear

thereforethatthetorqueausingthetwistannot

orig-inate in angular momentum transfer from the pump

beam.

We therefore onsider aBrownian rathet

desrip-tionofthedyedynamis.

IV Orientational Rathet

Meh-anism

A salient feature of motors is that they produe

mo-tion in a system withoutangular momentum transfer

fromoutside. Sineinboththebulkandsurfae

align-mentexperimentsdisussedabovetheliquidrystal

di-retorreorientsessentiallywithoutangularmomentum

transferfromlight,thereis \rotationwithouttorque",

similar to \motion without fore"in thetranslational

rathet shemes of Astumian[11℄ and Prost [12℄ It is

possibleto interpretthe resultsof thephotoalignment

experimentsintermsofaBrownianrathetmehanism.

Photoexitation and interations between the

dyeandtheliquidrystalhost Sinetheobserved

anomalous photoalignment behavior arises due to the

preseneof dihroidyemoleules,it is usefulto

on-siderthephotoexitationofthedyeanditsinterations

with the nemati host. The absorption ross-setion

(7)

thedyemoleulewithdiretion ^

l

d

,andtheabsorption

ross-setionhastheform

=

o (

^

l

d

^

E) 2

(6)

where ^

E is the diretion of polarization of light.

Af-ter photoexitation thedyemoleulewill bein an

ex-ited state with a nite lifetime, and will deay bak

to the ground state. Dyes suh as anthraquinone[10℄

showsuh behavior. Azo-dyes are often used in

pho-toalignment;these[34℄andsomeothers[35℄undergoa

trans-isisomerizationonphotoexitation. Thedetails

ofthisproessareompliated,however,asimpletwo

statemodelissuÆienttoapturemanyoftheessential

features.

Figure10. Typialframe formthe Web-basedremotephotoinduedtwist experimentshowing theuserinterfae, detetor

signalandtheexperimentalsetup.

0

1

2

3

4

5

tra

ns

m

is

si

on

[a

u]

0

10

20

30

40

50

60

70

80

90 100

time [sec]

20mW

10mW

5mW

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

no

rm

. t

ra

ns

m

is

si

on

0.0

3000.0

6000.0

9000.0

12000.0

time [sec]

after mag. field

exp fit

after opt. field

stretched exp. fit

0

1

2

3

4

5

tra

ns

m

is

si

on

[a

u]

0

10

20

30

40

50

60

70

80

90 100

time [sec]

20mW

10mW

5mW

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

no

rm

. t

ra

ns

m

is

si

on

0.0

3000.0

6000.0

9000.0

12000.0

time [sec]

after mag. field

exp fit

after opt. field

stretched exp. fit

Figure11. IntensitymeasuredatthedetetorwithpumpONandOFF.

The anisotropy of dihroi moleules results in

anisotropi interations with the liquid rystal host,

similartointerationsbetweenthenematiliquid

rys-talmoleules. Ifsymmetryaxisofthemoleuleisalong

the ^

l

d

diretion,tolowestorder,theeetivepotential

experiened by the dye in the nemati eld is of the

form

U = U ( ^

l n)^ 2

(7)

where U

o

is a (positive) interation strength. A key

point here is that the strength of the interation

be-tweentheliquidrystalanddyeintheground(trans-)

statediersfrom that inthe exited(is-) state. F

ur-thermore, the mobilities ofthe dyein the groundand

exitedstatesareexpetedtobedierent;thishasbeen

(8)

Landauer's Blowtorh: Orientational version

In the original version of Landauer's blowtorh, sine

thetemperatureisshiftedrelativetothepotential,

par-tilesneartheleftsideofthevalleysareatahigher

tem-perature thanthose near the right; onsequentlythey

are more likely to be thermally exited over the

po-tentialbarrierand diuseto theleft. Theheat soure

drives a steady urrent of partiles against an

oppos-ingvisousfore;theurrentowswithoutmomentum

transferfrom the outside. Theanomalous

photoalign-mentresultsanbeinterpretedonthisbasis.

In the simplest approximation, the dihroi dye

moleules feelanemati potentialoftheform

U()= U

o os

2

() (8)

whereistheanglebetweenthenematidiretorn^and

the symmetry axis ^

l

d

ofthe dyemoleule. (Here itis

assumedthattheinterationbetweentheliquidrystal

and the dyein the groundstate is thesameas in the

exited state.)

θ

P

OPT

(

θ

)

θ

U

(

θ

)

θ

P

OPT

(

θ

)

θ

U

(

θ

)

Figure12. Landauers'sBlowtorh: orientationalversion.

Theoptialpower P

OPT

()absorbedbythedyeper

unittimefromthepolarizedlightisproportionaltothe

ross-setion,andisheneorientationdependent;

P

OPT

()= P

o os

2

(

OPT

) (9)

here

OPT

istheanglebetweenthepolarizationandthe

diretor. Onemayregardthephotoexitation as

play-ing thesameroleastemperature. Dyemoleulesnear

theleftsideofthevalley(thatis, withabsorption

mo-ments nearlyparallel to the polarization of the pump

beam)aremorelikelytobeexitedoverthebarrierand

diuse to theleft (that is, rotatetowardsthenemati

diretor). Light drives a steady orientational urrent

of dye moleules against an opposing visous torque;

theurrentowswithoutmomentumtransferfromthe

outside. In the steady state, the dye exerts a steady

torque on thenemati diretor, ausing the

reorienta-tion, whih is balaned by elasti torques. The dye

moleules rotate steadily, the torque exertedon them

The Flashing Rathet: Orientational version

Theanomalousphotoalignmentresultsmayalsobe

in-terpreted[8,13℄ in termsof anorientationalversionof

thethetranslationalrathetofAstumian[11℄andProst

[12℄. Ashematiisshownbelow

U(

θ

)

θ

θ

θ

U(

θ

)

U=0

U(

θ

)

θ

θ

θ

U(

θ

)

U=0

Figure13. Theorientationalversionoftheashing

rathet.

The dye moleules in one state (say the

photoex-itedstate)feelthenematipotentialU,androtate

to-wardsthediretor. Whentheyarein theseondstate

(saythegroundstate)theynolongerseethepotential,

and they undergo orientational diusion. The

poten-tialismadeeetivelyasymmetribytheorientational

seletivityofthephotoexitation;dyemoleules whose

absorptionmomentisparalleltothepumppolarization

arepreferentiallyexited. If the pump polarization is

notorthogonaltothediretor,thetorqueontheexited

dye moleules will havethe samesense, resultingin a

net orientational urrent. The potential is eetively

turned o by thespontaneous deay from the exited

statetothegroundstate.

Itis worthnotingthatit ispossibletoanalyzethe

ashingrathetintermsofMarkovproesses[37℄.

V A Fokker-Plank Model

Dye mediated optial reorientation in the bulk

Themodeldesribesthetimeevolutionbothofthe

(9)

is the free energy. The energies of the exited and

groundstatesare onsidered separately;the energyof

thetrans-isomeris

U t = U to ( ^ l d n)^ 2 (10)

whilefortheis-isomeritis

U = U o ( ^ l d n)^ 2 (11)

Thenumberdensityofthetrans-isomeris

t ( ^ l d )while

thenumberdensityoftheis-isomeris

(

^

l

d

). Thefree

energyofthebulkdye-liquidrystalsystemis

F = Z f t U t + t kTln t + U + kTln + 1 2

K((rn)^ 2

+(r^n) 2

)gd 3

rd (12)

whered=4d 2

^

l

d

isthenormalizedelementofsolidangle. Thehemialpotentialgradientdrivestheorientational

dyeurrent;fromEq. (12),forthetrans-isomer,thisis

J t = D t r t D t t (r U t )=kT (13)

whilefortheis-isomer,itis

J = D r D (r U )=kT (14) wherer

operatesontheunit sphere. Thedynamisisgivenbytheequationofontinuity,together with

annihi-lationandreationtermsdue tophotoexitation. Thisgives,forthetrans-isomer,

t t =r [D t r t +D t t (r U t )=kT℄ t f t + f (15)

andfortheis-isomer

t =r [D r +D (r U )=kT℄ f + t f t (16) where f t =f to e Ut=k T + t ( ^ l d ^ E) 2 (17) and f =f o e U=k T + ( ^ l d ^ E) 2 (18)

aretransitionrates,inludingphotoexitation. Thediretordynamisisalsoobtainedfromthefreeenergydensity

F ^n t = Z ÆF Æ^n d (19)

where istheorientationalvisosityandtheintegrationisovertheorientationofthedyemoleules. This gives

^n t =fK(r 2 ^ n)+< t r U t > +< r U >

g(I ^n^n) (20)

where<>indiates averagingoverthedyeorientation; (I n^^n)isaprojetionoperator enforingtheonstraint

thatn^isaunitvetor. Thedyeinduedtorquetermsanbewritten intermsoftheaverageorientationalurrents

ofthetrans-andis-isomers;then

^n t =fK(r 2 ^ n) kT D t <J t > kT D <J >

g(I ^n^n) (21)

d

Thetorqueonthenematidiretorexertedbythedye

asaonsequeneofphotoexitation isproportionalto

theaverageorientationalurrentofthedye. Equations

(15),(16)and(20)aretheoupleddynamialequations

thedyeunderphotexitationinthenematieldofthe

liquidrystal,andoptialreorientationofthebulk

liq-uidrystaldue tothedye;thediretoptialtorqueon

(10)

Optial alignment by dyed alignment layers

The model for optial alignmentat surfaes issimilar

to thatin thebulk. Thefreeenergyof the

photosensi-tivedye-ontainingalignmentlayerandthebulkliquid

rystalis F = Z ( s t U t + s t kTln s t + s U + s kTln s )dr 2 d+ Z 1 2

K((rn)^ 2

+(r^n) 2 ))d 3 r (22) here s t and s

are the numberdensities per area; the rst integralis over the alignment layer surfaearea and

overthedyeorientation;theseondisoverthebulkliquidrystalvolume. Thesameproedure asintheprevious

setiongivesthedynamialequationforthetrans-isomer,

s t t =r [D t r s t +D t s t (r U t )=kT℄ s t f t + s f (23)

andfortheis-isomer

s t =r [D r s +D s (r U )=kT℄ s f + s t f t (24)

asbefore. Thediretordynamisinthebulk,ignoringthediretoptialtorque,isgivenbytheusualexpression

^n t =K(r 2 ^

n )(I ^n^n) (25)

however,atthephotoativesurfaeitisgivenby

s ^n t =fK( ^

Nr^n+ ^

Nrn)+^ < s t r U t > +< s r U >

g(I n^^n) (26)

d

The torque on the nemati diretor at the alignment

layer surfae, exerted by the dye as a onsequeneof

photoexitationisagainproportionaltotheaverage

ori-entationalurrentofthedye. Equations(23),(24),(25)

and (26)are theoupleddynamialequations

desrib-ingevolutionoftheorientationaldistributionofthedye

in the alignment layerand optialreorientationof the

bulk liquid rystal due to the dye; the diret optial

torqueontheliquidrystalhasbeenignored.

V.1 Computer simulations

Wehave solved Eqs. (23), (24), (25)and (26)

nu-meriallyusingsimpledisretizationandforward

time-stepping. This gives the time evolution of the

orien-tational distribution funtions s t ( ^ l d ) and s ( ^ l d ) and

the orientationofthediretorn^asafuntion oftime.

Fromthedistributionfuntion,theurrentsanbe

al-ulated. Results of simulations showing the angle of

diretor orientationat thesurfaeandthenet urrent

areshownbelowin Figs. 14and15.

Inthe simulation whoseresults are shown in Figs.

14and15,thefollowingdimensionlessparameterswere

used: U

t0

= 0:5, D

t

= 1:0, U

o

= 0:5;D

= 0:5,

D

LC

= 1:0, f

t0

=0:0, f

0 = 0:5, t = 5:0, = 0:0, andf a

=50:0. Thisorrespondstomoderatelystrong

interation betweenthetrans-isomerandthenemati

nemati;anenhanedorientationalmobilityoftheis

-isomer relative to the trans-, a spontaneous deay of

theis-isomer into the trans-, and photoexitation of

thetrans-isomerintotheis-form. Bytuningthese

pa-rameters,arelativelybroadrangeof responsesanbe

observed, but these parameters give reasonable

qual-itative agreement with experiment. Key features are

therelativelyrapidonset, afterabriefindution time,

of the twist deformation, resulting from

photoexita-tionofthedyein thealignmentlayer,followedbythe

slowdeayof thetwistonremovingthepump

exita-tion. It is learfrom the simulationthat the

orienta-tionaldistributionofthedyeisstronglyalteredbythe

nemati eld; in the absene of photoexitation, the

trans-isomerstendtoalignwiththediretor.

Photoex-itationresultsinorientationalholeburning,thatis,in

depopulationofthetrans-(andpopulationoftheis-)

state parallel to the pump polarization, and

popula-tionof thetrans- (anddepopulationofthe is-)state

perpendiular to the pump polarization. As the dye

populationundergoesthis orientationalredistribution,

theresultingtorqueonthediretorausesittoreorient,

andtwist,nearthephotosensitivesurfae,towardsthe

predominanttrans-isomerorientationperpendiularto

thepolarizationof theinoming pump beam. The

ef-fetof the nemati eld on the dyedistribution plays

animportantroleindeterminingthedynamiresponse

(11)

0

200

400

600

800

1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

light OFF

D

irect

or A

ngl

e (rad)

Time (arbitratry units)

Figure14. Simulation: diretorangleasfuntionoftime.

0

200

400

600

800

1000

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

light OFF

tra

n

c

u

rre

nt

J

t

/

φ

ο

Figure15. Simulation: average orientational trans-urrent

asfuntionoftime.

Akeyfeatureoftheresponseisthatevenafter

equi-libriumisreahed,whilethepumpisON,thereexistsa

steadyorientationalurrentoftrans-isomersasanbe

seeninFig. 15. (Forthespeialaseonsideredinthis

example, only the trans- isomer orientational urrent

enters; in a moregeneral ase, the is- urrent ould

also play a role.) The torque on the liquid rystal

diretor^nisgivenby

dye

= +^nf<

t r

U

t >

+<

r

U

>

g

= n^

kT

D

t <J

t >

+

kT

D

<J

>

(27)

Dueto orientationdependentphotoexitation,thedye

moleulesundergosteadyrotationinthenematield,

ating as rotorsof a Brownian motor. This is shown

dye in

trans

-state starts to rotate towards director

it exerts torque on director & vice versa

as it becomes parallel to pump polarization

it is excited into

cis

-state, undergoes diffusion

relaxes into

trans

-state, rotates towards director...

dye in

trans

-state starts to rotate towards director

it exerts torque on director & vice versa

as it becomes parallel to pump polarization

it is excited into

cis

-state, undergoes diffusion

relaxes into

trans

-state, rotates towards director...

Figure16. ShematioftheBrownianmotorsenario.

Thetorqueonthediretororiginatesinthe

nemati-likeinteration betweentheliquidrystaland thedye

moleules. The torque on the dye moleules an

re-sultin orientationalurrent;inthisase,visousshear

arisingfromtherotationarriesangularmomentumto

the ellwalls. As Eq. (3.1)shows,however, atorque

maybepresentevenifthediusivityiszeroandthedye

annotrotate,asmaybetheaseinertain

photosensi-tivealignmentlayers. Inthisase,angularmomentum

istransferred diretlyfrom thedyetothesurrounding

matrix.

VI Summary

Liquidrystalsystemswithdihroidyesshow

anoma-lous photoalignment behavior both in the bulk and

at surfaes. When irradiated by polarized light, the

nemati diretor reorients against an elasti restoring

torque essentiallywithout the transferof angular

mo-mentum from light totheliquidrystal. The

underly-ingproessisanorientationalrathet,withsymmetri

potentials,but orientationdependenttransition rates.

The dynamial equations are essentially the samefor

bothbulk and surfae photoalignmentphenomena; in

both ases, under photoexitation, the dye moleules

at asrotorsof aBrownianmotor. Sine the diretor

anreorientundertheinueneofthedye,the

Fokker-Plankdesriptionofthesystemonsistsofasystemof

threeoupledequations.

Dye-liquidrystalsystemsare amenableto

experi-mental study,and anprovidetheopportunityfor

de-tailed omparison of experimental results and

predi-tions of Brownian rathet models. Insights gained in

suh studies would shed light on the behavior of

re-lated system,suh asthosein biology, andwouldalso

be usefulin tehnologialappliations. These inlude

(12)

Onepartiularlypromising areais theoptomehanial

responseofdyedliquidrystallinegelsandelastomers.

Duetothestrongouplingbetweenorientationalorder

and mehanial strain, the Brownian rathet

meha-nism in these systems is expeted to provide eÆient

onversionof light energy to mehanial work for use

in appliationssuhas lightdrivenatuatorsand

arti-ialmusles.

Aknowledgement

Weaknowledge support from theNSF under

AL-COM grant 89-DMR20147 and AFOSR MURI grant

F49620-17-1-0014. We are indebted to B. Bergersen,

whobroughtLandauer'sblowtorhtoourattention.

Referenes

[1℄ A.AshkinandJ.M.Dziedzi,Phys.Rev.Lett. 30,139

(1973).

[2℄ R.A.Beth,Phys.Rev.50,115,(1936).

[3℄ A. Saupe, in Dynamis and Defets in Liquid

Crys-tals, Ed. P.E. Cladis and P. Paly-Muhoray (Gordon

&Breah,Amsterdam,1998).Theoriginalmanusript

wassubmittedtoPhys.Rev.Lett.onJuly17,(1969).

[4℄ B.Ya. Zel'dovih, N.F. Pilipetskii, A.V. Sukhov, and

N.V.Tabiryan,JETPLett.31,264(1980).

[5℄ A.S.Zolotko,V.F.Kitaeva,N.Kroo,N.N.Sobolev,and

L.Csillag, JETPLett.32,158(1980).

[6℄ I.C. Khooand S.L.Zhuang,Appl. Phys.Lett., 37,3,

(1980).

[7℄ S.D. Durbin, S.M. Arakelian, and Y.R. Shen, Phys.

Rev.Lett.47,1411,(1981).

[8℄ P.Paly-Muhoray and W.E, Mol.Cryst. Liq.Cryst.

320,193,(1998)

[9℄ I. Janossy, A.DD. Lloyd, and B.S. Wherret, Mol.

Cryst.Liq.Cryst.179,1,(990).

[10℄ I.Janossy,Phys.Rev.E49,2957,(1994)

[11℄ R.D. Astumianand M.Bier, Phys.Rev.Lett.72,1766,

(1994).

[12℄ J.Prost,J.-F.Chauwin,L.Peliti,andA.Ajdari,Phys.

Rev.Lett.72,2652,(1994).

[13℄ T. Kosa, E. Weinan, and P. Paly-Muhoray, Int. J.

Eng.Si.38,1077 (2000).

[14℄ M. Kreuzer, L. Marrui, D. Paparo, J.Nonlin. Opt.

Phys.&Mats.9,157(2000).

[15℄ C.J. Pennyuik,NewtonRulesBiology,(Oxford

Uni-versityPress,Oxford,1992).

[16℄ S.M.Blok,Cell, 87,151(1996).

[17℄ Y.IshiiandT.Yanagida, SingleMol.1,5(2000).

[18℄ Y.OkadaandN.Hirokawa,Siene283,1152(1999).

[19℄ R.D. Astumian and I. Derenyi, Biophys. J. 77, 993

(1999).

[20℄ R.F. Fox and M.-H. Choi, Phys. Rev. E, 63, 1063

(2001).

[21℄ P. Reimann, \Brownian Motors: noisy transport far

fromequilibrium",PhysisReports361,57(2002).

[22℄ L.M.Blinov and V.G. Chigrinov, Eletroopti Eets

inLiquidCrystals, (Springer-Verlag,NewYork1994)

[23℄ R.Landauer,J.Stat.Phys.53,233(1988)

[24℄ P. Paly-Muhoray, in Liquid Crystals: Appliations

andUses,ed.B.Bahadur(WorldSienti,Singapore,

1990)

[25℄ A.G. Dyadyusha, T. Marusii, Y. Reznikov, A.

Khiznyak, and V. Reshetnyak, JETP Lett. 56, 17

(1992)

[26℄ M.Shadt,K.Shmitt,V.Kozinkov,andV.Chigrinov,

Japan.J.Appl.Phys.31,2155(1992)

[27℄ J.L.West,X.Wang,Y.Ji,andJ.R.Kelly,SIDDigest

XXXVI703(1995)

[28℄ K. Ihimura, Y. Suzuki, T. Seki, A. Hosoki, and K.

Aoki,Langmuir4,1214(1988)

[29℄ W.M. Gibbons, P.J. Shannon, S.T. Sun, and B.

Swetlin,Nature351,49(1991)

[30℄ W.M.Gibbons,T.Kosa,P.Paly-Muhoray,P.J.

Shan-non,andS.T.Sun,Nature,377,43(1995).

[31℄ H.Zollinger,ColorChemistry,(VCH,Weinheim,1991)

andreferenestherein.

[32℄ T.Nagele,R.Hohe,W.Zinth,J.Wahtveitl, Chem.

Phys.Lett.272,489(1997).

[33℄ G.H.Heilmeier,L.A.Zanoni,Appl.Phys.Lett.13,91

(1968).

[34℄ F.WeigertandM.Nakashima,Z.Phys.Chem.34,258,

(1929)

[35℄ H. Zhang, S. Shiino, A. Shishido, A. Kanazawa, O.

Tsutsumi,T. Shiono, and T.Ikeda, Adv. Mater. 12,

1336(2000)

[36℄ L.Marrui,D.Paparo,G.Abbate,E.Santamato,M.

Kreuzer, P. Lehnert,, T. Vogeler, Phys. Rev.A, 58,

4926(1998)

[37℄ D. Kinderlehrer and M. Kowalzyk, Arh. for Rat.

Meh.andAnal.(toappear)

[38℄ P. Paly-Muhoray, T. Kosa, and E. Weinan, Mol.

Cryst.Liq.Cryst.(toappear)

[39℄ J.Fabian andH. Hartmann,Light Absorption of

Imagem

Figure 1. Shemati of kinesin arrying argo along a mi-
Figure 3. Landauers's Blow torh. Partiles experiene
Figure 5. Shemati of the optial Fr eederiksz transition.
Figure 7. Chemial struture of the PMMA layer with the
+5

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Ainda assim, sempre que possível, faça você mesmo sua granola, mistu- rando aveia, linhaça, chia, amêndoas, castanhas, nozes e frutas secas.. Cuidado ao comprar

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido