• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número4"

Copied!
5
0
0

Texto

(1)

Nonommutative Field Theory

M. Gomes

InstitutodeFsiadaUniversidadede S~aoPaulo

CaixaPostal 66318,05315-970, S~aoPaulo,SP,Brazil

Reeivedon9Marh,2002

Nonommutativeeldtheories presentmany surprisingproperties. Asaonsequene ofthe

non-ommutativity,highmomentummodesdonotdeouplefromthephysisatlargedistanesleading

to theappearaneofinfraredsingularities evenintheorieswithoutmasslesspartiles. Being

non-integrable,theseinfraredsingularities destroy theusualperturbativeexpansions. We disusstalk

alternativeproeduresto,weexamineontrol thissituation. Inthelow momentumregimeof the

Wess-Zuminomodeltheeetoftheunderlyingnonloalityonthenonrelativistipotentialwillbe

examinedandsomephysialimpliations.

Itisarelativelyoldquestionifthereexistsornota

minimumlengthbeyondwhih nostrit loalizationis

possible. Inthe aseofapositiveanswer,interations

would have to be smeared over the minimum length,

possibly eliminating the ultraviolet divergenes of the

perturbativeseries. Suh an idea was put forward in

the forties of the last entury [1℄ but never ahieved

popularity,mainlybeauseofthesuessofthe

renor-malizationprogramforQED.Morereently,ithasbeen

arguedthatforverysmalldistanes,distanesofthe

or-derofthePlank'slength(10 33

m),themeasurement

ofoordinatesismeaninglessdueto theappearaneof

stronggravitationaleldswhihwillpreventeverything

to transmit information [2℄. Aording to the

Heisen-bergunertaintyrelations,apreisemeasurementof a

oordinate leads to a very high indeterminay in the

momentum. Inthisproess, therefore,agreat amount

of energy is transmitted to the observed system and

the orrespondingenergy-momentum tensorgenerates

a strong gravitational eld, as predited by the

Ein-stein'sequation. Themorepreisethemeasurementof

theoordinatesthebiggerwillbethegravitational

om-ingfromthereferredmeasurement. Wheneverthiseld

is sostrongasto prevent light orother signsto ome

out from the region under observation no operational

meaninganbegiventotheideaofstritloalization.

From a quantum mehanial point of view, the

aboveanalysissuggestthevalidityofthefollowing

po-sitionunertaintyrelations

q

q

j

j (1)

where

isanantisymmetrimatrixwhoseelements

areoftheorderofthesquareoftheminimumlength.In

fat,bypostulating(1)itfollowsthat,ifoneoordinate

theremainingones.

The possibility unveiled by (1) is a diret

onse-quene of

[q

;q

℄=i

; (2)

so that lassialeldsbeomenonommutative

opera-torsafterthequantizationpresribedin(2).

Nonommutative quantum eld theories have also

arised in the ontext of string theory as it has been

shownthatthedynamis ofaD-braneinthepresene

of an antisymmetrield an bedesribed, in ertain

limits,intermsofagaugetheorydeformedbyaMoyal

produt[3℄;thisprodutisaharateristiofthe

non-ommutativity. Inthis meeting,the stringsaspetsof

nonommutativespaehavebeendisussedintheProf.

Matsuotalk. Here,Ionlywouldliketoremarkthatthe

disoveryof nonommutativeeld theory asaertain

limit of stringtheory raisedthe hopes that this limit

should leadto aonsistenttheory(see[4,5℄forreent

reviews). I will disussthisaspetandwill stressthat

thisisI highlynontrivialpoint.

LeavingasidequestionsposedbythelossofLorentz

invariane, a rst observation is that a violation of

ausalityand unitarityours when the

nonommuta-tivityinvolvesthetimeoordinate[6,7℄.

Thenextobservationonernstheentanglementof

sales: smalldistanesinonediretionimplylarge

dis-tanes in the other, asfollows from (1). Usually, the

ultravioletbehaviorofaeldtheoryisunrelatedtothe

infrared one. Thus, in massive 4

there are quadrati

andlogarithmiultravioletdivergenesoexistingwith

infrared niteness. In the nonommutative ase

mat-ters aremoresubtle. Thesimplest examplewhere the

(2)

o-nonommutativeamplitudeisgivenby

Z

d 4

k os(k

p

)

k 2

m 2

: (3)

The appearane of trigonometri fators is a

hall-markof thenonommutativesituation. Itprovidesan

osillatingfator whih eetivelydamps the

ultravio-letbehavior. Theintegralturnsouttobenitebut,in

awaydierentfrom theusual situation,itdepends on

the externalmomentum. If this momentum were zero

(or ifwerezero)theintegralwould bequadratially

divergent. We arethus led to the onlusion that for

smallptheintegralshould behaveas

1

p 2

2

: (4)

When multiple insertionsof this graphare made into

a largediagram theygenerate non integrableinfrared

singularities. This feature produesthe breakdownof

theperturbativeshemein manyoftherenormalizable

theories. Weshallreturnto thispointlateron.

We now proeed to desribe some of the steps to

befollowedto build somesimpleeldtheories in

non-ommutative spae. First of all, eld operators may

beonstrutedviathesoalledWeyl-Moyal

orrespon-dene. Tothisendweintroduetheoperator

T(k)=e ik

q

; (5)

whihobeystherules[8℄:

1. T y

(k)=T( k)ifq

y

=q

.

2. T(k)T(k 0

) = T(k +k 0

)e i

2 k

k

0

whih

fol-lows immediately after the appliation of the Baker{

Hausdorfformula

e A

e B

=e A+B

e 1

2 [A;B℄

; (6)

for[A; B℄=number.

3. TrT(k)=(2) n

Q

Æ(k

)

The operatorsT(k)will be assumed to form a

ba-sisinthespaeoftheeld operatorsinanalogousway

as e ik x

form a basis for squared integrable funtions

onthe ordinary spae. More preisely, to every

suÆ-ient smooth lassial funtion (x) we assoiate the

eld operator (fornotationalsimpliity dx d n

x and

dkd n

k)

= 1

(2) n

Z

dxdkT(k)e ikx

(x); (7)

or

= Z

dk

(2) n

T(k) ~

(k); (8)

intermsoftheFouriertransform ~

(k)of(x),

~

(k)= Z

dxe ik x

(x): (9)

Wemayverifythat

(x)= Z

dk

(2) n

e ik x

Tr[T y

(k)℄: (10)

Thisformula relatesin adenitewayalassial

fun-tion(x) to agivenoperator (q). It anbe used to

onstrutthe so alled Moyalprodut of the lassial

funtions

1 and

2

, orresponding to the produt of

theoperators

1 and

2

whihareassoiatedtothem:

1 (x)

2 (x)=

Z

dk

(2) n

e ik x

Tr[

1

2 T

y

(k)℄: (11)

TheMoyalprodutisahighlynonloalfuntion

involv-inganarbitrarynumberofderivatives. Infat,fromthe

denition(11)it ispossibletoshowthat

1 (x)

2

(x)= lim

y!x e

i

2

y

x

1 (y)

2 (x)=

1 (x)

2 (x)+

i

2

(

1 (x))(

2

(x))+:::; (12)

whih, due to the antisymmetry of

, diers from the ordinary pointwise produt just by a total derivative.

The same does not happen for the Moyal produt of three or more elds. Employing the simplied notation

k

i ^k

j

1

2 k

i k

j

,onends

Z

dx

1 (x)

2 (x)

3 (x)=

Z

dk

1

(2) n

dk

2

(2) n

dk

3

(2) n

(2) n

Æ(k

1 +k

2 +k

3 )e

ik

1 ^k

2

~

1 (k

1 )

~

2 (k

2 )

~

3 (k

3

) (13)

and, moregenerally,[8℄

Z

dx

1 (x)?

2

(x)?:::?

N (x)=

Z

Y

dk

i

(2) n

(2) n

Æ(k

1 +k

2

+:::+k

N )

~

1 (k

1 )

~

2 (k

2 ):::

~

N (k

N

)exp( i X

i<j k

i ^k

j );

(3)

As seen from the above expressions, the Feynman

rules foranonommutative eld theoryare similar to

theonesintheommutativease,unlessbyosillating

trigonometrifatorsattheverties. Atually,aspeial

onsiderationisneededin theaseofgaugesymmetry:

duetothenonommutativity,evenintheU(1)aseone

should startwith anonabelianexpressionfor theeld

strengthandthenreplaetheordinaryprodutbythe

Moyalone[9,10,11℄.

The presene of the osillating fators at the

ver-tiesregularizesomeoftheultravioletdivergenesbut

produe infrared divergenes. In suh situation, we

may envisage two proedures to go ahead:

resumma-tionandextension ofthemodel. Inthe rstapproah

thefree propagatorismodiedbyinorporatingsome

part of the interation to ameliorate the infrared

be-havior [12, 13℄. This modiationleads to dispersion

relations dierent from the usual ones and has some

interestingphysialimpliationsingaugetheories[14℄.

However,thereisatroublesomeaspetofthismethod,

namely, theabsene of alearly identiable

perturba-tive parameter. A seond possibility whih does not

havethis drawbakonsistsin the additionof new

in-terationsinsuhwayimprovetheultraviolet/infrared

behaviorofthe amplitudes. Inthis respet

supersym-metri theories appear as natural andidates.

Atu-ally,ithasbeenprovedthatthenonommutative

Wess-Zuminomodelandthe2+1dimensionalnonlinear

non-ommutativesigmamodel arefreefrom thedangerous

IR/UVmixing [15,16℄.

Besides the renormalization problems ommented

before one is naturally also interested in unovering

the physial ontent of a given nonommutative eld

theory. Here, one nds unusual and perhaps

sur-prising aspets. For example, ontrarily to its

om-mutative ounterpart, nonommutative QED exhibits

asymptoti freedom. Also, the realization of

sponta-neoussymmetrybreakdownaneessaryingredientofa

nonommutative\standard"modelseemstodependon

thenatureoftheunderlyinginteration. Forthelinear

sigma model, it has been demonstrated that, at least

uptooneloop,spontaneousbreakdownmayourfor

the U(N) but not for the O(N) symmetry if N > 2

[17℄.

Followingthethreaddelineatedabove,Iwouldlike

topresentsomereentresultsonthelowenergylimitof

the nonommutative Wess-Zumino model [18℄.

Start-ing from fermion-fermion and boson-boson sattering

amplitudes, one may determine the equivalent

poten-tials whih xes the non-relativisti dynamis. They

arenonloal potentialwithpeuliarproperties.

TheLagrangiandesribingthemodelis[19℄

L =

1

2

A(

2

)A+ 1

2

B(

2

)B+ 1

2

(i6 m) + 1

2 F

2

+ 1

2 G

2

+mFA+mGB

+g(F?A?A F?B?B+G?A?B+G?B?A ? ?A ?i

5

?B): (15)

d

where A isasalareld, B is apseudo salareld,

is a Majorana spinor eld and F and G are,

respe-tively, salarand pseudosalarauxiliaryelds. Notie

that omposites bilinearin thebasields are dened

usingordinary,i. e.,notMoyalorderedproduts.

Consider thesattering of twoMajorana fermions.

Letusdesignatebyp

1 ;p

2 (p

0

1 ;p

0

2

)andby

1 ;

2 (

0

1 ;

0

2 )

thefourmomentaandz-spinomponentsofthe

inom-ing(outgoing) partiles,respetively. Wework in

en-terofmassframewherethekinematisbeomessimpler

andonehasthatp

1

=(!;~p),p

2

=(!; ~p),p 0

1

=(!;~p 0

),

p 0

2

=(!; p~ 0

),j ~p 0

j=j ~pj,and!=!( ~p)= p

~ p 2

+m 2

.

Inthelowest order ofperturbation there arethree

ontributing amplitudes assoiated to the diret,

ex-hangeand\annihilation"hannels(beauseweare

us-ingMajoranaelds). Thetotalamplitudeis

R==(2) 4

Æ (4)

(p 0

1 +p

0

2 p

1 p

2 )(T

a +T

b +T

) (16)

wherein thenonrelativistilimitonends

T L

a =

1

(2) 4

g

m

2

Æ

0

1

1 Æ

0

2

2

1

2

os m

0j k

j

+ 1

2 os p

i

ij k

j

; (17)

T L

b =

1

4

g

2

Æ

0

1 2

Æ

0

2 1

1

os m

0j k

0j

+ 1

os p i

ij k

0j

(4)

T L = 1 3(2) 4 g m 2 Æ 0 1 1 Æ 0 2 2 os m 0j p j os m 0j p j k j Æ 0 1 2 Æ 0 2 1 os m 0j p j os m 0j p j k 0j ; (19) where k j p j p 0j (k 0j p j +p 0j

)denotes themomentumtransferred inthediret (exhange) satteringwhile

thesupersriptLsignalizesthattheaboveexpressionsonlyholdtrueforthelowenergyregime.

Conerningtheboson-bosonsattering, astraightforwardalulationshowsthattheamplitudes orresponding

to thediret andexhangeproessesbeomenegligiblein thelowenergyregime,thetotalamplitudebeingjust

T L = T L = 1 6(2) 4 g m 2 os m 0j p j os m 0j p j k j +os m 0j p j k 0j : (20) d

Notiethatthemagneti partofthe

nonommuta-tivityparameter(

ij

)doesnotontributeinthe

non-relativistilimit.

Fromtheaboveexpressions,equivalent

nonrelativis-ti potentials may be determined as follows. Usually

these potentials are dened as the Fourier transform

(FT)withrespetto thetransferredmomentum ( ~

k)of

the sattering amplitudes. If the amplitudes depend

onlyon ~

ktheorresponding(FT)willbeloal

depend-ing only on therelativeoordinate~r. In ourase the

amplitudes depend notonly on ~

k but also onthe

ini-tialmomentum ~pofthe satteredpartile. Beauseof

the nonommutativityof momentum and position

op-erators, the onstrution of the potentials from these

FTmaybeaitedbyorderingambiguities. Wesolve

theseambiguitiesbyrequiringhermitiityofthe

result-ing expression. After that we hek that the resultis

an eetive potential in the sense that its momentum

spae matrixelementsorretlyreproduesthe

ampli-tudesthatwehadabinitio. Proeedinginthisway,we

areledto introdue

Æ 0 1 1 Æ 0 2 2 M F ( ~

k;~p) T L

a (

~

k;~p)+ T L

;dir (

~

k;~p) (21)

and

M B

( ~

k;~p) T L ;dir ( ~

k;p)~ ; (22)

for the fermioni and bosoni sattering amplitudes.

TheFTtransformoftheamplitudesarethengivenby

V F;B

(~r;~p) = (2) 3 Z d 3 kM F;B ( ~

k;~p)e i

~

k~r

: (23)

where the subsript dir is used to indiate that only

the diret part of the amplitudes enter in the

al-ulation. The orresponding quantum operators are

obtained through the replaements ~r ! ~

R;~p ! ~ P, where ~ Rand ~

P aretheCartesianpositionand

momen-tum operators obeying, by assumption, the anonial

ommutation relations R j ;R l = P j ;P l

= 0 and

R j ;P l

=iÆ jl

. Wehave[18℄

^ V F ( ~ R ; ~

P) = g m 2 Z d 3 k (2) 3 e ik l R l e ik l lj P j +e ik l R l e ik l lj P j 2 3 g m 2 h Æ (3) ~

R+m ~ +Æ (3) ~ R m ~ i + 1 3 g m 2 h Æ (3) ~ R m ~ e 2im ~ ~ P + e 2im ~ ~ P Æ (3) ~ R m ~ i ; (24) and ^ V B ( ~ R ; ~ P) = 1 6 g m 2 h Æ (3) ~

(5)

where ~

f

0j

;j=1;2;3g. Notiethat themagneti

omponents

ij

onlyontributetotherstlineof(24).

Thisontributionisfreefromorderingambiguities

be-auseof

k l

R l

;k m

mj P

j

= ik l

k m

mj Æ

lj

= 0: (26)

Aslaimedbefore,ithasbeenhekedthat(24)and

(25)orretlyreproduesthesatteringamplitudeswe

hadbefore. Fromthoseformsof thepotentialswean

drawthefollowingonlusions:

1. In the ase of spae/spae nonommutativity

fermions may be pitured as rods oriented

perpendi-ular to the diretion of the inoming momentum. By

ontrast, in thisase, thebosonipartiles arenot

af-fetedbythenonommutativity.

2.Intheaseoftime/spaenonommutativityboth

fermionsandbosonsareaeted. Thenonloality

man-ifest through the fat that the sattering ours only

when the partiles are at a distane of the order of

mjj.

Novestigeofbreakingofunitaritywasfoundinspite

ofthepreseneofsatteredadvanedwaves. However,

this piturewillmostertainly breakdownwhenloop

ontributionsaretakenintoonsideration.

Aknowledgements

Thiswork waspartiallysupported byFunda~aode

AmparoaPesquisadoEstadodeS~aoPaulo(FAPESP)

and Conselho Naional de Desenvolvimento Ciento

eTenologio(CNPq).

Referenes

[1℄ H.Snyder,Phys.Rev.71,38(1947).

[2℄ S.Dopliher,K.Fredenhagen,andJ.E.Roberts,\The

QuantumStrutureof Spaetimeatthe Plank Sale

andQuantumFields",Commun.Math.Phys.172,187

(1995).

[3℄ N. Seiberg and E. Witten, \String theory and

non-ommutativegeometry,"JHEP9909,032(1999),

hep-th/9908142.

[4℄ M.R.DouglasandN.A.Nekrasov,\Nonommutative

Field Theory",Rev.Mod.Phys.73,977 (2001),

hep-th/0106048.

[5℄ R.J. Szabo,\QuantumField Theory on

Nonommu-tativeSpaes",hep-th/0109162.

[6℄ N.Seiberg, L.Susskind,andN. Toumbas,Spae-time

non-ommutativityandausality,hep-th/0005015.

[7℄ J. Gomis, T. Mehen, Spae-time NC eld theories

and unitarity, Nul. Phys. B591, 265 (2000),

hep-th/0005129.

[8℄ T.Filk, \Divergenes inaField Theory onQuantum

Spae",Phys.Lett.B376,53(1996).

[9℄ C.P.Martinand D.Sanhez-Ruiz,\Theone-loopUV

divergentstruture of U(1) Yang-Mills theory onNC

R 4

",Phys.Rev.Lett.83,476(1999),hep-th/9903077.

[10℄ M. Hayakawa, \Perturbative analysis on infrared

and ultraviolet aspets of NC QED on R 4

",

hep-th/9912167;\Perturbativeanalysisoninfraredaspets

of NC QED on R 4

", Phys. Lett. B478, 394 (2000),

hep-th/9912094.

[11℄ F.T.Brandt,A.Das,andJ.Frenkel,\General

Stru-ture of the Photon Selfenergy in Nonommutative

QED",hep-th/0112127.

[12℄ S.Minwalla,M.V.Raamsdonk,andN.Seiberg,

\Non-ommutativePerturbative Dynamis", JHEP02, 020

(2000),hep-th/9912072.

[13℄ L.GriguoloandM.Pietroni,\Wilsonian

Renormaliza-tionGroupandthe NonommutativeIR/UV

Conne-tion,JHEP0105,0322001,hep-th/0104217.

[14℄ G. Amelino-Camelia, L. Dopliher, Soon-keon Nam,

and Yun-Seok Seo, \Phenomenology of Partile

Pro-dutionand PropagationinStringMotivated

Canoni-alNonommutativeSpae-Time",hep-th/0109191.

[15℄ M.Gomes,\RenormalizationinNonommutativeField

Theory".In: XIJ.A. SwieaSummerShool-

Parti-lesandFields,CamposdeJordo,2001.

[16℄ A. A. Bihl, J. M. Grimstrup, H. Grosse, L. Popp,

M.Shweda,andR.Wulkenhaar,\TheSupereld

For-malismAppliedtotheNonommutativeWessZumino

Model",JHEP0010:046, 2000;hep-th/0007050.

[17℄ B. A. Campbell and K. Kaminsky,

\Nonommuta-tive FieldTheory andSpontaneous Symmetry

Break-ing", Nul. Phys. B581, 240(2000), hep-th/0003137;

\NonommutativeLinearSigmaModels",Nul.Phys.

B606, 613 (2001), hep-th/0102022; F. J. Petriello,

\The Higgs Mehanism in Nonommutative Gauge

Theories, Nul. Phys. B601, 169 (2001),

hep-th/0101109; F. Ruiz Ruiz, \UV/IR Mixing and the

Goldstone Theorem in Nonommutative Field

The-ory",hep-th/0202011.

[18℄ H.O.Girotti,M.Gomes,A.Yu.Petrov,V.O.Rivelles,

andA.J.daSilva,\TheLowEnergyLimitofthe

Non-ommutativeWess-ZuminoModel",hep-th/0101159.

[19℄ H. O. Girotti, M. Gomes, V. O. Rivelles, and A. J.

da Silva, \A Consistent Nonommutative Field

The-ory: theWess{ZuminoModel",Nul.Phys.B587,299

Referências

Documentos relacionados

lating blak hole entropy using string theory as refs.

results hold in the energy sale where hiral symmetry is broken and the Pion wavelength is muh.. bigger than the size of the system ( &gt;&gt;&gt;

data of SD stations are sent to the entral data aqui-. sition system (CDAS) by mean of wireless

and quantum gauge elds propagating in a lassial.. gravitational bakground, and the

Gravitation presented during the XXII Brazilian National Meeting on Partiles and Fields arei.

The mehanism for ion neutralization at metal surfaes via surfae plasmon exitation was previ-..

mark the surfae of the Si/SiO2 substrate for loalization of the isolated SWNTs by using a

plasma mehanisms for, the heating of the emission line regions, absorption of 21 m radiation,.. produing time variability on dierent time sales and pair prodution and annihilation