• Nenhum resultado encontrado

Epileptic Seizure Detection based on Wavelet Transform Statistics Map and EMD Method for Hilbert-Huang Spectral Analyzing in Gamma Frequency Band of EEG Signals

N/A
N/A
Protected

Academic year: 2017

Share " Epileptic Seizure Detection based on Wavelet Transform Statistics Map and EMD Method for Hilbert-Huang Spectral Analyzing in Gamma Frequency Band of EEG Signals"

Copied!
14
0
0

Texto

(1)

) 23 (

EMD

!

" #$% &$' ($)

*

+ ,$

- . /

0 1 ! %

%

EEG

2 3

) 1 (

*

7 8 9$-:

) 2 (

) 1 & ' ( (

)*+ ,( - . / 0 +( ( 1( - 2 ( - 3 )*+ -./4 ( (53 6 +( - 3

) 2 +( ( ( 1( - 2 ( - 3 )*+ -./4 ( (53 6 +( - 3 )*+ ,( - . / 0 +(

: 8 1 91 30

/ 3 / 1394 :< 1=> 91 8 / 5 / 1394

: => A B C 6 D E +3 5( 2 (

) DF/

EEG

(

1

< GH I 5( 5( J > K L .1 ( / /3 ' .0 H'

./ DF/ .,( I /3 5( M> -GE N/ O1( .

6 5 1 ( Q( C ( / R . + ' 8 + -S / T 1 H 8 U1 5( 2 (

1 DF/ 6 .V W/ D1 + 1 N/ -./ X=, 61 . ,

6 UI / Y1 Z -M[ . + UI / Y1 Z .0 \(5 / G N+ DF/

./ GZ W/ ]V ^ G N+ S / N .

JC G .6+

2

15 _( R -)H C/

G1 > 3 R /3 GZ W/ 1 L

( N/ / /3

3

.2 / .> +3

4

./ GZ W/ G2E / Y HW 5( 2 ( /3 .R`1 ( .

) .H (

PCA

(

5

./ J ' U1 G . 1

1 6E( 5( 2 (

EMD 6

( Y HW 6E b G > GH G

) . (c E , d (

IMF

(

7

+ / ( N/ 6

) f 5( 2 (

K ZH ) f Y 0 K ZH Y1 Z

G1 > .+ 0/ .R`1 U1 T+( GNZf ( . Hg( GH 8

6 ./ GZ W/ DF/

.

GH GNZf

K

U1 D+ ) G1 O1

KNN

(

8

6 -G .61 /( > O 8 R h+ ' G DF/

A ( ( &4

6 W (D / E 54

/ 76 Vi M+ 1 ( % 3685

/ 0 J1 /53 GNZf )H C/

./ . +

: $#. " ?#. Y1 Z -UI / Y1 Z -k

K ZH

1 -T+( GNZf - DF/

K

U1 D+ ) G1 O1

KNN

.(

Epileptic Seizure Detection based on Wavelet Transform Statistics Map

and EMD Method for Hilbert-Huang Spectral

Analyzing in Gamma

Frequency Band of EEG Signals

Morteza Behnam(1) - Hossein Pourghassem(2)

(1) MSc Student - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran

morteza.behnam@sel.iaun.ac.ir

(2) Associate Professor - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran

h_pourghasem@iaun.ac.ir

Seizure detection using brain signal (EEG) analysis is the important clinical methods in drug therapy and the decisions before brain surgery. In this paper, after signal conditioning using suitable filtering, the Gamma frequency band has been extracted and the other brain rhythms, ambient noises and the other bio-signal are canceled. Then, the wavelet transform of brain signal and the map of wavelet transform in multi levels are computed. By dividing the color map to different epochs, the histogram of each sub-image is obtained and the statistics of it based on statistical momentums and Negentropy values are calculated. Statistical feature vector using Principle Component Analysis (PCA) is reduced to one dimension. By EMD algorithm and sifting procedure for analyzing the data by Intrinsic Mode Function (IMF) and computing the residues of brain signal using spectrum of Hilbert transform and Hilbert – Huang spectrum forming, one spatial feature based on the Euclidian distance for signal classification is obtained. By K-Nearest Neighbor (KNN) classifier and by considering the optimal neighbor parameter, EEG signals are classified in two classes, seizure and non-seizure signal, with the rate of accuracy 76.54% and with variance of error 0.3685 in the different tests.

Index Terms: Epilepsy, wavelet transform, hilbert-huang transform, brain rhythms, K-nearest neighbor (KNN). :+ @ A -g &-gt; O ,

-)*+ ,( - . / 0 +( ( 1( - 2 ( - 3 )*+ -./4 ( (53 6 +( - 3

(2)

) 24 (

1 *

6 0H l / ( 2/ U1 0E( K l4f( -. ,

G , + . ( Zn W ( g O NNW/ i( .0 H'

./ GH I 5( . 6 O1(

./ 1 DF/ 6 G (

_( R E 2 +( 0E(

(EEG)

O1 ' > 5( .01 G' - + (

6 G /5 SLl . N NW

./ . i

]

1

[

.

6

EEG

5( . + G' E 8

.01 0E( + H .ZLl

W - ( O + / - 6 Zn )H C/

.HH E(

10 20 G * I 5( BC / o N+ .1 0E( R ( g

I Zn > O 8 R h+ 61 '

G+ + M+ ' 8 ./ ic S / (

+

]

1

[

6 .

EEG

GZ I ./ J1 + ( +( DF/ 0H l 5( .2H C/ GH I 5( .

./ ( / O1( A k p / G (

9

G 4 Z/ ( O q DF/

GH , k

10

+ (

]

2

[

l G k . 1 > U1 (

G' A1(

, 1 4 Z/ 3 G I _ / 5( %

]

3

[

.l p / (

. 2 / k( +( ( ( k A . ( J `> ( G' K G G U1 G 4i ) Y0 .H'

1 (

( 3

]

4

[

. 6

EEG

( . + ' 8 r WE 5(

( / + > U1 ( G' ( O1( Gh,4/ Y g G 0+ . BC

I / ( i ./ G2E / ( l G ( i -DF/

O .1

./ + + > .

+ / s( i Kt4 i( - DF/ A

u + > s( i Y

U1 W )

ERP

(

11

.I( /( G'

G 2 + 6

EEG

Q i 5( + + 3 . + ' 8

] 5 [ . 6E( G 5 + O1( ( t H g _ N/ . 1

( k B C ,

./ & .

U 02 ( G' . 1 6E(

6 O Y/

Q( /( 61 A 6 . G ( (

DF/ G ( l 13 8 -.8 L

( ( K LC / /3 v R F /

/5

]

6

[

. , k Q( /( 1 K + + ( A GH

K + + O1( DF/ l

4 / .8 L - i ( ( U1 1

./ O 5( A GH , n( +( G' D + + ( 0 . +

./ G+ + ( l G ) Y0 (

2 -Y0 O1( . 8 R h+ ( ( 16

6 5( + ' k G 4 Z/ u ' U1 G o / DF/

./ + ( w G'

Gp l G+ R 3 (

. + / .

0 O q ) Y 3 6 5( . 1 + D + (

EEG

8

./ + ( k GH , A k g _ 6 .

./ / G' V+ ./ l 13 8 U1 k GH , ( i

-./ R ( G , + _ A K( n( dg( . 1 +

16 ./ . / Y g DF/ + ' (

16 G ( + ' 3

) Y0 x V/ g 4

G' ' + N ( -

- ( g

./ E DF/ E 8 6 U1 / .

_ g

6 t M+ ' 8 K + + /5 =R

EEG

G+ + ./ 0 3 k GH , .

)Y0

1 GNZf :( +(

A k( 3 0H l 5 , & ( A1(

DF/

]

1 4

[

Fig. (1): Classifying the common types of seizure based on their performances in the areas of brain [1-4]

GyH , -_ y JC G+ + ' 5

5 D + .0 H'

./ 6 (=E - 1 + DF/

) Y0 ( J1 + 4

G+ + 5( (

1500 ./ 5 b3 ( M+ ' 8 > u 3 8 G . 1 +

J `> - i( GH , 5 B C G /5 . 2 /

J > O q k ( _ *+( + ( A k g .

]

7

[

. .H' V . <5( >

./ 6 (

6 <5( > ( .H' / U1 ( G' ( ( 5( DF/

./ 6 Zn Y/ ( ( G ( B C G' +(

-J `> . 8 R h+ ( 3 + ( G /5 O1( _ *+(

./ + / .R`1 Q( C ( JC (

]

8

[

O1( GH I 5( .

.R`1 ./ G2E / . G ( /5

M+ ' 8

]

9

[

.> +3

.2 f

]

10

[

.6 Z X + > E +

-]

11

[

O1( 5( ( /

-<5( > 5( 2 ( O q . + ( O 8 R h+ .1

6 5( + ' O1 ^ O T q \ Y l U1 _ *+( DF/

+ ' .1 J `> O S / ( W/ ./ /

.

A G /5 K N NW O E ( GH I 5( 1990

.8 /

( G\( ( A k g 5 0 3 ( . 1 6E(

]

12

[

O1( .

E 8 1 6E( 6 / 5( ( T U 1

EEG

G I A k g 5( . \4l ( l ./ *

E 8 - / O1( . '

GE Z+ W/ ( DF/ ( O . + ' 8

3 30 .E 6^ D

G /( O q G ( * > O1 R D ( G 5( '

./ * I ( G /5 U1 z, /5 K / O 8 R h+ '

, 1 4

./ A _4l( G + n Y' . 1 +

1 6E( O1( 50

%

A 5( , .1 Vi ( J1 /53

5 / 0 ( B C

]

12

[

.

E 8 G K N NW 3 5( M> 6 (

' ' , DF/

]

13

[

./ ( / O1( 5( . .8 / 5 0 3 G (

]

14

[

(3)

) 25 (

* > G0Z 5( 2 ( . + ' 8 ) f h / G .ZLl

GNZf .R`1

5( . W G +( 1 + -.I( C (

, B C 76

O1( Oy 8 R h+ . 1 %

O1( G' k p /

( m yi Vy 5 y 0 3 ( ( .,( f

1=>

12

D + . ' .1 Vi Y l .E

-34 / 0 (

]

14

[

O NNW/ 61 J `> U1 .

]

15

[

Q( C (

-.R`1 6 5( UI / Y1 Z ) f . Z/ DF/

.R`1 ( ( J ' < {

PCA

G 1 6E(

6 -K( c _ , 5(

EEG

6 &4' ( ( (

6 A 14l W | + E

24 / 72 GNZf %

+ . +(

1 6E( ( ( -.l A 5 0 3 B C

G B C . . 2 /

{i

13

GH , A

B C O q {i

14

GH I 5( 3 G O1(

. ./ .H' E , <5( > (

JC 5( .01 ( l G ( {i

<5( > / U1 G' ( 'c G _5t . 8 R h+ {i

<5( > O1( 5( ( . i m i .0 H' ' ( (

A GH , k g 5( f( - DF/ .,( I GHi( / _ 6 - }/ Y N/ 1 > 1 SLl

G/ N/ ( ( Gq+3 + / . i

A ( i B C ( v 8 . 1 6E( /5 + - 'c G , + . <5( > O1( . A k g _ + G'

<5( > ./ 1 3 5( {i

' 4l - D/

T+ 4 B C 13 8 JC 5( {i

. . (

<5( > J > T+ 4

/( A GH , k g /5 .

J > Zg( / - R k G 4 Z/ ( T 1 + / .1 (

./ U ' 1 +

]

1 5

[

.

) Y0 2 J1 + :( 16 6 5( + '

EEG

( l E , 8 6 5( 2

( 61 > I /

]

16

[

Fig. (2): 16 channels of EEG signals of the patient in the normal mode using the signals in the dataset [16]

) Y0 3 6 J1 + :(

EEG

16 6 5( 2 ( k GH , k g _ 6 DF/ + ' /

( 61 > I

]

16

[

(4)

) 26 (

) Y0 4 N :( 6

/ DF/ 3

6 ( =R E , .l A GH , k g J/( 3 /5 5(

]

16

[

Fig. (4): EEG signals partitioning and demonstrating 3 transient states in the signals from the rest time to epileptic seizure attack [16]

<5( > G /5 _ *+( K N NW G GI .H' E , 6 J > B C ( DF/ ./ -A .

U1 (

.H' + 1 6E( O1( 5(

<5( >) A B C . + G\( ( (

/3 5( M> -({i 6 T 1 H 8 5

- DF/

.R`1 6 .0 / 1 8 S / .1 GH , _ 6

./ Q( C ( +

]

5 6

[

GH, / . (D ( 5( 2 ( /5 +

G +( I 5 .R`1 s C

U1 .Z ' / + / G

GNZf U1 1 .ZLl G0Z O q .H/ 0 1 6E( U1 /3

1 6E( 5( 2 ( /3 (D ( 5( 2 ( 1 O / R 1

( J ' h / G (

.R`1 .

.R`1 O G

+ G 8 1 J ' 1 GNZf G

6 5( 2 ( DF/

(D ( GNZf GNZf 0H l G' ( 'c G _5t . (

/( > G G ( ( k + G G ( O q i . h

G h Y g ./ 5

. ~W J > <5( > .

1 6E() T+ 4 .R`1 5( 2 ( -({i

G G

/ /3 GNZf 5( 2 ( O q {i

<5 /3

./ 1 J > 1 6E( ( + Y 0 ( .

]

15

[

1 6E( .

G+ + O C -T+ 4 13

B C G Z + 6

G8 p( {i (

]

1

[

J > . 13 1 N/ .

6 .R`1 5( 2 ( DF/ g G' S /

<5( > ./ - ( /3 G {i

J > 13 8 ( D + ( .

.R`1 Q( C ( -(=E . + Y 0 (D ( <5 /3 S /

GNZf ( B C ' G0 1( 4l - (

J > G /5 JC GH I 5( D + .

./ H' .

G\( ( X -GE N/ O1( B C I . 1 6E(

{i

./ 4 Z/ ' ' .l A ( <4 O q .

.R`1 6 5( .I( C ( G DF/

G+ R + s C +( (

G' G > 2 ( ( .Z / . Z W/ *, T+ 4

. G (

2 * 0 B $

B C I - 1 I 1 6E( U1 GE N/ O1( {i

6 <5( > x1 f 5( k G GI . ( G\( ( DF/

) Y0 5 ( ( > 1 6E( -( 6

' ' DF/

G ( ( 61 > I /) / G Z + _ N/ k G 4 Z/ JC 30 G + n 6 5( g . ( N ( G

<5( > h / G+ R G =6+ / H 8 U1 {

H 8 (

./ / R + -.V W/ D1 + 4l G' 6 5(

./ .g DF/ .R`1 -Y , 6 5( . + /

Y1 Z . Z/

./ Q( C ( UI / .0 \(5 / G N+ Y 0 h / O1( ( . +

15 ^ G Y , 1 L N ]V ^ UI / Y1 Z Y/ G' 3 R /3 GZ W/ JC _( R - 1 L .> +3 ( N/ ./ .2 /

./ GZ W/ .R`1 ( l G O1( .

.R`1 ( J ' (D ( 5( 2 ( /3

PCA

K G U1

./ Y1 Z UI / Y1 Z G N+ 5( Q C / .R`1 O q .

1 6E( 5( 2 (

EMD

GZ W/ Gf / 6E b G >

(

IMF

+ / ( N/ 6

DF/

15

) f 5( 2 (

-GLC / K ZH Y1 Z K ZH ) f ( l W (

*1( T+(

GZ W/ 5( 2 ( G' ( GH 8

O . Hg( G

./ GZ W/ 6 5( D + 61 .R`1 - 3 ( N/ G ' .

/ G2E / 5( Y0 / G' .1 + .R`1 ( M[ .

GNZf {

KNN

6 -6 -&4' ( DF/

A ( (

6 .l GNZf E A

./ . 1 +

2 * 1 * + ,$ C!0 D$ %

EEG

/3 h / G 6 5

EEG

61 > I / Zn

K H l Gl */ - ( 3

./ K ( 5 + ( ( . 1=>

( 61 > x NW O1( <5( > .H' ( S / (

(5)

) 27 (

D1 + 4l 1=> ./ G' -{ W/ I / .8 L

Y/ +(

6 5( Y , D1 + 61 . ,

_( R 1 ' 0E( 6 • h+

)

ECG

(

16

) _( R E '( 0E( 6

-EOG

(

17

D1 + O q h+ .1

D + <5( > / . + ' 8 + + X=, - 5 UH> G

f

. Q( C ( m i 2 * 2 * A0!0 A , " EF

' 5( -x NW O1( G 8 R ' G ( 61 > '

(CHB-MIT)

( 3 d I

-]

16

[

( ( 8( .

( Q i 5( M> 5 ^ J1 /53 / ( A p

G 8 R ( g `1 Zg( / h+ W .,( I Y l GHi( / O1( . +(

5( -J `> 104

6 5( l ( 61 > O1( I / DF/

2 ( G 6 . (

N=120

N (D*/ JC

.+ /5 f ( ( JC ( 30

./ Gy + n Y' (=E .

12480 ( G+ y + M+ ' 8 ( ( v / Gy' ( yI 6

256 O E 5 O q D y 16

6 / .

J `> O1( 2 ( 2040

( G' 6 35

/ 16 Y' 5( %

( G+ + ( ( - J1 /53 / A GH ,

k

]

16

[

.

2 * 3 * - . / 1 H#$/

6 DF/ G ( ( l E , .H' f 5

+

. + ' 8 ( W/ G GI . DF/ 1 . + ' 8 / R +

. + ' 8 W/ SE b 1 U1 G' 22

30 ( D

6 K( / O q A ( (

]

17 18

[

6

-EEG

=6+ / H 8 U1 { ( 61 > I /

(BPF) 18

H 8

G2E / ./ Q( C ( 3 5( / R + . + ' 8

( . h / O1(

H 8 .,( f (=R * > < 5(

FIR 19

2 (

D ' * > U1 s C +( (=E . (

/( > h Y

t O 1 > dVg M+ ' 8 H 8 - 3

Hz 22 1 c

ω =

Hz

30

2

c

=

ω

M+ ' 8 .E N +( + O q

1 p

ω

1 p

ω

G G' ( ( S

0.5 30.1

' r WE D

K + + W/ 5 */ Y[1 ( N/

1

.

0

3

1

=

δ

=

δ

+ (

)g

5

.

0

2

=

δ

6 ( H 8 - Zl +

EEG

./ K 1=>

]

18

[

1 ( l G . ) Y0 .H' & g U

6 5( . 1 + -(

200 .8 L D1 + Y/ - + H 8 DF/ 6 U1 5( G+ +

./ DF/ . + ' 8 + _ O q ) Y0 Y N/ .

7 1 (

./ J1 + ( / R ./ GE N/ O1( G' ( 'c G _5t .

<5( > ./ K 1 O1( . 1=>

3 * ! I J! FH %

GNZf I 6

G+ + DF/ k GH ,

6 O q ( l W 13 8 G 5 + E A

./ .R`1 Q( C ( 6 O 8 R h+ (=E .

EEG

G

) 1( .8 L 13 8 U1 ( l

W.S.S.

(

20

€ 8 O q

O 6+ /

U1 R ( )

M.E.

(

21

./ - / R 1 ( (

( / K G

T

)]

L

(

x

)...

1

(

x

)

0

(

x

[

x

=

- 8 R h+

* 1( G'

L

G+ + ( / ./ y 6

yh+ .

1 O 8 R / R

K G (

x

f

L

./ .R`1 (

. + Q( C ( 3 5( ( h+ /

) Y0 5 . / G Z + _ N/ ' ' k B C > 1 6E( _( R 1 u H :(

Fig. (5): Block diagram of proposed algorithm for epileptic seizure detection in the treatment-resistant pediatric patients.

(6)

) 28 ( 3 1 22

* > U1 O 8 R h+ K G

      − ψ a b n

d G' ψ (

/( > - / UI /

a

/3 J' S1 p 1 & N/ /( > (

O q

b

./ )1 .1 * I ( N/ ( 1 +

]

19

[

-f * >

./ D E / + ( 3 _ + G'

O 8 R h+ (=E . ,(

S1 p

a

1

6 UI / Y1 Z * > ' D E / + (

x

G

K ) GV ( 1 ) ( 2 ./ G ( : 13 R b , R a , a b n a 1 ), n ( x ) b , a ( x

w  ∈ ∈

     − ψ = +

ψ (1)

∞ + ∞ − ψ       τ − ψ τ =       − ψ = a a * ) ( x dn a b n a 1 ). n ( x ) b , a ( x

w (2)

Gl */ { ( O1( G'

            − ψ a b n a 1

( ( G1 > U1

x

. ZH z8

L2(R)

.

G > S1( p . + .6+ D8( G GI (=E

a b

O 8 R h+

G R 1 N/

m 0 0

a

b

b

=

α

* > d K G

) b n a ( a 0 m 0 2 m

0 ψ −α

− −

3 Z+ G ( i Y1 Z ( N/

-) GV ( I / .Hi( s p 1

) ( 2 O1( . + ( i F (

./ ( D\ , - h+ / * > s C +( GH• / € 8 .

O1( ( G'

x

W/ . / ( m x / 1=> ] 20 [ -./ 1 m

G 2 3 G E ( / 1=> x / GZ / G

)1 . + ( ( H { G zg O1( ψ GhWE ν = t ./ D [ E )1 +( (D / t R ( 1 + ] 20 [ ( . ψ ( Lip − α

R 1 R (5( G

k>0

GH I ^ (

) n ( pν

GZ / 5(

m

G' G ( I

 dy

m = α

G G' f

α

ν < − ν

ψ(n) p (n) k n .21 O1(

x g 5( (D /

x / GI ( / UI / d 1=> .

/ ( G^ 2

+ ψ ‚ / G o / o Vi (

-–

.6

23

.1( / GI 5( 2 ( . 0 o N+ GZE B C I G')

ψ

./ GZ W/ /5 GW2 (

./ & N/

]

21

[

(=E .

T+ > o Vi & N/ /5 G N+ U1 1 . 0 o N+ O Z/

O1( i & ( O1( . 6 G N+

./ _5t .R`1 (

GNZf ( + Q( C ( (

]

19 20

[

U1 O 8 R h+ .

UI / .q ( 24 GZ / N=4 ) db4 -( G' 3 S1( p { ( ( : k 1 N 0 k k 1 N y ) y (

P

k

− = + −      

= (3) GH I { S1( p -S ' K Zl GV ( O1( G'

. (

/ ( O q ( + 2

N

./ G N+ .

/5

.f C/ J1 + _ + & N/

25

G' 4 D + + 2 /

) GV ( G GI - ( 3

: ( ( i ( a log 2 1 A log ) n ( x w

log2 a,b 22

     + α +

< ( 4)

3 G'

a=2-j 2 1

b ,

a

x

(

n

)

Aa

w

<

α+

./ ( N/ F .

j

./ + O / ( G N+ ƒ V ( (

]

21

[

) Y0 . 8 G+ + ( 5( (

6 UI / Y1 Z G N+

EEG

(5( G ( / R +

j=1024

./ J1 + . 3 * 1 * 1 * $K!C J! FH ! L

3 G' -UI / Y1 Z ) f /5 ( + N

G N+ _ + (

./ .0 \(5 / G G N+ O1(

-4 G 0 01 ( 1 L

./ ./ .6+ 1 L U1 dg( g . . 0 o N+ .

G+ + 1 15 K 2 ( ( - 1 K + + t ' K

]

22

[

O1( 5( . ( ( ( h+ / R /3 GZ W/ (

./ GZ W/ 1 L 15 (5( G _( R 5( h / O1( ( .

: ( 2 ( 15 GV ( MN r ) r ( P y k k =

= (5)

GV ( O1( G'

M N

G G N+ 5( JC € l f S

./ UI / Y1 Z ( N/ O q .

P(rk)

k g ,( (D /

.1 K

r

(5( G 1 L

k=0,1,2,…,L-1

5( M> . (

M1 / 15 _ G o / _( R GZ W/ 5( -UI / G N+

R b 5( / ( l G M15 ' . 1 _ ^ / O

_( R ./ 2 (

]

23

[

.

h+ h / O1( ( € 8 J > O 8 R

K G •

E{y}=0

O q

E{y2}=1

- M15 ' ( N/ K G

./ G 15 : 13

Kurt(y)=E{y4}-3E({y2})2 (6)

( GV ( O1( G' ( N/ O R .8 L F / _

Kurt (y)

R( G' ( .E , /( O1( . ( 2 (

Kurt (y)<0

6+3

y

15 .8 L F / . R

26

U ' 4> 1

27

R( (

Kurt (y)>0

6+3

y

8 .8 L F / . R

28

1 U ' [E

29 ( ] 23 24 [ . (=E 2 ( 5( Kurt(y) ./ ( (D / O R PDF

.I( C (

+ / .8 L F / U1 (5( G . + GZ W/ ( JC 5(

H

./ ( .2 f .> +3 (D / ( K G

: + GZ W/ 15 GV (

= =

=

i

i i).log P(H h )

h H ( P

An ( 7)

G'

hi

.E ,( ( N/

H

./ Y , .2 / .> +3 (D / O1( .

_( R 5( K G

15 K Zl G

(7)

) 29 (

Neg(y)=An(yGaussian)-An(y) (8)

G'

yGaussian

. R .8 L ( U1

yGaussian y

01 M+ 1 ( ' M1 / U1 ( (

]

24

[

GV ( 5( .Z1 N .

) 8 ./ ( i G' .2 / .> +3 . g( ( N/ 5( . C G (

G1 > t GZ / / U1 ./ M15 '

K Zl ( N/ O1( .

5( (

]

25

[

:

{ }

3 2 Kurt(y)2

48 1 y E 12

1 ) y (

ApNeg ≈ + ( 9)

Y0 ) 6 6 :(

EEG

( D1 + ( .H .8 L

Fig. (6): Original EEG signal with stochastic noise

Y0 ) 7 G+ + / R + :( 6 5( (

EEG

H 8

Fig. (7): The Gamma band of prototype filtered EEG signal

G'

y

./ G 8 R h+ ,( M+ 1 ( 2 O 6+ / F /

]

25

[

. (5( G - 1 + 6

EEG

( 5( 1 N/

ApNeg

I ( ( i G'

Y/ 4 .R`1 5( /3 G N+ UI / ./

./ ( 3 ( G _ 8 (

ApNeg=[w(0) w(1) w(2) w(3)]T

J1 +

. (

3 * 1 * 2 * I 0 M ! D% . 7H ,)! N %

PCA

G2E / Y HW 1 6E( 1 .H (

PCA

< GH I 5( ZI

( Y HW ./ /3

1 6E( .

PCA

O 6+ / ( (

-( ( ./ GZ W/ F / G

Y1 Z D' /

./ ./ GZ W/ ( ( M+ 1 ( ' M1 / M[ . + .

O1( 5( -GH, / 1 N/ 1 ( `1 M+ 1 ( ' M1 / ( `

./ GZ W/ „ D s C +( . +

… / `1 ( `1 ( N/ O1 ./ G 1 I / / z8 ( 6+ - 3

13

]

15

[

O .6 Z (D / G GI . 4

/ † 2 ( D/ ( G2E

5(

PCA

( (

-ApNeg

G 1 J ' ./ ( ( < O1( . 1

3 / ( ( . ( ( O1( / n †

G2E G Z + (

./ G Y , / / (DI( M[ . ( i / / + S

O1 ' ( ( (DI( S / -O 6+ / ( N/ 5( GH 8 O1 ./ X=, n +

]

15

[

(5( G 1 + (=E . U1 DF/ 6

./ Y,( / G' - GZ W/ /3 .R`1 G 3 5( (

GNZf ( / ( l 6

O1( / . + 2 (

) UI / G N+ /3 .R`1 ( .R`1 O1( -GE N/

SFWM

(

30

./ . / +

3 * 2 * " #$% O$' $ P ($) 1 ! %

5( Q C / .R`1 K ZH Y1 Z ) f

) T+(

HHT

(

31

(

./ ' (

SFWM

B C G /5 / .R`1 U1 ( l G

5( . + ) f *1( ( O1( . 8 R h+ k

HHT

5(

<

EMD

./ 2 ( .

Y0 ) 8 5 , UI / Y1 Z .0 \(5 / G N+ 5( . 1 + :( .& N/ /5

Fig. (8):The map of DWT in some levels in Time-Scale domain

Y0 ) 9 N J1 + :( N+

UI / Y1 Z .0 \(5 / G 4

JC

(8)

) 30 ( 3 * 2 * 1 * + ,$ $ P (Q % EMD 1 6E( EMD

6 G'

K G (

x

( J1 +

M+ ' 8 + + ( W/ Y/ G' . (c {1( d U1 G - +( ./ ( 0 -.H ( ( t ( l IMF G') G K ci(n)

(5( G

i=0,1,2,…,m

./ ( J1 + ( +

( N/ G O q

r(n)

( K Z W/ + / G' ./ G1D*

+

]

26

[

: ( ( i (=E

= + = m 1 i

i(n) r(n)

c ) n (

x (10)

( N/ G'

m

d ( ( O 6+ /

IMF

./ + / ( N/ .

r(n)

G2E / .H ( 6 Y1 5( . 6+ / N N, 3 . ,

./ d ( .

IMF

61 > Y' .R`1 o ( ( ( (

: . ( 1

/ '( ( 6 .Z +

DF/

/) 1D' / 6 2 5( Zl ( N/ (

( ( 1

. ,( U1 X4 i( }'( , 1 ( ( N/ 2

G+ + G' .1

/ 1 1D' / { .HW/

./ )1 ( 2 - +

] 26 27 [ . 3 * 2 * 2 * ,) R 7H ,)!

32

d ( Q( C ( I 6E b 1 6E( U1

IMF

„ ZHR ( (

.1t

( )

u

E n

. 1 > „ ZHR .HW/ 1D' / {

( )

l

E n

/ R + 6 .HW/ / {

x

./ *1( +

]

26

[

.

„ ZHR 1 N/ O 6+ / M[ _ + . 1 > .1t

m1(n)

: ( i GZ W/ 2 ) n ( E ) n ( E ) n (

m u l

1

+

= (11)

: ( ( i .H ( 6 5( ( N/ O1( X=, M[ ) n ( m ) n ( x ) n (

h1 = − 1 (12)

G'

h1

{1(

IMF

./ p ( ( ( 0 . 1 +

k

/53 5( GZ /

: ( ( i 1 + GZ W/

c1(n)=h1k(n)-m1(k-1)(n) (13)

+ / ( N/ G' K G

) n ( c ) n ( x ) n (

r1 = − 1

GZ W/

./ + / 1 N/ 1 6E( ( 0 (=E .

r1,r2,…,rk

K G d (

( 01

33

5( M> 1 6E( ( 0 1 + .

k

) GV ( -GZ / 13

(

G+ + UI / Y1 Z 5( . C ( l G G1D* 5( (

EMD

G

/3 ( i

] 27 [ . 3 * 2 * 4 * I HSA 34

$#8! # /

d ( GZ W/ 5( M>

IMF

d ( 5( ( DF/ 6 (5( G

-IMF

K G : ] T ) L ( IMF )... 1 ( IMF ) 0 ( IMF [ ) k (

IMF = (14)

./ G'

-L

./ .H ( 6 f ( N/

k

( 0 (

d ( ( O q

IMF

./ BC / ( GV ( 5( 2 ( . 1 +

ZH Y1 Z d ( _ (5( G G' K

./ GZ W/ . (c ( i ( ] 28 [ :

= π∫ = L 1 j dk ) k ( IMF 2 i j H(k) a (n)e

IMF (15)

dk k k ) k ( IMF / V . P 1 )) k ( IMF (

HT

H

+∞

− − ′

π

= (16)

G'

P.V

O ^ GZ W/ O ( . ' GV ( .H ( S1( p ( N/ ./ .E( 6 +( L i( G G'

CPV 35 / + ./ + ] 28 [ . M[

Y1 Z ) f S1( p 5( . 1 / -K ZH Y1 Z ) f GZ W/ S ' . ( ( i K ZH

EMD

) K ZH Y1 Z ) f

HSA

(

Y HW Y1 Z v ,4V ( ( K ZH

./ T+( / +

]

29

[

.

Q( C (

))

k

(

IMF

(

HT

Q( C ( G + DF/ 6 5(

GNZf I 3 5( S / .R`1 . ( k B C

) f S1( p {H C/ / G GI

))

k

(

IMF

(

HT

5( +( ( N/

)Y0 10 H ) f C1 3 J1 + :( Z

K – 6 5( T+(

EEG

Fig. (10): The water-fall plotting for Hilbert-Huang spectral of EEG signals

3 xHV/ / 1D' / O . Hg( GH 8 GZ W/ 3 ./ G 5( +( J1 + 5( G+ + U1 . 13

))

k

(

IMF

(

HT

G K ) Y0 9 C1 3 J1 + U1 G' (

36

(5( G 10 ( 0

GZ W/

IMF

./ C1 3 J1 + . ( /3 G

( N N, h+ / ( +

K G ( (D*/

3 /D J1 + 5( R HI ./ 2 ( G1 Y0 G

(=E .

./ G 8 1 3 G GH, / O1( G' 1 I .R`1 l U1

(=E . ( ) f 5( m i GVN+ O GH 8 ( l G .N N,

5( +( GZ W/

2 )) k ( IMF ( HT

K L C/ U1 € 8 3

D + xHV/ / '( o N+ -) f ( K G

./ 15 : +

(

HT(IMF(k))

)

(x ,y,z )

Max 1 1 1

2

(9)

) 31 (

(

HT(IMF(k))

)

(x ,y ,z )

Min 2 2 2

2

= (18) . Hg( GH 8 (=E 3

xHV/ / 1D' / o N+ O G

K / GZ W/ 15 .

:

) 19 (

2 2 1 2 2 1 2 2

1 x ) (y y ) (z z )

x ( ) Max , Min (

d = − + − + −

GNZf ( G' 1 I .R`1 O1( -GE N/ O1( 6

DF/

) .2 f GH 8 .R`1 8 R ( i ( g 2 ( /

DSF

(

37

/ +

./ .

4 * % H ! 7$T D C H

GNZf h / G 6

EEG

A ( ( &4' G

.R`1 5( -A

SFWM DSF

GE N/ O1( .8 /

./ 2 ( .R`1 O1( Q( C ( .

6 ./ 5(

GNZf 1 + - ( 61 > I / 6

5( 2 (

GNZf

K

U1 D+ ./ K G1 O1 . 1=>

4 * 1 * &) U FH ! # !

7H ,)! 0 PCA

N 5( M> -GE N/ O1( G\( ( 1 6E( G N+

Y1 Z

15 _( R -UI / .> +3 / GZ W/ 1 L

GZ W/ (D ( U1 ( l G .2 / d . R b (D /

( N/ ^ Y/ DF/ 6 (=E . ( 2 ( d15 5(

./ .2 / .> +3 ) f 5( .I( C ( .R`1 ^ X / G'

1 6E( 5( 2 ( . ( 6 UI /

PCA

( N/ ^ O1(

./ ( > 6+ 1 I / / z8 G ^ z8 O1( . '

`1 ( ^ -G1 > JN+ / /

./ 21( ( z8 '

]

15

[

N/ ^ . `1 (

( K g ‚ +( (D / D + … /

.R`1 6+ ) ( `1 ./ 1 I z8

. '

) Y0 11 G2E / ( N/ ( (5( G ( `1 1 N/ dg( 1 .H (

./ J1 + ( 61 > Y' .2 / .> +3 ( N/ ^ G _5t .

G' ( 'c

PC 1

- ( JC `1 ( N/ G o /

PC 2

G o /

-_ ^ JC `1 ( N/

PC 3

_ JC `1 ( N/ G o /

PC 4

.E D+ S G G' _ JC `1 ( N/ G o / D + ) Y0 11 ( J1 + ( . +(

./ `1 ( N/ G' + / ( Y1 Z G N+ 5( ( JC

/ 6 UI

EEG

G+ 6 1( (=E . ( ‚ +( ( N/ G ( (

./ ( 6 G'

( d A A ( (

. ' . R d15 ( ( i UI / Y1 Z .0 \(5 / G N+ 5( G2E / O1( I / ‚ +( (=E . X( W+( 1 5( J .H (

G2E / . ( - 3 … / `1 ( `1 ( N/ O1( s C +(

.R`1 ( g 6+ W ( JC 5( Q( C ( .2 / .> +3

G 8 R K G GNZf g 6+ .R`1 U1 /

./ ( g 2 ( . R

4 * 2 * ' KNN

< ./ ( ,( .E 6^ d O C G (

. /( > b O C /( > O C :5( Zl G' ( ( g l 1 6E(

KNN

d O /( > b O C < U1 ( l G

./ /( . ( .8 L 13 8 1 ( U1 ,( .E 6^ G 3 5( (

GNZf U1 ( l < . + 2 ( D +

KNN

U1 s C +(

/( >

K

GNZf 5( .Z1 N ( l G S / GW2 -O1D

.R`1 1( .R`1 ( D' / G ( ( t ( ' () .1

./ /53 ( 1 1 I G+ R G - 1 +

G' (

K

5( /

G+ + 1( Yi( .R`1 z8 I / + R ( g

]

30

[

.

&4' (

i

ω

.yR`1 ( O y (

x

GyV ( 5( 2 (

-: 15 . t ,(

n i i

K K ) x | (

P ω = (20)

) Y0 11 G2E / 1 N/ 5( S / J1 + :( 5( M> .H (

l(

PCA

..2 / .> +3 1 N/

Fig. (11): The sorted diagram for principle values after applying the PCA on the Negentropy values.

G'

Ki

G+ + ( &4'

i

_(

Kn

G+ + Y' ( I /

./ h+ / G , + GNZf Y l

-./ K => 1

]

30 31

[

.

Gl */ 5( 1 I G+ + ( ,( ( N/ O1( GZ W/ (=E ( ./ - /53 GNZf Y l (

Q( C ( 5( 2 (

6 ( G\( ( .R`1 6 A \4l ,

. ( _ *+( E 4 * 3 * ' H + ,$

%

GH• / GNZf ( . ( (

5( 2 (

KNN

s C +(

S /

K

./

]

31

[

G SI / G h / O1( ( . 5

( G' . '( G GI O q 1 6E( .01 D+ Y E G

.61 5( K 2 / 8 ( N/ ^ - + ( 61 01 G .R`1 1 N/ ( i( GNZf A1 +

3 5( 2 ( ./

(10)

) 32 (

) I 1 GNZf J1 /53 A1 + Y/ ( 6

DF/

./ GNZf W ( N/ & ( J1 /53 A1 + . (

( GNZf . ( / ^ O q J1 /53 ./

.

S G / O1( 6+

/ < 1=> ] W

(TP) 38

/

] W

(TN) 39

) + / < 1=>

-FP

(

40

+ /

(FN) 41

./ GNZf ( Y' W | + 5( 2 ( . (

. + .61 /( > ( g Vi . W / . ( i

4 * 3 * 1 * -?% H ! ! P> V $ 0 ,

GZ W/ Vi 5 SI / v R -Q 5 .61 /( > U1 s C +( GNZf K H l 1 6E( 5( 2 (

KNN

./ 5( 2 ( .

G1t U1 HI .ZLl G0Z U1 5( 2 ( O q - >

l g ( -„ Z+ E <5 /3 GNZf Vi G o /

I /

I ) 1 ./ <5( ( +

]

9

[

.ZLl G0Z <5 /3 5( M> .

) Y0 . W / 12

( Vi ( N/ 5( . + .E / ( l G (

.61 /( >

K

. /3 ( i G

( N/ n 5( u U1 h / G

K

W (D /

GNZf ./ -GH / ( + ( ) Y0 (

13 ) Y0 ( 17 ( ( GI

( G ) I I /

1 / G' V+ . + (

./ GNZf

-KNN

(5( G

K=5

GNZf O1 ( i

0H l W (D / 5379

/ 76 ./ + % G+ R G .

( G' (

.61 1 N/ 5( ' 1

5 0H l W ( N/

GNZf ./ J ' . 1

) Y0 12 . + . W / :( .61 /( > (5( G Vi

.)H C/

Fig. (12): Interpolated curve of error values for different neighborhood parameters.

) Y0 13 ( N/ :(

TP

)H C/ 1 N/ (5( G

K

.

Fig. (13): TP values for different K.

Y0 ) 14 ( N/ :(

TN

)H C/ 1 N/ (5( G

K

.

Fig. (14): TN values for different K

) Y0 15 ( N/ :(

FP

)H C/ 1 N/ (5( G

K

.

Fig. (15): FP values for different K.

(11)

) 33 (

Table (1): Performance of seizure and non-seizure signals classification.

) I 1 GNZf 0H l (D / :( 6

A A ( (

.

A0!0 D C % ' 0 L#? WV

KNN (%)

K TP

TN FP

FN . WV

. P>

A0!0 ?Q

1

3 11.0157 64.5207

17.5966 6.8670

75.5365 24.4635

A0!0 ?Q

2

5 11.0157 65.5222

17.5966 5.8655

76.5379 23.4621

A0!0 ?Q

3

7 9.8712 65.2361

18.7411 6.1516

75.1073 24.8927

A0!0 ?Q

4

9 9.1559 66.3805

19.4564 5.0072

75.5365 24.4635

A0!0 A , B H

A0!0 W -% ( Y'

( .l (

E G

Vi O 6+ /

+ ,$ 0! M %

12480 2040

10440 76.5379

24.3208

+ ,$ C %

6240 GN g 1020GN g

5220GN g

KG

Vi M+ 1 (

+ ,$ 0 %

100% 16.3%

83.7% 5

0.3685

) Y0 16 ( N/ :(

FN

)H C/ 1 N/ (5( G

K

.

Fig. (16): FN values for different K.

) Y0 17 G Y' W ( N/ :( )H C/ 1 N/ (5(

K

A B C G

1 6E( GH

KNN

.

Fig. (17): Total accuracy for different K in seizure detection by KNN algorithm.

4 * 3 * 2 * 3! 0

9 $#-42

.61 /( > ( /3 G A1 + G GI

K

/

-./ (5( G G'

5

K =

GNZf A1 + O1 6

./ G DF/ -GE N/ O1( G\( ( .R`1 I . 13

( l G .R`1 O1( . ( z8 U1 -.R`1 z8 G2E / .R`1 GW2 ) K L C/ GW2 l .N8( ( (

6 ./ W/

./ GZ +

]

30

[

O1( G' ( 'c G _5t .

J `> 70 ( % GNZf <5 /3 (

30 3 % h / G

. ( G 8 R h+ /53 Q 5

.R`1 X / 5( &4' U1

6

EEG

) Y0 I / T+ D/ g o N+ . ( 18

Q 5 -(

.R`1 ( GZ W/ 30

5( G+ + 6

EEG

.

GH 8 . Hg( G GW2 I / o N+ .R`1 o N+ ./ (5(

.R`1 ./ GZ W/ .61 /( > O 8 R h+ .

5

) GV ( I / ,( GZ W/ 20

.R`1 GW2 -( Y0 x V/

) 18 G , + ( ./

_( R 1 v ,4V ( ( Y0 O1( . .1 +

./ O H 1 R

]

30 31

[

6 &4' . A ( (

6 61 01 5( ' i T+ 5( 2 ( D + A

./ / . ( ( I G , + L 5 / G'

G / (

D/ g o Vi Y0

) 18 ( ./ .R`1 GW2 G

3

N G , + / , . (

1 I 6 U1

.R`1 Q( C ( ./ - 3 5( G\( (

O1( G' + . (

.R`1 G , + G^ ./ ( g (

L (=E . + R 1 I ( R

. ( _ *+( Y g .+ 3 G 6 U1 A I _ l

5 * Q$H ZV $

D E +3 6

EEG

B C /3 ' (D ( U1 ( l G

GI . ( .l A G

+ . + ' 8 I / 1

(12)

) 34 (

GH , M+ ' 8 > u 3 8 O q ./ -A

1 (

<5( > ( ( / R DF/ G /5 h+ /

A B C

( C ( . +( S / .R`1 Q

+ G' .1 GZ I _

6 O1( (=E . ( ( D\ , - J1 /53 /

J `> <4 ( .R`1 Q( C ( K 2

.H' 5( 8

6 .0 ( .0 / 1 G GI .8 f 5( . J > (

B C 1 6E( ' J > G /5 G\( ( A

. -.

.R`1 ( . Z W/ GZ / t .0 H' <5 ( .1

O 1 > G\( ( + . ( O1( h / 5( .R`1 /3 .R`1 .1

Y1 Z . Z/ /5

2 ( M+ ' 8 (

. G\( ( G N+

DF/ 1 ( UI / Y1 Z ./ / R

( .Z / / +(

6 I / O 0 o N+ J1 +

EEG

N .

.R`1 Q( C ( 5( /3

PDF

15 UI / G N+ 5( 1 L

./ i( O 0 o N+ d15 G /5 ( 2/ K l4f( . (=R

) Y0 18 .1 + _( R 1 :( –

H ( O 30 6 5( G+ + . DF/

Fig. (18): Voronoi-Tessellation diagram for 30 sample of EEG signals

< 5( 2 (

PCA

s C +( .R`1 /3 ‚ +( ./

+(

1 6E( 5( 2 ( . J1(D8( ( B C | + W

EMD

K ZH .2 f D E +3

. * < U1 ( l G T+3

./ -Y1 Z . Z/ GZ I +(

d ( . + ' 8 8 5( 61 (

+5 G\( ( (=E . / R 6 .R`1

SFWM DSF

6 5( Y/ ' .2 ( <4 -GE N/ O1( ( (

. .8 / E A Q( C ( 5( M>

.R`1 GNZf (

-( G\( ( J1 /53 GNZf U1

B C ( 1 <5 /3

G+ + GNZf 1 6E( 5( 1 I

K

U1 D+ G1 O1

GNZf 5( .Z1 N ( l G < O1( . ( 2 ( G O1D

f ( 2 ( H g - W/ .61 /( > U1 (5( GNZ

( ./ ( ( ( 5( +( 5( J .R q > '( .1 ^ .

.R`1 U 02 5( GE N/ O1( I / ( i .Z / 1=>

> .E -< O1( O 1 > . Z W/ G 1D 3 5

./ G I q ( 3 5( 2 ( s C +( . (=E . 1 +

G -S / .61 /( > GNZf O1

| + O1

./ G A ( ( 6 B C W 6+ U1 . 13

./ .H' .R`1 Q( C ( G' + ( G+ 6 1( ( 5( /3

5( ( 2/ K l4f( - / R . + ' 8 + Y1 Z . Z/ 6E( 6 8

EEG

GH , _ 6 ./ + A

O1( .

.R`1 GNZf 5( 2 ( /3

KNN

M+ 1 ( W

./ B C ( .l A .E Zg Y g Vi .

:W

1- Electroencephalogram 2- Epoch

3- Kurtosis 4- NegEntropy

5- Principle Component Analysis 6- Empirical Mode Decomposition 7- Intrinsic Mode Function 8- K-Nearest Neighbor 9- Seizure

10- Epilepsy

11- Evoke Related Potential 12- Generalizability 13- Offline 14- Online 15- Residue

16- Electrocardiogram 17- Electrooculogram 18- Band Pass Filter 19- Finite Impulse Response 20- Wide Sense Stationary 21- Mean - Ergodic

22- Map of Wavelet Transform 23- Modulus-Maximas 24- Daubechies 25- Cone of Influence 26- Sub-Gaussian 27- Platykurtic 28- Super-Gaussian 29- Leptokurtic

30- Statistical Feature of Wavelet Map 31- Hilbert – Huang Transform 32- Sifting Process

33- Monotonic

34- Hilbert Spectral Analysis 35- Cauchy Principal Value 36- Water-Fall

37- Distance Spectral Feature 38- True Positive

39- True Negative 40- False Positive 41- False Negative

(13)

) 35 ( References

[1] S. Nasehi, H. Pourghassem, “Seizure detection algorithms based on analysis of EEG and ECG signals: A survey”, Neurophysiology, Vol. 44, No. 2, pp. 174-186, June 2012.

[2] S. Nasehi, H. Pourghassem, “Epileptic seizure onset detection algorithm using dynamic cascade feed-forward neural networks”, International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), China, pp.196-199, Dec. 2011.

[3] M. Behnam, H. Pourghassem, “Epilepsy detection based on optimization of fused Hartley transform feature with hybrid model of MLP and GA using Memetic learning strategy”, Tabriz Journal of Electrical Engineering, Vol. 45, No. 4, pp. 51-67, Winter 2015 (In Persian).

[4] S. Nasehi, H. Pourghassem, “Real-time seizure detection based on EEG and ECG fused features using Gabor functions”, International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), China, pp. 204-207, Dec. 2011.

[5] S. Nasehi, H. Pourghassem, “A novel fast epileptic seizure onset detection algorithm using general tensor discriminant analysis”, Journal of Clinical Neurophysiology, Vol. 30, No. 4, pp. 362-370, Aug. 2013.

[6] S. Nasehi, H. Pourghassem, “A new feature dimensionally reduction approach based on general tensor discriminant analysis in EEG signal classification”, International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), China, pp. 188-191, Dec. 2011.

[7] A. Aarabi, R. Grebe, F. Wallois, “A multistage knowledge-based system for EEG seizure detection in newborn infants”, Clinical Neurophysiology, Vol. 118, No. 12, pp. 2781-2797, Dec. 2007.

[8] S. Nasehi, H. Pourghassem, “Automatic prediction of epileptic seizure using kernel fisher discriminant classifiers”, International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), China, pp. 200-203, Dec. 2011.

[9] E. Ubeyli, I. Guler, “Detection of electrocardiographic changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks”, Engineering Applications of Artificial Intelligence, Vol. 17, No. 6, pp. 567-576, Sep. 2004.

[10] N. Kannathal, M. Choo, U. Acharya, P. Sadasivan, “Entropies for detection of epilepsy in EEG”, Computer Methods and Programs in Biomedicine, Vol. 80, No. 3, pp. 187-194, Dec. 2005.

[11] Y. Lee, G.M. Yeon, Y.M. Kim, S.O. Nam, “Relationship between initial electroencephalographic characteristics and seizure outcomes in children with non-lesional West syndrome”, Epilepsy Research, Vol. 110, pp. 49-54, Feb. 2015.

[12] J. Gotman, “Automatic seizure detection: improvements and evaluation”, Electroencephalography and Clinical Neurophysiology, Vol. 76, No. 4, pp. 317-324, Oct. 1990.

[13] S.B. Wilson, M.L. Scheuer, C. Plummer, B. Young ,S. Pacia, “Seizure detection: correlation of human experts”, Clinical Neurophysiology, Vol. 114, No. 11, pp. 2156-2164, Nov. 2003.

[14] S.B. Wilson, M.L. Scheuer, R.G. Emerson, A.J. Gabor, “Seizure detection: evaluation of the Reveal algorithm,” Clinical Neurophysiology, Vol. 115, No. 10, pp. 2280-2291, Oct. 2004.

[15] S. Nasehi, H. Pourghassem, “Patient-specific epileptic seizure onset detection algorithm based on spectral features and IPSONN classifier”, International Conference on Communication Systems and Network Technologies (CSNT), pp. 186-190, April 2013.

[16] EEG Database, http://www.physionet.org/pn6/chbmit.

[17] M. Behnam, H. Pourghassem, “Periodogram pattern feature-based seizure detection algorithm using optimized hybrid model of MLP and Ant colony”, Iranian Conference on Electrical Engineering (ICEE 2015), Tehran, Iran, pp. 32-37, May 2015.

[18] O. Faust, U.R. Acharya, H. Adeli, A. Adeli, “Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis”, Seizure, Vol. 26, pp. 56-64, Mar. 2015.

[19] S. Nasehi, H. Pourghassem, “An optimal EEG-based emotion recognition algorithm using Gabor features”, WSEAS TRANSACTIONS on SIGNAL PROCESSING, Vol. 8, No. 3, pp. 87-99, July 2012.

[20] S. Momeni, H. Pourghassem, “An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using Curvelet transform and content selection strategy”, Journal of Medical Systems, Vol. 38, No. 8, pp. 1-16, Aug. 2014.

[21] S. Nasehi, H. Pourghassem, “A novel effective feature selection algorithm based on S-PCA and wavelet transform features in EEG signal”, IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp.114-117, May 2011.

[22] A. Samadi, H. Pourghassem, “Children detection algorithm based on statistical models and LDA in human face images”, International Conference on Communication Systems and Network Technologies (CSNT 2013), pp. 206-209, Gwalior, India, 6-8 April 2013.

(14)

) 36 (

[24] M. Hashemian, H. Pourghassem, “Diagnosing autism spectrum disorders based on EEG analysis: A Survey”, Neurophysiology, Vol. 46, No. 2, pp. 183-195, April 2014.

[25] S. Nasehi, H. Pourghassem, “Online mental task classification based on DWT-PCA features and probabilistic neural network”, International Journal of Imaging and Robotics, Vol. 7, No. 1, pp. 110-118, Jan. 2012.

[26] X. Guanlei, W. Xiaotong, X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures”, Pattern Recognition,Vol. 42, No. 5, pp. 718-734, May 2009.

[27] Ch.C. Peter, Ch. Fan, N. Huang, “Derivative-optimized empirical mode decomposition for the Hilbert–Huang Transform”, Journal of Computational and Applied Mathematics, Vol. 259, No. 1, pp. 57-64, Mar. 2014.

[28] J. Yan, L. Lu, “Improved Hilbert–Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis”, Signal Processing, Vol. 98, pp. 74-87, May 2014.

[29] S. Carbajo, Esther, R.S. Carbajo, C. Mc Goldrick, B. Basu, “ASDAH: An automated structural change detection algorithm based on the Hilbert–Huang transform”, Mechanical Systems and Signal Processing, Vol. 47, No. 1, pp. 78-93, Aug. 2014.

[30] P. Ghaderyan, A. Abbasi, M.H. Sedaaghi, “An efficient seizure prediction method using KNN-based under sampling and linear frequency measures”, Journal of neuroscience methods, Vol. 232, pp. 134-142, July 2014. [31] I. Saini, D. Singh, A. Khosla, “QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on

Referências

Documentos relacionados

The amplitude of this strain signal contributed to fatigue damage for the coil spring based on the editing process using the Wavelet Transform analysis... analysis was conducted

As relações contratuais de trabalho podem ser objeto de livre estipulação das partes interessadas em tudo quanto não contravenha às disposições de proteção ao

This paper presents a new idea to characterize signals of healthy and pathological voice based on two mathematical tools widely known in the literature, Wavelet Transform (WT)

Table 4.7: List of previous works on driver drowsiness detection using machine learning approach and just EEG

This technique employs Discrete Wave Transform (DWT) method for pre-processing, Approximate Entropy (ApEn) to extract features and Artificial Neural Network (ANN) for

Este Plano de Negócio (PN) tem como finalidade apresentar e fundamentar uma estratégia viável para a criação de uma empresa, a B.U.Science, que procura promover a Saúde

In this paper a new approach for block feature based image fusion is implemented using multi wavelet transform. and neural networks and a qualitative analysis has been done for

In this study, Minimum Nose Fraction (MNF), a specialized Band ratio (BR) as well as a developed method based on the integration of Spectral Angle Mapper (SAM) and Feature Level