• Nenhum resultado encontrado

STARS IDENTIFICATION AT THE ASTRONOMICAL COORDINATES DETERMINATION BY MEANS OF AN AUTOMATED ZENITH TELESCOPE

N/A
N/A
Protected

Academic year: 2017

Share "STARS IDENTIFICATION AT THE ASTRONOMICAL COORDINATES DETERMINATION BY MEANS OF AN AUTOMATED ZENITH TELESCOPE"

Copied!
8
0
0

Texto

(1)

January–February 2015 Vol. 15 No 1 ISSN 2226-1494 http://ntv.ifmo.ru/en

528.5

А А

А А А А Ы Ы

. . , . . , b, . .

«К «Ц ИИ «Э », - , 197046,

b И

, - , 197101,

: com.rev@mail.ru

01.07.14, 22.12.14

doi: 10.17586/2226-1494-2015-15-1-22-29 –

: . ., . ., Ц . . И

// - ,

. 2015. 15. № 1. . 22–29

А .

.

.

.

,

.

. ,

,

.

-. И

:

.

.

.

: - , , ,

STARS IDENTIFICATION AT THE ASTRONOMICAL COORDINATES DETERMINATION BY MEANS OF AN AUTOMATED ZENITH TELESCOPE

S.V. Gayvoronskiy , E.V. Rusin, b, V.V. Tsodokova Concern CSRI “Elektropribor” JSC, Saint Petersburg, 197046, Russian Federation b

ITMO University, Saint Petersburg, 197101, Russian Federation Corresponding author: com.rev@mail.ru

Article info

Received 01.07.14, accepted 22.12.14 doi: 10.17586/2226-1494-2015-15-1-22-29 Article in Russian

Reference for citation: Gayvoronskiy S.V., Rusin E.V., Tsodokova V.V, Stars identification at the astronomical coordinates determination by means of an automated zenith telescope. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 1, pp. 22–29 (in Russian)

Abstract.

Scope of research. The paper deals with two approaches to the stars identification: an algorithm of similar triangles and an algorithm of interstellar angular distances.

Method. Comparative analysis of the considered algorithms is performed using experimental data obtained by the prototype of zenith telescope as applied to the problem of coordinates determination by automated zenith telescope.

Main results. The analysis has revealed that identification method based on the interstellar angular distances provides star identification with higher reliability and several times faster than the algorithm of similar triangles. However, the algorithm of interstellar angular distances is sensitive to the lens focal length, so a combined stars identification method is proposed. The idea of this method is to integrate the two above algorithms in order to calculate the lens focal length and to identify directly the stars.

Practical significance. The combined method gives the possibility for valid identification of the stars visible in the field of view with comparatively short processing time whether the lens focal length is available or not.

(2)

- ( . 1), 1, 2,

3 , .

4.

-.

. 1. : 1 – ; 2 – ; 3 – ; 4 –

я. : я 1900 ,

200 , ( ) 48723248 , я 0,0074

. 2. Э

( ) ( α ),

(φ, λ)

-1

2

3

(3)

;

,        

– [1–3].

.

:

1. ,

-, ( );

2. [4–6];

3. ;

4. .

( ).

-. 3-.

. 3. - я

. ,

– .

,

.

И

(x, y) (, )

[7].

,

– ,

,

. ,

. К ,

.

И

-, , . И

, , ,

,

, , , ,

-, , ,

[8–11].

, ,

-:

(4)

А

, ,

-, . . (, )

( ) [12]:

0

0 0 0

0 0 0

0 0 0

ctg sin( )

ξ ;

sin ctg cos cos( ) cos ctg sin cos( ) , sin ctg cos cos( )

   

   

   

   

(1)

(0, 0) – :

0 = φ0;

0 = λ0 + ,

(0, 0) – .

(x, y) (, )

-. ,

.

, ,

-:

; ,

b a

p q

c c

 

a, b, c – (c  b  a).

, (p1, q1)

(p2, q2), :

1 2

1 2

;

,

p p

q q

  

 

 

 (2)

– , a, b, c

.

И , ,

( – ), . 1. – N1, N2,

N1 – , N2 – .

1 2 3 4 5 6 7 8 9 10

1 3 5 1 0 1 2 2 0 0 0

2 13 56 1 0 0 0 0 2 1 0

3 46 13 0 1 1 1 0 0 0 0

4 2 6 1 5 0 2 4 0 0 0

5 2 2 61 3 0 0 3 0 0 1

6 2 4 1 2 0 2 0 0 0 1

7 1 0 0 1 2 0 3 0 0 0

8 5 1 1 0 2 1 0 0 0 1

9 1 2 0 59 0 2 2 0 0 0

10 1 1 1 0 0 0 2 1 0 0

11 4 2 2 1 65 0 0 0 0 0

12 0 3 0 4 0 55 3 2 1 0

1.

К , (2), 1 « ». ,

« » ,

[13]. А И

,

(5)

-и

cos иij = li lj + mi mj + ni nj,

2 2 2 , 2 2 2 , 2 2 2 ,

x y f

l m n

x y f x y f x y f

  

     

f – ; i, j –

-. , и (x, y)

(x0, y0) ( . 4).

. 4. я

, :

cos k ij = li lj + mi mj + ni nj,

l = cos cos, m = cos sin, n = sin,

i, j – ;  – ;  – .

и

k ,

-cos и – cos k   , (3)

 – , ,

, и k [14–16].

(3), , . 1,

-, .

,

, .

( . 1)

-.

, .

. 2.

К , % 99,00 99,15

, 4,60 0,54

2.

u

x

y

(xi, yi)

(xj, yj)

(x0, y0)

(6)

. 2 -, , . -, , , -. , , -.

И

: . , : , tg( ) f m  

 (4)

 – ; m – ( . / ).

(A0, A1, A2) [17]:

0 1 2

ξ AA xA y.

[18]:

1

( T ) T ξ,

AH HH  (5)

1 1 1

2 2 2

0

1

2

ξ 1

ξ 1

ξ ; ;

ξ 1

ξ 1

i i i

n n n

x y x y

A

H A A

x y A x y                                                           ,

xi, yi – i- ; i –

-; n – .

2 2

1 2

mAA . (6)

.

, ,

.

15 . К ,

, (1), . 3.

i x, y,   

(7)

, . 3, (5)

:

A0 = –0,006398; A1 = 3, 092363 10 8; A2 = 3,896791 10 6.

(6) : m = 0,804''.

(4) : f 1898,94 .

( f 1900 ), . ,

.

-. К 100%,

– 4,6 , ,

– 0,54 . ,

.

:

.

-. ,

-, .

,

: . К

.

References

1. Avanesov G.A., Bessonov R.V., Kurkina A.N., Liudomirsky M.B., Kayutin I.S., Yamshchikov N.E. Avtonomnye besplatformennye astroinertsial'nye navigatsionnye sistemy: printsipy postroeniya, rezhimy raboty i opyt ekspluatatsii [Autonomous strapdown stellar-inertial navigation systems: design principles, op-eration modes and operating experience]. Giroskopiya i Navigatsiya, 2013, no. 3, pp. 91–110.

2. Abakumov V.M. Features of the measurement of the angular coordinates of stars by precision optoelectronic systems. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 1996, vol. 63, no. 7, pp. 537– 541.

3. Brumberg V.A., Glebova N.I., Lukashova M.V., Malkov A.A., Pit'eva E.V., Rumyantseva L.I., Sveshnikov M.L., Fursenko M.A. Rasshirennoe ob"yasnenie k "Astronomicheskomu ezhegodniku" [Expanded explana-tion to the "Astronomical Yearbook"]. Trudy IPA RAN, 2004, no. 10, pp. 62–67.

4. Berezin V.B., Berezin V.V., Sokolov A.V., Tsytsulin A.K. Adaptivnoe schityvanie izobrazheniya v astronomicheskoi sisteme na matrichnom pribore s zaryadovoi svyaz'yu [Adaptive CCD pixel's size for star detection and position estimation]. Izv. Vuzov Rossii. Radioelektronika, 2004, no. 4, pp. 36–45.

5. Mantsvetov A.A., Sokolov A.V., Umnikov D.V., Tsytsulin A.K. Izmerenie koordinat spetsial'no formiruemykh opticheskikh signalov [Coordinate measuring specially formed optical signals]. Voprosy Radioelektroniki. Seriya: Tekhnika Televideniya, 2006, no. 2, pp. 90–94.

6. Gayvoronsky S., Rusin V., Tsodokova V. A comparative analysis of methods for determinating star image coordinates in the photodetector plane. Automation and Control: Proc. Int. Conf. of Young Scientists. St. Pe-tersburg, 2013, pp. 54–58.

7. Tsvetkov A.S. Rukovodstvo po Prakticheskoi Rabote s Katalogom Tycho-2 [Guidelines for Practical Opera-tion with Tycho-2 Catalog]. St. Petersburg, 2005, 132 p.

8. Akkardo D., Rufino J. Novoe reshenie zadachi polucheniya nachal'nykh dannykh ob orientatsii pri pomoshchi astronomicheskogo datchika: algoritm, realizatsiya, ispytaniya [A new solution of the problem of primary data obtaining by using astronomical orientation sensor: algorithm, implementation, test]. Giroskopiya i Navigatsiya, 2001, no. 1, pp. 87–100.

(8)

10.Kruzhilov I.S. Metody i Programmnye Sredstva Povysheniya Effektivnosti Raspoznavaniya Grupp Zvezd v Avtonomnoi Astronavigatsii. Diss. … kand. tekhn. nauk [Methods and Software Improve the Efficiency of Recognition of Groups of Stars in Autonomous Celestial Navigation. Diss. eng. sci.]. Moscow, 2010, 141 p. 11.Ezhov O.M. Comparative analysis of star-detection algorithms for orientation devices with CCD arrays.

Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 1998, vol. 65, no. 8, pp. 649–652. 12.Blazhko S.N. Kurs Prakticheskoi Astronomii [Course of Practical Astronomy]. Moscow, Nauka Publ., 1979,

432 p.

13.Bratt S.P. Analysis of Star Identification Algorithms due to Unconpensated Spatial Distortion. Master of Sci-ence Thesis. Available at: http://digitalcommons.usu.edu/etd/1714 (accessed 10.11.2013).

14.Malinin V.V. Modelirovanie i Optimizatsiya Optiko-Elektronnykh Priborov s Fotopriemnymi Matritsami [Simulation and Optimization of Optoelectronic Devices with the Photodetector Array]. Novosibirsk, Nauka Publ., 2005, 256 p.

15.Malinin V.V., Faleev A.V. Optoelectronic systems for orientation from a star field. Journal of Optical Tech-nology (A Translation of Opticheskii Zhurnal), 1996, vol. 63, no. 10, pp. 745–748.

16.Osipik V.A., Fedoseev V.I. Mathematical modelling of algorithms for recognizing groups of stars. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 1996, vol. 63, no. 7, pp. 505–509.

17.Kiselev A.A. Teoreticheskie Osnovaniya Fotograficheskoi Astrometrii [Theoretical Foundations of Photo-graphic Astrometry]. Moscow, Nauka Publ., 1989, 264 p.

18.Stepanov O.A. Osnovy Teorii Otsenivaniya s Prilozheniyami k Zadacham Obrabotki Navigatsionnoi Informatsii. Ch. 1. Vvedenie v Teoriyu Otsenivaniya [Fundamentals of Estimation Theory with Applications to Problems of Navigational Information Processing. Part 1. Introduction to the Evaluation Theory]. St. Pe-tersburg, TsNII Elektropribor Publ., 2009, 440 p.

а а а ч – , ,

«К «Ц ИИ «Э », - , 197046,

, gaivoronsky@mail.ru

Е а ч – , И , - , 197101,

; , «К «Ц ИИ «Э »,

- , 197046, , com.rev@mail.ru

Ц а а а а – , «К «Ц ИИ «Э »,

-, 197046-, , tsodokova.vv@gmail.com

Stanislav V. Gayvoronskiy – PhD, senior scientific researcher, Concern CSRI “Elektropribor” JSC, Saint Petersburg, 197046, Russian Federation, gaivoronsky@mail.ru Evgeniy V. Rusin – student, ITMO University, Saint Petersburg, 197101, Russian Federation;

engineer, Concern CSRI “Elektropribor” JSC, Saint Petersburg, 197046, Russian Federation, com.rev@mail.ru

Referências

Documentos relacionados

To this purpose, this work studies Market Liquidity on Brazilian equities by employing the C ¸ etin-Jarrow-Protter Model ( Cetin et al. , 2012 ) and the Stochastic Supply Curve on

f) Retalho de Cutler-Beard (retalho em ponte) Os grandes defeitos da pálpebra superior (envol- vimento ≥75% da pálpebra) podem ser reconstruídos por este tipo de retalho, que se

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The analysis of fatty acid composition of muscle neutral lipids showed the formation of two groups, indicating that two feeding strategies may have been used by sea lampreys during

Comparison of small RNA profiles from pir-1 and dcr-1 loss-of-function mutants and analysis of transposon and repeat-associated small RNAs in pir-1 mutant

Based on the cross-reactivity obtained using the polyclonal antisera, as well as the identification of a protein that was larger (~65 kDa) than predicted,

In conclusion the analysis of the main components on the gender versus weights contingency table (table 2), denominated by main coordinates (MINGOTI, 2005), allows the identification

CSJ-3 were investigated in batch fermentation, and the maximum yield of acetic acid reached up to 0.49 % during 30 h cultivation under the optimum growth condition,