• Nenhum resultado encontrado

J. Pediatr. (Rio J.) vol.91 número1

N/A
N/A
Protected

Academic year: 2018

Share "J. Pediatr. (Rio J.) vol.91 número1"

Copied!
9
0
0

Texto

(1)

www.jped.com.br

ORIGINAL

ARTICLE

Microarray-based

comparative

genomic

hybridization

analysis

in

neonates

with

congenital

anomalies:

detection

of

chromosomal

imbalances

Luiza

Emy

Dorfman

a

,

Júlio

César

L.

Leite

b

,

Roberto

Giugliani

a,b

,

Mariluce

Riegel

a,b,∗

aProgramadePós-graduac¸ãoemGenéticaeBiologiaMolecular,UniversidadeFederaldoRioGrandedoSul(UFRGS),

PortoAlegre,RS,Brazil

bServic¸odeGenéticaMédica,HospitaldeClínicas,PortoAlegre,RS,Brazil

Received27February2014;accepted28April2014 Availableonline6September2014

KEYWORDS

Birthdefects; Congenital anomalies; Newbornselective screening; Chromosomal abnormalities; Molecular cytogenetics; Array-CGH

Abstract

Objective: Toidentifychromosomalimbalancesbywhole-genomemicroarray-based compara-tivegenomichybridization(array-CGH)inDNAsamplesofneonateswithcongenitalanomalies ofunknowncausefromabirthdefectsmonitoringprogramatapublicmaternityhospital. Methods: Ablindgenomicanalysiswasperformedretrospectivelyin35storedDNAsamplesof neonates bornbetween Julyof2011andDecember of2012.AllpotentialDNA copynumber variationsdetected (CNVs)were matchedwiththosereportedinpublicgenomicdatabases, andtheirclinicalsignificancewasevaluated.

Results: Outofatotalof35samplestested,13genomicimbalancesweredetectedin12/35 cases(34.3%).In4/35cases(11.4%),chromosomalimbalancescouldbedefinedaspathogenic; in5/35(14.3%)cases,DNACNVsofuncertainclinicalsignificancewereidentified;andin4/35 cases(11.4%),normalvariantsweredetected.Amongthefourcaseswithresultsconsidered causally related totheclinicalfindings, twoofthefour (50%)showed causativealterations alreadyassociatedwithwell-definedmicrodeletionsyndromes.Intwoofthefoursamples(50%), thechromosomalimbalancesfound,althoughpredictedaspathogenic,hadnotbeenpreviously associatedwithrecognizedclinicalentities.

Conclusions: Array-CGHanalysisallowedforahigherrateofdetectionofchromosomal anoma-lies, andthisdeterminationisespecially valuableinneonates withcongenitalanomalies of unknownetiology,orincasesinwhichkaryotyperesultscannotbeobtained.Moreover,although theinterpretationoftheresultsmustberefined,thismethodisarobustandprecisetoolthat

Pleasecitethisarticleas:DorfmanLE,LeiteJC,GiuglianiR,RiegelM.Microarray-basedcomparativegenomichybridizationanalysisin neonateswithcongenitalanomalies:detectionofchromosomalimbalances.JPediatr(RioJ).2015;91:59---67.

Correspondingauthor.

E-mail:mriegel@hcpa.ufrgs.br(M.Riegel).

http://dx.doi.org/10.1016/j.jped.2014.05.007

(2)

canbeusedinthefirst-lineinvestigationofcongenitalanomalies,andshouldbeconsideredfor prospective/retrospectiveanalysesofDNAsamplesbybirthdefectmonitoringprograms. ©2014SociedadeBrasileiradePediatria.PublishedbyElsevierEditoraLtda.Allrightsreserved.

PALAVRAS-CHAVE

Defeitoscongênitos; Anomalias

congênitas; Triagemseletivade recém-nascidos; Anomalias cromossômicas; Citogenética molecular; CGH-array

Hibridizac¸ãogenômicacomparativabaseadaemmicroarranjosemneonatoscom anomaliascongênitas:detecc¸ãodedesequilíbrioscromossômicos

Resumo

Objetivo: Identificardesequilíbrioscromossômicospormeiodahibridizac¸ãogenômica compa-rativabaseadaemmicroarranjos(CGH-array)emamostrasdeDNAdeneonatoscomanomalias congênitasdecausadesconhecidadeumprogramademonitoramentodedefeitoscongênitos emumamaternidadepública.

Métodos: Uma análise genômica cega foi realizada retrospectivamente em 35 amostras armazenadasde DNAdeneonatos nascidosentrejulhode2011edezembro de2012.Todas aspossíveisvariac¸õesnonúmerodecópias(CNVs)deDNAforamcomparadascomasrelatadas embasesdedadosgenômicospúblicas,esuarelevânciaclínicafoiavaliada.

Resultados: Deumtotalde35amostrastestadas,foramdetectados13desequilíbriosgenômicos em12/35casos(34,3%).Em4/35casos(11,4%),osdesequilíbrioscromossômicospoderiamser definidoscomopatogênicos;em5/35(14,3%)delesforamidentificadasCNVsdeDNAde relevân-ciaclínicaincerta;e,em4/35(11,4%),foramdetectadasvariac¸õesnormais.Dentreosquatro casoscomresultadosconsiderados relacionadoscausalmenteaosachadosclínicos,2/4(50%) apresentaramalterac¸õescausaisjárelacionadasasíndromesdemicrodelec¸ãobemdefinidas. Em2/4amostras(50%),osdesequilíbrioscromossômicosencontrados,emborapreditivoscomo patogênicos,nãoestavamrelacionadosanteriormenteaentidadesclínicasreconhecidas. Conclusões: AanálisedeCGH-arraypermitiumaiortaxadedetecc¸ãodeanomalias cromossômi-cas,eessadeterminac¸ãoévaliosaprincipalmenteemneonatoscomanomaliascongênitasde etiologiadesconhecidaouemcasosemqueosresultadosdocariótiponãopodemserobtidos. Alémdisso,emboraainterpretac¸ãodosresultadosdevaserrefinada,essemétodoéuma fer-ramentarobustaeprecisaquepodeserusadanainvestigac¸ãodeprimeiralinhadeanomalias congênitasedeveserconsideradaemanálisesfuturas/retrospectivasdeamostrasdeDNApor programasdemonitoramentodedefeitoscongênitos.

©2014SociedadeBrasileiradePediatria.PublicadoporElsevierEditoraLtda.Todososdireitos reservados.

Introduction

Although Mendelian, chromosomal, and environmental causeshave beenestablishedfor manycongenital anoma-lies and dysmorphic syndromes, the precise etiology of severalsuchconditionshasnotyetbeenidentified.Etiologic investigations of congenital anomalies suggest that 6% of birth defects arerelated to chromosomal abnormalities.1

However,theproportionofchromosomalanomaliesinbirth defects may be higher. Some individuals with congenital anomaliesmayhavegenomicimbalancesbelowthe resolu-tion(>5Mb)ofstandardchromosomeanalysis.Inthelast decade, significant developments in themolecular detec-tionofchromosomal imbalanceshave occurred, andtheir causal relationship to congenital anomalies and mental disabilities has increased. The considerable gap between theresolution for detectionof chromosomeabnormalities with light microscopy and molecular gene analysis was bridged with the introduction of molecular approaches, suchasmicroarray-based comparative genomic hybridiza-tion(array-CGH).Array-CGHiscurrentlyapowerfulmethod forthesimultaneousdetectionofchromosomalimbalances

and the most prevalent chromosome abnormalities. It allowsforthedetectionoftrisomiesandlargechromosomal anomalies (already recognized by standard karyotype analysis) as well as smaller submicroscopic chromosomal imbalances (deletions, duplications, or triplications of any chromosomalregion, few of which arerecognized by fluorescence in situ hybridization [FISH]) that result in copy-numbervariations(CNVs).Severalstudieshaveshown that the use of array-based technologies increases the detection rate of chromosomal abnormalities to approxi-mately14%to18%,comparedwitharateofapproximately 3% (excluding trisomy 21) using standard cytogenetic approaches in individuals with developmental delays, intellectual disabilities,learningdifficulties,multiple con-genitalabnormalities (MCAs), autisticspectrum disorders, schizophrenia, and other neuropsychiatricdisorders.2 The

overallfrequencyofunbalancedchromosomeabnormalities was reported in neonates as 0.43%, according to recent reports.3,4 Therefore, the introduction of genome-wide

(3)

chromosomal abnormalities consistent with a genetic/ genomicdisorder.

Therefore, the aim of this study was toidentify chro-mosomal imbalances using a retrospective whole-genome array-CGHanalysisinstoredDNAsamplesofneonateswith congenital anomalies of unknown cause. In addition, this study evaluated the contribution of array-CGH as a first-line diagnostictoolinneonates withcongenitalanomalies evaluatedbyabirthdefectsmonitoringprogramatapublic maternityhospitalinSouthernBrazil.

Methods

Sampleselection

Thisretrospectivestudywasperformedusingde-identified DNAsamplesextracted fromthebloodofneonates,which wereobtained fromthe biorepositoryofthe Programade Monitoramento de Defeitos Congênitos (PMDC) of Hospi-tal de Clínicas de Porto Alegre (HCPA), Brazil. Subjects were less than 30 days of age, presenting a wide range ofcongenital anomaliesof unknown causeandinwhom a chromosomalabnormalitywassuspected.Theclinical indi-cationsforcytogeneticanalysisatthetimeofreferralwere taken from the clinical and laboratory data collected at birthandavailableinhospitalrecords,anddidnotinclude follow-upinvestigationsandinformationaboutdisease out-comes.Cases withoutenoughclinicaldatawereexcluded, as were cases where mothers had clinical or laboratory suspicion of infectious/parasitic diseases or a history of use/abuseofillicitdrugs/alcoholduringpregnancy. Accord-ingtothesecriteria, atotalof45sampleswereselected, but ten were excluded because they did notachieve the optimalDNAqualityneededforthearray-CGHanalysis,and thus,thestudywasconductedwith35samples.Theresults ofpreviouschromosomeanalyseswereobtainedin32cases. Conventionalcytogenetictestingatthe500-550bandlevel resolutionwasinitiallynormalforallcases,butinonecase areportofanabnormalkaryotypewasprovidedlater.This studywasapprovedbytheInstitutionalReviewBoardofthe HCPAandwasconductedinaccordancewithcurrent institu-tionalethicsrulesregardingtheuseofbiologicalmaterials frombiorepositories.5

Whole-genomeArray-CGH

Oligonucleotide array-based CGH wasperformed using an 8×60k whole-genome platform (design 021924, Agilent Technologies,SantaClara,USA),whichhasanaverage spac-ing of 40kb between probes. Genomic DNA was isolated from the peripheral blood (provided by the PMDC-HCPA) of35 neonatalindividualsand subsequently analyzed.For each experiment, a gender-mismatched normal reference (Promega Corp. Madison, WI, USA) was used. The exper-iments were performed according to the manufacturer’s protocol.Imagesofthearraysweretakenusinga microar-rayscanner (design G2600D, Agilent, California,USA) and processedusingFeatureExtractionsoftware(designv9.5.1, Agilent,California,USA),bothfromAgilent.Theraw data were analyzed by Agilent Cytogenomics (design v2.7.8.0, Agilent, California, USA) software with the statistical

algorithmADM-2,usingathresholdof6.0andafour-probe minimumaberrationcall.Subsequent software normaliza-tionofthedatawasperformed fortheverificationofDNA copy number changes. The p-values for each probe were calculated,providingadditionalobjectivestatistical crite-riatodeterminewhetherthedeviationofeachprobefrom zerowasstatisticallysignificant.6Allexperimentsincluded

twoarray hybridizationspersample, andtheresultswere recordedandcompared.Onlygenomicimbalancesdetected inbothdye-swapexperimentswerereported.

DataAnalysis

Whole-genomearray-CGHdataanalyseswereperformedina blindedfashion;sampleswerereceived,de-identified,and investigatorswhoperformed thearray-CGH analyseswere notawareofthepreviousclinicalandlaboratoryinformation related to each sample. The DNA copy number varia-tions(CNVs)detected werecomparedwithCNVs reported in publicly available online resources and databases of chromosomal abnormalities and variants.7---13 The CNVs

(gains/duplicationsorlosses/deletions)wereclassifiedinto differentcategories:benignCNV(normalgenomicvariant); CNVofuncertainclinicalrelevance(variantofuncertain sig-nificance [VOUS]); and CNV of possible clinical relevance (pathogenic variant). In thisstudy, the pathogenic abnor-malitiesincludedthedetectionofCNVsinknownpathogenic regions,deletion/duplication>3Mbinsize,orvisibleby G-bandedkaryotypethathavenotbeenreportedinthenormal population,anddeletionsorduplications<3Mbpreviously reported as pathogenic. Benign deletions or duplications includedvariantswelldocumentedinthenormalpopulation orpreviouslyreportedasbenign.Deletionsorduplications were classified asbeing VOUS when insufficient evidence wasavailabletoconcludeiftheCNVwaseitherpathogenic orbenign.

Results

Thedataof the35neonates withcongenitalanomalies of unknowncause,bornbetweenJulyof2011andDecemberof 2012,whoseDNAsampleswereanalyzedbywhole-genome array-CGH, are presented in Table 1. The maternal age ranged from 16 to41 years of age. This study identified 12(34.3%)caseswithDNAcopynumbervariations(CNVs). Fromthosecases,7/12(58.3%)weremaleand5/12(41.7%) werefemale.Thedetailsofthearray-CGHresultsfromthe caseswithgenomicimbalancesaresummarizedinTable2. Thirteen CNVs were identified in 12 individuals. Overall, duplicationswereverifiedin6/35(17%)anddeletionswere verifiedin7/35(20%)ofthecases.In6/35(17%)ofthecases, onlyadeletionwasidentified;5/35cases(14.3%)onlyhad aduplication,and1/35(2.8%)hadadeletionanda dupli-cation. Additionally, a FISH test confirmed the array-CGH resultsinonedeletioncase(case14)fromwhichstoredcells wereavailable(datanotshown).

(4)

A

B

chr1 chr4 chr6 chr10 chr17

C

D

E

2

1

0

–1

–2

2

1

0

–1

–2

2

1

0

–1

–2

2

1

0

–1

–2

2

1

0

–1

–2

Figure1 Array-CGHratioprofilesofthechromosomesinfourneonateswithpathogenicchromosomalimbalancesusinggenomic

DNAfromtheneonatesastest(inred)andDNAfromnormalsubjectsasreference(inblue).Thetest/referenceratiodataforeach chromosomeareshown.Eachdotrepresentsasingleprobe(oligo)spottedonthearray.Thelogratioofthechromosomeprobes isplottedasafunctionofchromosomalposition.Copynumberlossshiftstheratiototheleft(valueofapproximately-1x).Copy numbergainshiftstheratiototheright(valueofapproximately+1x).Theideogramofeachchromosome(leftmargin)showsthe locationofeachprobe.Theprobelog2ratioswereplottedaccordingtogenomiccoordinates(basedontheUCSCGenomeBrowser, February2009,NCBIBuild37referencesequence). A:A∼1.5Mbterminaldeletionatchromosome1q44(blue line)incase31.

B:A∼12.9Mbterminaldeletionatchromosome4p16.3-p15.33 (bluebox)incase1.C:A ∼49.7Mbinterstitialduplicationat

chromosome6q22.31-q37(bluebox)incase31.D:A∼2.37Mbterminaldeletionatchromosome10q26.3(bluebox)incase48.E:

A∼7.2Mbterminaldeletionatchromosome17p13.3-p13.1(bluebox)incase14.

knownMiller-Diekersyndrome (MDS) region. FISHanalysis confirmedthedeletionofthechromosome17p13.3region (datanotshown).Theotherfourcaseswithoralfacialclefts showedCNVsthatwereclassifiedasbenignorasVOUS.Of thetwocaseswitharthrogryposismultiplexcongenital(17 and31),inoneindividualaninterstitialduplicationofthe longarmofchromosome6atband q22.31-q27wasfound, aswell asaterminaldeletionof thelongarm of chromo-some1atbandq44.Thepreviouskaryotypeanalysisshowed theidentificationofachromosomalabnormalityofunknown origininvolvingthelongarmofchromosome6,butnotthe chromosomalimbalancethatinvolvedchromosome1.This infantdiedat theageof35 days.Of fiveadditionalcases with MCAs (1, 16, 22, 38, and 48), this study identified clinicallysignificant chromosomal imbalances or potential

pathogenic CNVs in threecases (1,31, and 48).The sub-jectsdied at theage of 2days,5hours,and3 daysafter birth,respectively.Overall,thedeletionswereclassifiedas pathogenicinthreecases(1,14,and48),asbenignintwo cases(16 and30), andasVOUSin twocases(17 and31). The duplicationswereclassifiedaspathogenicinonecase (31), asbenign in twocases (34 and38), and asVOUS in threecases(cases22,25,and37).Examplesofarray-CGH graphicaloverviewsareshowninFig.1.

Discussion

(5)

Table1 Summaryoftheclinicalindicationsfromthe35 samplesatthetimeofreferralforchromosomalanalysis.

Case Mainclinicalassociatedfeatures

1a Female,CDH,microtia,hypertelorism,CHD

(dextropositionoftheheart),analatresia 2 Male,CHD(tetralogyofFallot)

4 Male,omphalocele,microcephaly

5 Male,omphalocele,limbagenesis,ambiguous

genitalia,analatresia,bladderdysfunction

10 Female,gastroschisis

12a Male,CDH

13 Male,unilateralphocomelia,hipdysplasia

14 Male,cranialasymmetry,cleftpalate(soft),ocular hypertelorism,esophagealatresiatypeIIIB, camptodactylyofthe3rd,4th,and5thfingers, clinodactylyofthe5thfinger,clubfeet 15 Male,analatresia,clubfeet

16 Female,analatresia,hypoplasticgenitalia,CHD 17 Female,arthrogryposismultiplexcongenital

(amyoplasia)

19 Female,non-syndromicunilateralcleftlip(left)and cleftpalate

22a Female,microcephaly,cerebellarhypoplasia,

olygohydramnios,pulmonaryhypoplasia,renal dysplasia,genitalhypoplasia,frontalmicrogyria, occipitalencephalocoele,cerebellarhypoplasia

23 Female,omphalocele,microcephaly

24 Male,micrognathia,singleuppermedianincisor 25 Female,non-syndromiccleftlipandpalate

(bilateral)

29 Male,CHD(tetralogyofFallot)

30 Male,non-syndromiccleftlipandpalate(bilateral) 31a Male,arthrogryposismultiplexcongenita

(amyoplasia),CHD(tetralogyofFallot),hipdysplasia 32a Female,bilateralmulticysticdysplastickidney,

oligohydramnios

33 Male,cleftpalate,clubfeet

34 Male,cleftlip(left)andcleftpalate,widow’speak, widelyspacednipples,genitalhypoplasia,

hypospadias

35 Female,HPE,oligohydramnios,microcephaly, unilateralchoanalatresia

37 Male,non-syndromiccleftlipandpalate(bilateral) 38 Male,esophagealatresiatypeIIIB

40 Male,intrauterinegrowthretardation

41 Female,gastrosquisis

42 Female,CHD(tetralogyofFallot) 43 Male,non-syndromiccleftpalate

44 Male,microgyria,incompletelissencephaly, micrognathia

46 Male,meningocele,clubfoot(left)

47 Female,gastroschisis

48a Male,bilateralmulticysticdysplastickidney,

oligohydramnios,bilateralpulmonaryhypoplasia

49 Female,gastroschisis

50 Male,arthrogryposismultiplexcongenita, micrognathia

CDH,congenitaldiaphragmatichernia; CHD,congenitalheart defect;HPE,holoprosencephaly.

a Patientdied.

available from neonates with congenital anomalies of unknown etiology. In addition, this study evaluated the contribution of array-CGH as a first-line diagnostic tool in neonates with congenital anomalies in a birth defects monitoring program at a public maternity hospital in SouthernBrazil.

Todate,thelargestnewbornscreening(in20,126 unse-lected cases) using array-CGH analysis as a first-line test revealedthat87/20,126(0.43%)oftheneonatalcaseshad chromosomalimbalances(53casesofaneuploidies,23 dele-tions,and11duplications).4

Reddyetal.14reportedtheresultsofapopulation-based

studyof532 stillbirths.Inthissample, array-CGHanalysis yieldedmoreresultsthandidkaryotypeanalysis(87.4%vs. 70.5%),providedbetterdetectionofgeneticabnormalities (aneuploidyor pathogenic CNVs, 8.3% vs. 5.8%), andalso identified more genomic imbalances among 67 stillbirths withcongenitalanomalies(29.9%vs.19.4%).

When selective screening is performed, the use of array-based technologies demonstrates the ability to detectpathogenicimbalancesinapproximately14%-18%of postnatalcaseswithdevelopmentaldelays,intellectual dis-abilities,andMCAsreferredforanalysis.2,15---18 Thepresent

study verifiedgenomic imbalances in 4/35 (14.3%) of the cases that could be defined as pathogenic and causally relatedtotheabnormalphenotypes.Althoughthisstudywas performedinarelativelysmallcohort,therateofpositive findingsdetectedthrougharray-CGHisintherangereported inseveralpostnatalseries.

AlthoughaclearassociationexistsbetweenCNVsinboth syndromic and non-syndromic congenital anomalies, only fewlargecohortstudieshavespecificallyperformed whole-genome array-CGH analysis in samples of neonates with birthdefects.Luetal.19reportedthefrequencyofgenomic

imbalances identified in 638 neonates with various birth defectsreferredforchromosomalmicroarrayanalysis.They usedthreedifferentarrayplatformswithincreasingly exten-sivegenomiccoverageandcomparedtheresultsobtained. Overall,17.1%ofpatientswereidentifiedwithclinically sig-nificantabnormalities,withdetectionratesof13.7%,16.6%, and19.9%,dependingonthearrayplatformused.

In the present study, a previous karyotype analysis wasavailable in 32 cases andshowed that the frequency of chromosomal imbalances detected was 1/32 (3.1%). Thedetection yieldof genomic imbalances notpreviously detectedbykaryotypeanalysisincreasedto9/32cases(28%) withtheuseofarray-CGH,whichwasinagreementwiththe expectedincreaseddetectionyield.In4/35cases(11.4%), CNVscouldbedefinedaspathogenicandcausallyrelatedto theabnormalphenotypes.Ratedifferencesbetween differ-entstudiesmaybeduetothecohortsize,differencesinthe resolutionofthearrayplatformused,thecriteriaforpatient selection,andtheinterpretationoftheclinicalrelevanceof theCNVs.

Among the 4/35 pathogenic cases, in two cases (31 and48), the identified abnormalities found had not been previously associated with well-recognized syndromes. In the two other cases (1 and 14), causative alterations hadalreadybeen associated withwell-defined microdele-tion syndromes20 (Wolf-Hirschhorn Syndrome [WHS] and

(6)

Table2 Detailsofthearray-CGHfrom12sampleswithchromosomalimbalances.

Case Del/Dup Chromosome bandlocation

Size(Mb) Genomic coordinates (hg19)

Classification Mainclinicalassociated features

1a del 4p16.3-p15.33 12.90 71,552-12,976,346 Pathogenic Female,CDH,microtia,

hypertelorism,CHD

(dextropositionoftheheart), analatresia

14 del 17p13.3-p13.1 7.22 87,309-7,306,339 Pathogenic Male,cranialasymmetry,cleft

palate(soft),ocular hypertelorism,esophageal atresiatypeIIIB,

camptodactyly,clinodactylyof thefifthfinger,clubfeet

16 del 8p11.2 0.13 39,258,894-39,386,158 Benign Female,analatresia,clubfeet

17 del 11p14.2-p14.1 0.22 27,006,061-27,225,374 VOUS Female,distalarthrogryposis,

clubfeet

22a dup 9q31.3-q32 1.53 113,919,284-115,449,137 VOUS Female,microcephaly,

cerebellarhypoplasia, olygohydramnios,pulmonary hypoplasia,renaldysplasia, genitalhypoplasia,frontal microgyria,occipital encephalocele,cerebellar hypoplasia

25 dup 9p13.3-p13.2 1.89 36,163,040-38,050,778 VOUS Female,non-syndromiccleft

lipandpalate(bilateral)

30 del 15q11.1-.q11.2 1.91 20,575,646-22,486,999 Benign Male,non-syndromiccleftlip

andpalate(bilateral)

31a del 1q44 1.52 247,695,693-249,212,668 VOUS Male,arthrogryposismultiplex

congenita(amyoplasia),CHD (TetralogyofFallot),hip dysplasia

dup 6q22.31-q27 49.75 118,718,417-168,473,515 Pathogenic

34 dup 22q11.23 0.23 25,664,618-25,892,253 Benign Male,cleftlip(left)andcleft

palate,widow’speak,widely spacednipples,genital hypoplasia,hypospadias

37 dup 3q29 0.19 197,574,293-197,766,791 VOUS Male,non-syndromiccleftlip

andpalate(bilateral)

38 dup 2p22.3 0.64 32,654,837-33,294,782 Benign Male,esophagealatresiatype

IIIB

48a del 10q26.3 2.37 132,720,766-135,089,504 Pathogenic Male,bilateralmulticystic

dysplastickidney, oligohydramnios,bilateral pulmonaryhypoplasia

CDH,congenitaldiaphragmatichernia;CHD,congenitalheartdefect;VOUS,variantofuncertainsignificance;array-CGH, microarray-basedcomparativegenomichybridization;del,deletion;dup,duplication.

aPatientdied.

imbalancescouldhavebeenpreviouslydiagnosedby karyo-typeanalysisorbyFISHanalysisalone(usinglocus-specific probes for the critical chromosome region)if the clinical findings at the time of referral were indicative of a par-ticular microdeletion syndrome that could inform exactly whichregion(s)and/orchromosome(s)toinvestigate. How-ever, both samples were from subjects in whom neither

(7)

beof differentsizes, leadingtoabroad phenotypic spec-trum.

One of the two cases with arthrogryposis multiplex congenita (case 31) showed a large duplication of the long arm of chromosome 6 at bands q22.31-q27 and a smallerdeletionofthelongarmofchromosome1atband q44. The retrieval of laboratory records showed that a chromosomalabnormality of unknown origin involving the long arm of chromosome 6 was previously recorded, but no chromosomal imbalance involving chromosome 1 was identified. At that time, there was an expectation that parental karyotypeswould be performed tobetter define the type and origin (de novo or familial) of the extra materialonchromosome6.Array-CGHanalysisallowedfor additional genomic information regarding the previously identifiedduplicationat chromosome6 andthe detection of an additionalgenomic imbalance (deletionat chromo-some1)thatwasnotpreviouslyreported.Frequently,more than one CNV is identified in an individual. It is evident alreadyfromthekaryotype analysisthatthe chromosome duplications must involve many genes and be causally related to the congenital anomalies, as assumed in case 31. However, it has been recognized that the presence of another CNV could reduce or aggravate the clinical phenotype.21,22

From the twosamples withsyndromic cleft lip and/or cleft palate (cases 14 and 34) and the three with non-syndromic cleft lip and cleft palate (cases 25, 30, and 37),onecase (14)hadaclinicallysignificant7.2Mb dele-tionatchromosome17p13.3-p13.1thatcoincideswiththe known MDS microdeletion syndrome. In the other four cases, benign CNVs (30 and 34) or VOUS were identi-fied (cases 25 and 37). Approximately 30% of cleft lip and palate cases and 50% of cleft palate cases are rec-ognized as components of MCA syndromes.23 However,

both genetic and environmental factors are known to contributetotheoccurrenceofcleftlip andpalate, com-plicating the elucidation of the causative mechanisms. Considerableeffortshavebeenmadeinseekingcandidate gene(s)fornon-syndromiccleftsthrougharray-CGH, show-ing that it is an effective method for isolating candidate loci.24,25

The clinical relevance of 5/13 (36.7%) CNVs among the 12 cases withgenomic imbalances remains uncertain at present, as there is insufficient evidence to conclude whethertheCNVswereeitherpathogenicorbenign.When CNVs are detected that have no strong track record for clinicalimportance,theinterpretationofwhethertheyare causalforthebirthdefectcanbechallenging.Itshouldalso be considered that the CNV is potentially inherited from ahealthy parentand,in thiscase, couldbe apathogenic variant with incomplete penetrance or a benign familiar variation.Thehighlyvariablenatureofthegenomemeans thatcaremustbetakeninassigningpathogenicitytoCNVs detectedbyarray-CGH.FromtheCNVsclassifiedasVOUSin thisstudy,itmightbeexpectedthatparentalstudieswould beperformedtoallowabetterinterpretationandtoprovide valuableinformationforgeneticcounselingpriortoafuture pregnancy.Indeed,itisimportanttoreportdataon chromo-someimbalanceswithunclearclinicalsignificance,because someofthedatamayrepresentrecurrentCNVsthatcouldbe

associatedwithnovel syndromes.Reportsofpatients with similargenomicimbalancesandclinicalfindingscanleadto theidentificationofnewlyrecognizedgenomicdisordersor candidategenesassociatedwithisolatedcongenital anoma-lies.

Infourcases(16,30,34,and38),normalvariants clas-sified as benign were detected. It is recognized that all humansdifferintheirchromosomes atthesubmicroscopic leveland thateventhe genomesof normal,healthy indi-viduals have a high number of copy number changes.26

WhenseveralindividualswerescreenedforCNVs,atotalof 1,447copynumbervariableregionscovering360Mb(12%of genome)wereidentified.27CNVsareoftenrelativelysmall,

canbeinheritedfromaphenotypicallynormalparent,occur inmoregene-sparsechromosomalregions,andcontainmore repetitiveDNAsequences.ThedetectionofbenignCNVswas reportedinthisstudyfromgenomicregionsthatconsistently harborbenignvariants;thismightreducetheneedto per-formparentalstudiesin neonates inwhomproven benign CNVswereidentified.

A limitation of this study was the inability to distin-guish de novo from inherited genomic imbalances due to the unavailability of parental DNA. De novo CNVs in clinically significant gene regions are more likely to be causative.However,inheritedpathogenic CNVsshouldnot beexcludedasacauseofcongenitalanomaliesbecauseof theirvariableexpressivityandincompletepenetrance.28,29

PathogenicCNVsmaybeinheritedfromanapparently nor-mal parentand contribute to the abnormalphenotype in thechild. These types of CNVs arethought of as suscep-tibility loci, in that they increase the chance of a child developingcongenitalanomalies butmaynotbesufficient tocauseaphenotypebythemselves.Parentalstudiesshould be recommended for individuals for whom clinically sig-nificantfindingswerereported,todeterminewhetherthe CNVfindingsrepresentdenovoorfamiliarevents.Incases of a de novo chromosome imbalance, it is also recom-mendedtoobtaintheparentalkaryotypeinordertoexclude a balanced translocation in one of the parents. Although several common strategies have been proposed to help interpretthefindingsofgenomicimbalances,29,30thereare

no universal criteria thus far. It is essential to have the most accurate and up-to-date information on the clini-calsignificance of detected genomic imbalances, as well asCNVs at different positions in the genome, pathogenic mutations or polymorphisms in other individual genes, or nongenetic causes that might be required for a congen-ital anomaly to be expressed. Caution must be taken in the clinical interpretation of the array-CGH results. Fur-therconsultationsatgeneticsclinicsandextendedanalysis infamily members maybe necessary to provide accurate counselingtothefamiliesandtocalculate therecurrence risks.

(8)

inwhomthepresenceofchromosomalimbalanceswas sus-pected.

This study demonstrated the feasibilityand usefulness of array-CGH to identify deletions and duplications in stored DNA samples. It was shown that a proportion of neonateswithcongenitalanomaliesofunknowncausehad chromosomalimbalancesassociatedwiththeirphenotypes. Furthermore, this study demonstrated the detection of chromosomal abnormalities consistent with genetic syn-dromes at an early age, when often, only a few clinical findingsareclear.

Inconclusion,retrospectiveorprospectivearray-CGHas a first-line diagnostic tool would benefit families by pro-viding a more accurate diagnosis and impact the overall management in a significant number of cases from birth defectsmonitoringprograms.

Funding

CNPq/Brazil,grant402012/2010-0.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Theauthorswould liketothanktheConselho Nacionalde DesenvolvimentoCientíficoeTecnológico(CNPq)for finan-cialsupport(grant402012/2010-0).

References

1.SchinzelA.Catalogueofunbalancedchromosomeaberrations inman.2nded.Berlin:WalterdeGruyter;2001.

2.HochstenbachR,Buizer-VoskampJE,VorstmanJA,OphoffRA. Genomearraysforthedetectionofcopynumbervariationsin idiopathicmentalretardation,idiopathicgeneralizedepilepsy and neuropsychiatric disorders: lessonsfor diagnostic work-flow and research. Cytogenet Genome Res. 2011;135:174---202.

3.Wellesley D, Dolk H, Boyd PA, Greenlees R, Haeusler M, Nelen V, et al. Rare chromosome abnormalities,prevalence andprenataldiagnosisratesfrompopulation-basedcongenital anomalyregistersinEurope.EurJHumGenet. 2012;20:521---6.

4.ParkSJ,JungEH,RyuRS,KangHW,ChungHD,KangHY.The clinicalapplicationofarrayCGHforthedetectionof chromo-somaldefectsin20,126unselectednewborns.MolCytogenet. 2013;6:21.

5.FernandesMS,Ashton-ProllaP,MatteU,MeurerL,OsvaldtA, BittelbrunnAC,etal.The Hospitalde ClinicasdePorto Ale-gre normative for the storage and use of human biological materialsandtheirassociatedinformationinresearch:an inter-disciplinaryapproach.RevistaHCPA.2010;30:169---79.

6.VermeeschJR, MelotteC,Froyen G, VanVoorenS, DuttaB, MaasN,etal.Molecularkaryotyping:arrayCGHquality crite-riaforconstitutionalgeneticdiagnosis.JHistochemCytochem. 2005;53:413---22.

7.DatabaseofChromosomalImbalanceandPhenotypeinHumans Using Ensemble Resources (Decipher). [cited 26 Jan 2014]. Availablefrom:http://decipher.sanger.ac.uk/

8.MacDonald JR, Ziman R, YuenRK, Feuk L, Scherer SW. The DatabaseofGenomicVariants:acurated collectionof struc-tural variation in the human genome. Nucleic Acids Res. 2014;42:D986---92.

9.European Cytogeneticists Association Register of Unbal-anced Chromosome Aberrations (ECARUCA). [cited 23 Feb 2014]. Available from: http://umcecaruca01.extern.umcn. nl:8080/ecaruca/ecaruca.jsp

10.EnsemblGenomeBrowser.[cited23Feb2014].Availablefrom: http://www.ensembl.org/index.html

11.The International Standards for Cytogenomic Arrays (ISCA). [cited 23 Feb 2014]. Available from: https://www. iscaconsortium.org/index.php

12.NationalCenterforBiotechnologyInformation(NCBI).[cited23 Feb2014].Availablefrom:http://www.ncbi.nlm.nih.gov/ 13.UniversityCaliforniaSantaCruz(UCSC)GenomeBrowser.[cited

23Feb2014].Availablefrom:http://genome.ucsc.edu/ 14.Reddy UM, Page GP, Saade GR, Silver RM, Thorsten VR,

Parker CB, et al. Karyotype versus microarray testing for geneticabnormalitiesafterstillbirth.NEnglJMed.2012;367: 2185---93.

15.IourovIY,VorsanovaSG,KurinnaiaOS,ZelenovaMA,Silvanovich AP,YurovYB.MolecularkaryotypingbyarrayCGHinaRussian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies. Mol Cytogenet. 2012;5: 46.

16.Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367:2175---84.

17.Ahn JW, Bint S, Bergbaum A, Mann K, Hall RP, Ogilvie CM. ArrayCGHasafirstlinediagnostictestinplaceof karyotyp-ingfor postnatal referrals - resultsfrom four years’clinical application for over 8,700 patients. Mol Cytogenet. 2013;6: 16.

18.HillmanSC,McMullanDJ,HallG,TogneriFS,JamesN,Maher EJ,etal.Useofprenatalchromosomalmicroarray:prospective cohortstudyand systematicreviewandmeta-analysis. Ultra-soundObstetGynecol.2013;41:610---20.

19.LuXY,PhungMT, Shaw CA,PhamK, NeilSE,Patel A, et al. Genomicimbalancesinneonateswithbirthdefects:high detec-tionratesbyusingchromosomalmicroarrayanalysis.Pediatrics. 2008;122:1310---8.

20.VissersLE,StankiewiczP.Microdeletionandmicroduplication syndromes.MethodsMolBiol.2012;838:29---75.

21.Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367:1321---31.

22.GirirajanS.Genomicdisorders:complexityatmultiplelevels. GenomeMed.2013;5:43.

23.StanierP,MooreGE.Geneticsofcleftlipandpalate:syndromic genescontributetotheincidenceofnon-syndromicclefts.Hum MolGenet.2004;13:R73---81.

24.OsoegawaK,VessereGM,UtamiKH,MansillaMA,JohnsonMK, RileyBM,etal.Identificationofnovelcandidategenes associ-atedwithcleftlipandpalateusingarraycomparativegenomic hybridisation.JMedGenet.2008;45:81---6.

25.ShiM,MostowskaA,JugessurA,JohnsonMK,MansillaMA, Chris-tensenK, etal.Identification ofmicrodeletions incandidate genesforcleftlipand/orpalate.BirthDefectsResAClinMol Teratol.2009;85:42---51.

26.IafrateAJ,FeukL,RiveraMN,ListewnikML,DonahoePK,QiY, etal.Detectionoflarge-scalevariationinthehumangenome. NatGenet.2004;36:949---51.

(9)

28.Kearney HM, South ST, Wolff DJ, Lamb A, Hamosh A, Rao KW,etal.AmericanCollegeofMedicalGenetics recommenda-tionsforthedesignandperformanceexpectationsforclinical genomic copy number microarrays intended for use in the postnatalsettingfordetectionofconstitutionalabnormalities. GenetMed.2011;13:676---9.

29.Vermeesch JR, Brady PD, Sanlaville D, Kok K, Hastings RJ. Genome-widearrays:qualitycriteriaandplatformstobeused inroutinediagnostics.HumMutat.2012;33:906---15.

Imagem

Figure 1 Array-CGH ratio profiles of the chromosomes in four neonates with pathogenic chromosomal imbalances using genomic DNA from the neonates as test (in red) and DNA from normal subjects as reference (in blue)
Table 1 Summary of the clinical indications from the 35 samples at the time of referral for chromosomal analysis.
Table 2 Details of the array-CGH from 12 samples with chromosomal imbalances.

Referências

Documentos relacionados

Regarding the potential effect of the mutations in genes associated with hereditary thrombophilia and their associa- tion with pediatric stroke and cerebral palsy, the authors

In agreement with Wang et al., the present study also observed higher hBD2 levels in colostrum than in mature milk; however, both groups presented higher lev- els of hBD2 than

Therefore, the aims of this study were (i) to determine the ability (sensibility and specificity) of differ- ent measures of adiposity: BMI, waist circumference, body fat

The aim of this study was to determine the prevalence of enuresis, urinary and bowel symptoms, and associated factors in children aged 7 years belonging to the Pelotas birth cohort

The higher the number of the platform consulted resources, the greater the tendency to enjoy the platform, to consider it exciting and quick, to consider that the time spent in it

Regarding nutritional diagnosis, overweight girls from private school have an earlier menarche (11.6 years) than those with normal weight (12.3 years), but there was no dif- ference

Thus, the present study aimed to evaluate the effect of maternal vitamin A supplementation on retinol concen- tration in human colostrum under fasting and post-prandial

quate was adopted; therefore, the present study showed that Hgb values below the expected (anemia) were found in most monthly records of patients (65.3%), albeit still above those