• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
5
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Perillanolides

A

and

B,

new

monoterpene

glycosides

from

the

leaves

of

Perilla

frutescens

Yang

Liu,

Xiao-Hong

Liu,

San

Zhou,

Hua

Gao,

Guo-Liang

Li,

Wei-Jie

Guo,

Xin-Yu

Fang,

Wei

Wang

SchoolofPharmacy,QingdaoUniversity,Qingdao266021,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15April2017 Accepted8June2017 Availableonline29July2017

Keywords:

Monoterpeneglycoside PerillanolideA PerillanolideB Xanthineoxidase

a

b

s

t

r

a

c

t

Twonewmonoterpeneglycosides,perillanolidesAandB,togetherwithaknowncompoundreported fromthegenusPerillaforthefirsttimewereisolatedandcharacterizedfromtheleavesofPerillafrutescens

(L.)Britton,Lamiaceae,agarnishandcolorantforfoodsaswellascommonlyusedfortraditionalmedicine. Thestructuresoftheisolatedcompoundswereelucidatedonthebasisofextensivespectroscopic evi-dencesderivedfromnuclearmagneticresonanceexperiments,massspectrometryandbycomparing theirphysicalandspectroscopicdataofliterature.Thesecompounds,togetherwiththepreviously iso-latedsecondarymetabolitesofthisspecies,wereinvestigatedfortheirinhibitoryeffectsonxanthine oxidaseinvitro.Ofthecompounds,luteolinshowedthestrongestinhibitoryactivitywithanIC50valueof

2.18␮M.Esculetinandscutellareinmoderatelyinhibitedtheenzyme,whileperillanolidesAandB,and 4-(3,4-dihydroxybenzoyloxymethyl)phenyl-O-␤-d-glucopyranosideexertedweakactivities.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Perilla frutescens (L.) Britton, a member of the mint family Lamiaceae,is widelydistributed worldwide, especially in east-ern Asia (Heci, 2001). As an edible crop, the cultivation of P. frutescens has more than 2000 years of history in China as wellas in other Asian countries (Lee and Kim, 2007). In addi-tion to its edible usages, P. frutescens leaf is commonly used in traditional medicines for relieving exterior syndrome and cold-dispelling, promotingthecirculation ofQi, and harmoniz-ingthestomach(Yuet al.,2016).Pharmacological researchhas been reported indicating that P. frutescens leaf possesses anti-allergic (Shin et al., 2000), anti-inflammatory (Makino et al., 2002), anti-oxidative (Zekonis et al., 2008), anticancer (Wang et al., 2013), antibacterial (Choi et al., 2010), and antidepres-sant activities(Takedaet al., 2002). Otherphysiological effects ofP. frutescens leafin severaldiseases have also beenrecently described in the literatures. For example, ultraviolet radiation-inducedextracellularmatrixdamageinhumandermalfibroblasts and hairless mice were significantly protected by P. frutescens leaves extract (Bae et al., 2017). Water-extracted P. frutescens

∗ Correspondingauthor.

E-mail:qddxwangwei@qdu.edu.cn(W.Wang).

leavesandstemsincreasedthelevelofleukemiainhibitory fac-tor(LIF),amajorcytokineregulatingendometrialreceptivity,and LIF receptor in human endometrial Ishikawa cells (Kim et al., 2016).

Inoursearchingforxanthineoxidase(XO)inhibitorsfrom edi-ble and medical Chinese natural plants, we foundtheaqueous extractsofP.frutescensleavesshowedXOinhibitoryactivityfor thefirsttime.Bioactivity-guidedfractionationledtotheisolation of caffeic acid, vinyl caffeate, rosmarinicacid, methyl rosmari-nate,andapigeninwithXOinhibitoryactivity(Huoetal.,2015). Furthermore,twelvecompoundswerealsoisolatedfromthe aque-ousextractofP.frutescensleaf(Huoetal.,2016).Ourcontinued interestin discoveringnewcompoundsfromthis sourceledus toisolatetwonewmonoterpeneglycosides,namedperillanolides A (1) and B (2), together with a known compound, 4-(3,4-dihydroxybenzoyloxymethyl)phenyl-O-␤-d-glucopyranoside (3). The structures of theisolated compounds weredetermined by spectroscopicmethods,including1Dand2DNMR,HR-ESI-MS,and chemicalmodification.Here,wealsoreporttheevaluationofXO inhibitory activitiesof thecompoundsisolated by usfrom this plant.

http://dx.doi.org/10.1016/j.bjp.2017.06.003

(2)

O O 3' 3 1 5' 1' 1 O OH OH HO OH O 3' 3 1 5' 1' 2 O OH OH HO OH O O O O HO HO O OH OH HO OH 3

Materialsandmethods

Generalexperimentalprocedures

The experimentalprocedures, includingHPLC, MS and NMR instrumentation, were previously described (Gao et al., 2017). Allopurinol,XO,and xanthinewereboughtfromSigma–Aldrich Chemicals (St. Louis, MO, USA). Compounds loliolide, isolo-liolide (Kimura and Maki, 2002), dehydrovomifoliol (Park et al., 2011), trans-p-hydroxycinnamic acid (Fu et al., 2011), esculetin (Zhang et al., 2014), luteolin, scutellarein, scutellarin, p-hydroxybenzaldehyde(Liangetal.,2015),negletein(Yoonetal., 2011),p-hydroxyacetophenone(Fengetal.,2013),andsericoside (Ponouetal.,2010)wereisolatedandidentifiedfromP.frutescens leavesinourlaboratory.

Plantmaterial

TherawmaterialsofPerillafrutescens(L.)Britton,Lamiaceae, leaveswerecollectedfromChangchun suburb,JilinProvinceof China,inOctober2011.Botanicalauthenticationwasperformed byBao-MinFeng,CollegeofLifeScienceandTechnology,Dalian University.Avoucher specimen(ZS20111001)wasdepositedat theInstituteofPhytochemistry,JilinAcademyofChineseMedicine Sciences.

Extractionandisolation

Theair-driedleavesofP.frutescens(4kg)wereextractedthree timeswithboilingwaterfor2handthenfilteredthrougha two-layermesh.Thewaterfiltrateswereconcentratedunderreduced pressuretoaffordadarkbrownresidue(583g).Theextractwas sus-pendedinwater(2l)andpartitionedwithn-butanol(2l×4times), followedbyconcentrationtoyield125gthen-butanolextract.Part ofthen-butanolextract(60g)wassuspendedinwater(4l)andthen passedthroughaopencolumnchromatographyonHPD600 macro-porousresinandsuccessivelyelutedwithwater,20%ethanol,50% ethanol,and70%ethanoltogive20%ethanolelutedpart(14.3g), 50%ethanolelutedpart(27.5g),and70%ethanolelutedpart(8.0g). The20%ethanolelutedpart(4g)waschromatographedfurther onaRP-18silicagelcolumnandelutedwithagradientincreasing methanol(30–100%)inwatertoyieldeightfractions(Frs. 20-1–20-8)onthebasisofTLCanalyses.Compounds1(2.97mg,Rt=99min)

and2(2.71mg,Rt=108min)wereobtainedfromFr.20-7by

prepar-ativeHPLCemployingMeOH/H2O(55:45)asthemobilephaseata flowrateof2.0ml/min.Thefractionelutedwith50%ethanol(15g) wasfractionatedbycolumnchromatographyonsilicageleluting withasolventsystem(CHCl3:MeOH=40:1,19:1,9:1,8:2)toobtain sixfractions(Frs.50-1–50-6).Fr.50-1wasseparated chromato-graphicallyona RP-18silica gelcolumn withasolvent system

(MeOH:H2O=5:5,10:0) to give subfractions, which were puri-fiedbypreparativeHPLCusingMeOH:H2O(40:60)asthemobile phaseataflowrateof2.0ml/mintoyieldcompound3(9.65mg, Rt=79min).

Spectraldata

PerillanolideA(1):colorlessgum;[␣]D20−21.7(c0.23,MeOH); UV(MeOH)max(logε):202(3.72)nm;1H(CD

3OD,500MHz)and 13CNMR(CD

3OD,125MHz)seeTable1;HR-ESI-MSm/z353.1565 [M+Na]+(calcd.forC

16H26O7Na,353.1570).

PerillanolideB(2):colorlessgum;[␣]D20−46.7(c0.15,MeOH); UV(MeOH)max(logε):202(3.94)nm;1H(CD

3OD,500MHz)and 13CNMR(CD

3OD,125MHz)seeTable1;HR-ESI-MSm/z353.1600 [M+Na]+(calcd.forC

16H26O7Na,353.1570).

Acidichydrolysisandsugaridentification

Compounds1and2(each1mg)wereacidichydrolyzedwith 1ml of 7% HCl heated at 60◦C for 2h. Aftercooling, the reac-tionmixturewasneutralizedwithanAmberliteIRA400column, and the eluate was concentrated. The sugar residues obtained fromthehydrolysisweredissolvedinanhydrouspyridine(0.5ml) andl-cysteinemethylesterhydrochloride(2mg)wasadded.The mixture was stirred at 60◦C for 1.5h. After the reaction mix-turewasdriedinvacuo,theresiduewastrimethylsilylatedwith 1-trimethylsilylimidazole(0.1ml)for2h.Themixturewas parti-tionedbetweenhexane and H2O (1ml each),and organiclayer (1␮l)wasanalyzedbyGC–MS.Identificationofd-glucopyranosides for 1 and 2 was detected in each case by co-injection of hydrolysatewithstandardsilylatedsamples,givingsinglepeaks atd-glucopyranose(13.5and13.5min)for1and2,respectively. Retention timesof authentic samplestreated in the sameway with1-trimethylsilylimidazoleinpyridinewered-glucopyranose (13.5min).

XOinhibitoryactivityassayandXOinhibitorymodeofaction assay

The XO inhibition assays and the inhibitory mode assay of theisolatedcompoundswereperformedaccordingtothemethod modifiedbyourgroup(Liuetal.,2016).Anoverviewaboutthe effectsofthesesubstancesonXOactivityisgiveninTable2.

Resultsanddiscussion

Compound1wasisolatedasacolorlessgum,andshowed posi-tiveLiebermann–Burchardreaction,suggestingittobeaglycoside. The molecularformula wasdeterminedto beC16H26O7 onthe basisofthequasimolecularionpeakatm/z353.1565[M+Na]+in thepositiveHR-ESI-MS(calcd.forC16H26O7Na,353.1570),which wasfurthersupportedbythe1HNMRand13CNMRspectraldata (Table1).The13CNMRandDEPTspectrarevealed16carbon sig-nals due to two methylcarbons, three methylene carbons, ten methinecarbons,andonenonprotonatedcarbon,ofwhichten car-bons wereassigned to theaglyconepartincluding two methyl carbonsat ıC 22.9and 23.0, two methylenecarbons atıC 35.4

(3)

Table1

1HNMRand13CNMRspectraldataofcompounds1and2(500and125MHz,CD

3OD,ı ppm,JinHz).

Position 1 2

ıH ıC ıH ıC

Aglycone

1 4.83,t,(7.5) 72.6(d) 2.69,dd(14.7,4.6) 30.5(d)

2.64,dd(14.7,6.6)

2 1.86,m 35.4(t) 4.01,m 77.4(d)

1.71,m

3 1.27,m 35.8(t) 1.44,m 44.8(t)

1.10,m 1.22,m

4 1.53,m 29.1(d) 1.84,m 25.2(d)

5 0.87,d(6.7) 23.0(q) 0.87,d(6.7) 23.8(q)

6 0.87,d(6.7) 22.9(q) 0.87,d(6.7) 22.5(q)

2′ 7.51,brs 142.5(d) 7.36,brs 141.6(d)

3′ 126.6(s) 122.4(s)

4′ 6.47,d(1.7) 110.0(d) 6.42,d(1.6) 112.9(d)

5′ 7.46,d(1.7) 144.7(d) 7.38,d(1.6) 143.7(d)

Sugar

1′′ 4.16,d(7.4) 100.5(d) 4.40,d(7.8) 102.4(d)

2′′ 3.21,m 75.1(d) 3.18,m 75.3(d)

3′′ 3.24,m 78.1(d) 3.35,m 78.3(d)

4′′ 3.25,m 71.9(d) 3.31,m 71.9(d)

5′′ 3.14,m 77.9(d) 3.24,m 77.8(d)

6′′ 3.87,dd(11.8,2.3) 63.0(t) 3.86,dd(11.7,2.4) 63.0(t)

3.66,dd(11.8,6.1) 3.68,dd(11.7,5.4)

Table2

Xanthineoxidaseinhibitoryactivitiesoftheisolatedcompounds.

Compounds Concentration(␮M) Inhibitionratio(%) IC50(␮M) Modeofinhibition

PerillanolideA(1) 200 1.10±0.08 >200 –

PerillanolideB(2) 200 1.46±0.13 >200 –

4-(3,4-Dihydroxybenzoyloxymethyl)phenyl-O-␤-d-glucopyranoside(3) 200 35.46±0.59 >200 –

Loliolide 200 14.53±1.47 >200 –

Isololiolide 200 1.23±0.32 >200 –

Dehydrovomifoliol 200 1.45±1.08 >200 –

trans-p-Hydroxycinnamicacid 200 10.52±1.00 >200 –

Esculetin

100 78.85±0.23

32.56 Competitive

50 64.40±0.75

25 44.39±1.60

5 9.96±2.36

Luteolin

5 66.07±0.29

2.18 Competitive

4 62.21±0.28

3 56.46±1.44

2 49.37±1.06

Scutellarein

100 65.96±0.19

48.66 Mixed

75 60.59±0.43

50 51.71±0.56

25 30.05±1.04

Scutellarin 200 40.06±1.23 >200 –

p-Hydroxybenzaldehyde 200 10.11±0.78 >200 –

Negletein 200 40.91±0.65 >200 –

p-Hydroxyacetophenone 200 8.54±0.94 >200 –

Sericoside 200 1.05±0.24 >200 –

Allopurinol – – 2.07 Competitive

J=7.5Hz),and3-furanylringprotonsat6.47(1H,d,J=1.7Hz),7.46

(1H,d,J=1.7Hz)and7.51(1H,brs).InspectionoftheDQFCOSY

andHMBCcorrelations allowedassembleof thealiphaticchain

andfuranylringstartingfromthemethylsignalsatıH0.87.The

aglyconemoietyof1wasproposedtobe1-(3′

-furanyl)-4-methyl-pentan-1-ol,whichwassimilartoperillaketone,themostabundant

volatilecompoundfromP.frutescensleaves(Bassolietal.,2013).

Thecarbonylcarboninthestructureofperillaketonewasabsent inthat of1, instead,signalsfor anoxymethine(ıH/C 4.83/72.6) wereobserved.TheDQFCOSYcorrelationsfromH-1(ıH 4.83)to H-2a(ıH1.86)andH-2b(ıH1.71)aswellastheHMBCcorrelations fromH-1(ıH4.83)toC-2(ıC35.4),C-3(ıC122.4),C-3(ıC35.8),

C-2′ (ıC 141.6),andC-4′ (ıC110.0)supportedtheabove deduc-tion(Fig.1).Theremaining1H NMRand13C NMRspectraldata wereascribedtothesugarmoiety.Usingtheanomericprotonat

O

O

O

OH

OH

OH

OH

O

O

O

HO

OH

OH

OH

Fig.1.KeyDQFCOSY(—)andHMBC(→)correlationsofcompounds1and2.

(4)

couplingsobservedforalloftheoxymethineprotonsimplyingtheir axialposition.Thepositionofglucosewasunambiguously estab-lishedbyanHMBCexperiment,inwhichalong-rangcorrelation wasobservedbetweentheH-1′′(ıH4.16)ofd-glucoseandtheC-1 (ıC72.6)ofaglycone(Fig.1).Acidhydrolysisof1afforded␤-d -glucopyranose,whichwasidentifiedbyGCanalysiswithauthentic sugars.Tofigureouttheconfigurationoftheonlychiralcenter (C-1)fortheaglyconemoietyof1,theopticalrotationoftheaglycone wasexperimentallyrecorded([␣]D20−30.0,c0.10,MeOH).By com-parisonwiththatof (S)-1-(3′-furyl)-3-buten-1-ol([]

D25−30.7, c1.72,CH2Cl2)(Bierstedtetal.,2001),theS-configurationatC-1 wastentativelydeducedtothiscompound.Thus,thestructureof 1wasconfirmedas(S)-1-(3′-furanyl)-4-methyl-pentan-1-O--d -glucopyranosideandthecompoundwasnamedperillanolideA.

Compound 2 was isolated as a colorless gum. It showed a quasimolecularionpeakatm/z353.1600[M+Na]+inthepositive HR-ESI-MS.Acomparativeanalysisof1Hand13CNMRspectraldata of2(Table1)withthoseof1suggestedthepresenceofanaliphatic chain,afuranylring,andaglucosemoiety.However,thenuanced spectraldataandthedifferentretentiontimeinthe preparative-HPLCindicatedthedistinctconstructionofthetwocompounds. DetailedanalysisoftheaboveNMR spectraldataaswellas2D NMRcorrelations(Fig.1),thesignificantdifferencebetween1and 2,liedin theglycosylationsite.TheDQFCOSYcorrelationsfrom H-2(ıH 4.01)toH-1a(ıH2.69),H-1b(ıH 2.64),H-3a(ıH 1.44),

andH-3b(ıH 1.22)aswellasHMBCcorrelationsfromH-1a(ıH

2.69)andH-1b(ıH2.64)toC-2(ıC77.4),C-3(ıC44.8),C-2′ (ıC

141.6),C-3′(ıC122.4),andC-4(ıC112.9),fromtheanomeric

pro-tonatıH4.40(1H,d,J=7.8Hz)totheoxymethineC-2(ıC77.4) supportedtheglycosylationsitetobeC-2(Fig.1).Acidhydrolysisof 2afforded␤-d-glucopyranoseandaglycone.Bycomparisonofthe aglyconeopticalrotation([␣]D25−50.0,c0.10,MeOH)withthatof (R)-methyl3-hydroxyhexanoate([␣]Drt−23.3,c1.16,CHCl3)(Jiang etal.,2010)and(S)-ethyl4-hydroxy-5-phenylpentanoate([␣]D25 +14.5,c1.00,CHCl3)(Kotkaretal.,2007),theR-configurationatC-2 wastentativelydeducedtothiscompound.Thestructureof2was thusdeterminedas(R)-1-(3′-furanyl)-4-methyl-pentan-2-O--d -glucopyranosideandatrivialnameperillanolideBwasassigned.

Compound3wasidentifiedbycomparingthe1Hand13CNMR, aswellasMSspectrawiththatreportedintheliterature.Itwas determined tobe 4-(3,4-dihydroxybenzoyloxymethyl)phenyl-O

-␤-d-glucopyranoside(3)(NakataniandKikuzaki,1987).

Inthisstudy,compounds1–3andtwelvepreviouslyisolated compoundswereevaluatedforXOinhibitoryactivity.Allopurinol wasusedasapositivecontrol.Whenxanthinewasaddedtothe mixtureofXOandincreasingconcentrationsofesculetin,luteolin, scutellarein,orallopurinol,theproductionofuricacidshoweda concentration-dependentdecreasecomparedtocontrol.Luteolin significantlyinhibitedXOactivitywithanIC50valueof2.18␮M, whichisclosetoallopurinol’sIC50valueof2.07␮M.IC50valuesfor esculetinandscutellareinwere32.56␮Mand48.66␮M, respec-tively,indicatingweakinhibitionofXOactivity.TheIC50valuefor othercompoundswastoohightodetermine.TheLineweaver–Burk plotswereperformedtounderstandtheenzymeinhibitionmodes ofesculetin,luteolin,andscutellarein.Esculetinandluteolin exhib-itedcompetitiveinhibitions,whileamixedinhibitionmodewas observedforscutellarein.

Conclusions

Phytochemical investigation of the leaves of P. frutescens led to the isolation of two new monoterpene and a known compound.Thesecompounds,togetherwiththepreviously iso-lated secondary metabolites of this species, were investigated for their inhibitory effects on xanthine oxidase in vitro. Of

thecompounds,luteolin showedthe strongestinhibitory activ-ity with an IC50 value of 2.18␮M. Esculetin and scutellarein moderately inhibited the enzyme, while perillanolides A (1) andB(2),and4-(3,4-dihydroxybenzoyloxymethyl)phenyl-O-␤-d -glucopyranoside(3)exertedweakactivities.Theobtainedresults werebenefitforthesubsequentresearchesofgenusPerilla.

Authors’contributions

YL,XHL,GLL,andWJGperformedtheextraction,isolation,and elucidationoftheconstituents.SZandXYFwereinvolvedinthe biologicalevaluations.HGconfirmedalltheisolationand struc-turalelucidationprocedures.WWdesignedthestudy,supervised the laboratorywork, and contributed to critical reading of the manuscript. Alltheauthors haveread thefinalmanuscript and approvedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgment

ThisprojectwassupportedbytheFosteringPlanforOutstanding YoungTeachersinCollegeofMedicineofQingdaoUniversityunder Grant2015001.

References

Bae,J.S.,Han,M.,Shin,H.S.,Kim,M.K.,Shin,C.Y.,Lee,D.H.,Chung,J.H.,2017.Perilla frutescensleavesextractamelioratesultravioletradiation-inducedextracellular matrixdamageinhumandermalfibroblastsandhairlessmice.J. Ethnopharma-col.195,334–342.

Bassoli,A.,Borgonovo,G.,Morini,G.,DePetrocellis,L.,SchianoMoriello,A.,DiMarzo, V.,2013.AnaloguesofperillaketoneashighlypotentagonistsofTRPA1channel. FoodChem.141,2044–2051.

Bierstedt,A.,Stölting,J.,Fröhlich,R.,Metz,P.,2001.Enzymatickinetic resolu-tionof1-(3′-furyl)-3-buten-1-oland2-(2-furyl)-propan-1-ol.Tetrahedron12,

3399–3407.

Choi,U.K.,Lee,O.H.,Lim,S.I.,Kim,Y.C.,2010.Optimizationofantibacterialactivityof Perillafrutescensvar.acutaleafagainstPseudomonasaeruginosausingthe evo-lutionaryoperation-factorialdesigntechnique.Int.J.Mol.Sci.11,3922–3932. Feng,M.L.,Wang,S.F.,Zhang,X.X.,2013.ChemicalconstituentsinfruitsofLycium

barbarum.Chin.Tradit.Herb.Drugs44,265–268.

Fu,C.,Chen,C.,Zhou,G.X.,Ye,W.C.,2011.Chemicalconstituentsfromfruitsof Amomumvillosum.Chin.Tradit.Herb.Drugs42,2410–2412.

Gao,H.,Wang,W.,Chu,W.X.,Liu,K.,Liu,Y.,Liu,X.H.,Yao,H.L.,Gao,Q.,2017. Panicu-latumosideG,anewC21steroidalglycosidefromCynanchumpaniculatum.Rev.

Bras.Farmacogn.27,54–58.

Heci,Y.,2001.ValuableingredientsfromherbPerilla:aminireview.Innov.Food Technol.29–30,32–33.

Huo,L.N.,Wang,W.,Zhang,C.Y.,Shi,H.B.,Liu,Y.,Liu,X.H.,Guo,B.H.,Zhao,D.M., Gao,H.,2015.Bioassay-guidedisolationandidentificationofxanthine oxi-daseinhibitoryconstituentsfromtheleavesofPerillafrutescens.Molecules20, 17848–17859.

Huo,L.N.,Wang,W.,Liu,Y.,Liu,X.H.,Zhang,L.,Cheng,K.,Liu,K.,Gao,H.,2016. Chem-icalconstituentsfromPerillafrutescens.Chin.Tradit.Herb.Drugs47,26–31. Jiang,H.,Gschwend,B.,Albrecht,L.,Jørgensen,K.A.,2010.Organocatalytic

prepa-rationofsimple␤-hydroxyand␤-aminoesters:lowcatalystloadingsand gram-scalesynthesis.Org.Lett.12,5052–5055.

Kim,E.Y.,Choi,H.J.,Chung,T.W.,Choi,J.Y.,Kim,H.S.,Jung,Y.S.,Lee,S.O., Ha, K.T.,2016.Water-extractedPerillafrutescensincreasesendometrialreceptivity thoughleukemiainhibitoryfactor-dependentexpressionofintegrins.J. Pharma-col.Sci.131,259–266.

Kimura,J.,Maki,N.,2002.NewloliolidederivativesfromthebrownalgaUndaria pinnatifida.J.Nat.Prod.65,57–58.

Kotkar,S.P.,Suryavanshi,G.S.,Sudalai,A.,2007.Ashortsynthesisof(+)-harzialactone Aand(R)-(+)-4-hexanolideviaproline-catalyzedsequential˛-aminooxylation andHorner-Wadsworth-Emmonsolefinationofaldehydes.Tetrahedron18, 1795–1798.

Lee,J.K.,Kim,N.S.,2007.Geneticdiversityandrelationshipsofcultivatedandweedy typesofPerillafrutescenscollectedfromEastAsiarevealedbySSRmarkers. KoreanJ.Breed.Sci.39,491–499.

(5)

Liu,K.,Wang,W.,Guo,B.H.,Gao,H.,Liu,Y.,Liu,X.H.,Yao,H.L.,Cheng,K.,2016. Chem-icalevidenceforpotentxanthineoxidaseinhibitoryactivityofethylacetate extractofCitrusaurantiumL.driedimmaturefruits.Molecules21,302. Makino,T.,Ono,T.,Muso,E.,Honda,G.,2002.EffectofPerillafrutescensonnitricoxide

productionandDNAsynthesisinculturedmurinevascularsmoothmusclecells. Phytother.Res.16(Suppl.1),S19–S23.

Nakatani,N.,Kikuzaki,H.,1987.Anewantioxidativeglucosideisolatedfromoregano (OriganumvulgareL.).Agric.Biol.Chem.51,2727–2732.

Park,J.H.,Lee,D.G.,Yeon,S.W.,Kwon,H.S.,Ko,J.H.,Shin,D.J.,Park,H.S.,Kim,Y.S., Bang,M.H.,Baek,N.I.,2011.Isolationofmegastigmanesesquiterpenesfromthe silkworm(BombyxmoriL.)droppingsandtheirpromotionactivityonHO-1and SIRT1.Arch.Pharm.Res.34,533–542.

Ponou, B.K., Teponno, R.B., Ricciutelli, M., Quassinti, L.,Bramucci, M., Lupidi, G., Barboni, L., Tapondjou, A.L., 2010. Dimeric antioxidant and cytotoxic triterpenoidsaponinsfromTerminaliaivorensisA.Chev.Phytochemistry71, 2108–2115.

Shin,T.Y.,Kim,S.H.,Kim,S.H.,Kim,Y.K.,Park,H.J.,Chae,B.S.,Jung,H.J.,Kim,H.M., 2000.Inhibitoryeffectofmastcell-mediatedimmediate-typeallergicreactions inratsbyPerillafrutescens.Immunopharmacol.Immunotoxicol.22,489–500.

Takeda,H.,Tsuji,M.,Matsumiya,T.,Kubo,M.,2002.Identificationofrasmarinicacid asanovelantidepressivesubstanceintheleavesofPerillafritescensBrittonvar. acutaKudo(PerillaeHerba).NihonShinkeiSeishinYakurigakuZasshi22,15–22. Wang,Y.,Huang,X.,Han,J.,Zheng,W.,Ma,W.,2013.ExtractofPerillafrutescens inhibitstumorproliferationofHCCviaPI3K/AKTsignalpathway.Afr.J.Tradit. ComplementAltern.Med.10,251–257.

Yoon,H.,Eom,S.,Hyun,J.,Jo,G.,Hwang,D.,Lee,S.,Yong,Y.,Park,J.C.,Lee,Y.H.,Lim, Y.,2011.1Hand13CNMRdataonhydroxy/methoxyflavonoidsandtheeffects

ofsubstituentsonchemicalshifts.Bull.KoreanChem.Soc.32,2101–2104. Yu, H., Qiu, J.F., Ma, L.J., Hu, Y.J., Li, P., Wan, J.B., 2016. Phytochemical

and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem. Toxicol., http://dx.doi.org/10.1016/j.fct.2016.11.023.

Zekonis,G.,Zekonis,J.,Sadzeviciene,R.,Simoniene,G.,Kevelaitis,E.,2008.Effect ofPerillafrutescensaqueousextractonfreeradicalproductionbyhuman neu-trophilleukocytes.Medicina(Kaunas)44,699–705.

Imagem

Fig. 1. Key DQFCOSY (—) and HMBC ( → ) correlations of compounds 1 and 2.

Referências

Documentos relacionados

Constituents of lemon balm ( Melissa oficinalis ) essential oil distilled from fresh leaves harvested in plants cultivated with organic and mineral fertilizers... Constituents of

methanol crude extracts of dried leaves of Aspidosperma tomentosum Mart., Apocynaceae, displayed antiproliferative activity in a concentration-dependent way against some

Abstract: From leaves and bark of Amyris pinnata Kunth twelve compounds were isolated, corresponding to six lignans 1-6 , three coumarins 7-9 , a sesquiterpene 10 , an

Acorus calamus Leaf / Methanol new compounds Antimalarial 47 Rosmarinus officinalis Essential oil beta-myrcene Antibacterial 48 Satureja Montana Essential oil Carvacrol

ISOLATION AND ANTITRICHOMONAL ACTIVITY OF THE CHEMICAL CONSTITUENTS OF THE LEAVES OF Maytenus phyllanthoides Benth.. Facultad

The present investigation, which adds to the knowledge of this species, led to the isolation of alkaloids, sesquiterpenoids and other constituents from different extracts obtained

For the study of spatial chemical structure, the matrices of Euclidean distances from geographical coordinates and essential oil data sets (chemical constituents or oil

As part of our ongoing search for bioactive constituents from natural Korean medicinal resources, a bioassay-guided fractionation and a chemical investigation of the methanolic