• Nenhum resultado encontrado

Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection.

N/A
N/A
Protected

Academic year: 2021

Share "Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection."

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Acta

Tropica

j ou rn a l h o m e pa g e: w w w . e l s e v i e r . c o m / l o c a t e/ a c t a t r o p i c a

Real-time

PCR

strategy

for

parasite

quantification

in

blood

and

tissue

samples

of

experimental

Trypanosoma

cruzi

infection

Sérgio

Caldas

c,d

,

Ivo

Santana

Caldas

c

,

Lívia

de

Figueiredo

Diniz

c

,

Wanderson

Geraldo

de

Lima

a,c

,

Riva

de

Paula

Oliveira

b,c

,

Alzira

Batista

Cecílio

d

,

Isabela

Ribeiro

e

,

André

Talvani

a,c

,

Maria

Terezinha

Bahia

a,c,∗

aDepartamentodeCiênciasBiológicas,UniversidadeFederaldeOuroPreto,Campusuniversitário,MorrodoCruzeiro,OuroPreto,MinasGerais,Brazil

bDepartamentodeEvoluc¸ão,BiodiversidadeeMeioAmbiente,UniversidadeFederaldeOuroPreto,Campusuniversitário,MorrodoCruzeiro,OuroPreto,MinasGerais,Brazil cNúcleodePesquisasemCiênciasBiológicas,UniversidadeFederaldeOuroPreto,Campusuniversitário,MorrodoCruzeiro,OuroPreto,MinasGerais,Brazil

dFundac¸ãoEzequielDias,RuaCondePereiraCarneiro,80,Gameleira,BeloHorizonte,MinasGerais,Brazil eDrugsforNeglectedDiseaseInitiative,1202Geneve,Switzerland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28July2011

Receivedinrevisedform30April2012 Accepted8May2012

Available online 18 May 2012 Keywords: Trypanosomacruzi Real-timePCR Experimentalmodel Inflammation Chemotherapy

a

b

s

t

r

a

c

t

Thelackofanaccuratediagnosishasbeenaseriousobstacletotheadvancementoftheanti-Trypanosoma cruzichemotherapyandlong-terminfectioncanresultindifferenthealthriskstohuman.PCRsare alter-nativemethods,moresensitivethanconventionalparasitologicaltechniques,whichduetotheirlow sensitivitiesareconsideredunsuitableforthesepurposes.Theaimofthisstudywastoinvestigatea sensitivediagnosticstrategytoquantifybloodandcardiactissuesparasitesbasedonreal-timePCRtools duringacuteandchronicphasesofmurineChagasdisease,aswellastomonitortheevolutionof infec-tioninthosemiceunderspecifictreatment.Inparallel,freshbloodexamination,immunologicalanalysis andquantificationofcardiacinflammationwerealsoperformedtoconfrontandimprovereal-timePCR data.Similarprofilesofparasitemiacurveswereobservedinbothquantificationtechniquesduringthe acutephaseoftheinfection.Incontrast,parasitescouldbequantifiedonlybyreal-timePCRat60and 120daysofinfection.Incardiactissue,real-timePCRdetectedT.cruziDNAin100%ofinfectedmice, andusingthistoolasignificantPearsoncorrelationbetweenparasiteloadinperipheralbloodandin cardiactissueduringacuteandchronicphaseswasobserved.LevelsofserumCCL2,CCL5andnitricoxide werecoincidentwithparasiteloadbutfocalanddiffusemononuclearinfiltrateswasobserved,evenwith significant(p<0.05)reductionofparasitismafter60daysofinfection.Later,thismethodologywasused tomonitortheevolutionofinfectioninanimalstreatedwithitraconazole(Itz).Itz-treatmentinduceda reductionofparasiteloadinbothbloodandcardiacmuscleatthetreatmentperiod,butaftertheendof chemotherapyanincreaseofparasitismwasdetected.Interestingly,inflammatorymediatorslevelsand heartinflammationintensityhadsimilarevolutiontotheparasiteload,inthegroupofanimalstreated. Takentogether,ourdatashowthatreal-timePCRstrategyusedwassuitableforstudiesofmurineT.cruzi infectionandmayproveusefulininvestigationsinvolvingexperimentalchemotherapyofthedisease andthebenefitsoftreatmentinrelationtoparasitismandinflammatoryresponse.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

TheAmericantrypanosomiasisorChagasdisease,discoveredin

1909byCarlosJustinianoRibeirodasChagas,isazoonosiscaused

Abbreviations: TNF-␣,tumornecrosisfactor-alpha;CCL5,regulatedupon acti-vation,normalTcellexpressedandsecreted;CCL2,monocytechemoattractant protein-1;NO,nitricoxide;FBE,freshbloodexamination;d.i.,daysofinfection; Itz,itraconazole.

∗ Correspondingauthorat:Laboratóriodedoenc¸adeChagas,DECBI/NUPEB, Uni-versidadeFederaldeOuroPreto,ICEB,CampusMorrodoCruzeiro,35400-000Ouro Preto,MG,Brazil.Tel.:+553135591690;fax:+553135591680.

E-mailaddress:mtbahia@nupeb.ufop.br(M.T.Bahia).

bytheprotozoanTrypanosomacruzi(Chagas,1909).Thiszoonosis

istypicalofLatinAmericaextendingtothesoutheasternofthe

UnitedStatesofAmerica.Significantadvanceshavetakenplacein

thecontrolofvectorialandtransfusionaltransmissionofthe

dis-easeinsomepartsoftheendemicarea,particularlybytheSouthern

Coneinitiative that ledtointerruption ofvector-to-human and

human-to-human propagationof the disease in Uruguay,Chile

andBrazilinrecentyears(Diasetal.,2002;Schofieldetal.,2006).

However,duetomigrationalmovementsofpeoplefromendemic

countries, Chagas disease has been reported in non-endemic

areaswhere thecongenitaltransmission,blood transfusionand

organ transplantplays an important role (Gascon et al., 2007).

Therefore,therearestillmanychallengestoachievefullcontrol

0001-706X/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.actatropica.2012.05.002

(2)

oreliminationofthedisease,mainlyduetotheunevenprogress

ofthevectorial/transfusional controlprogramsinotherpartsof

thecontinent,limitations ofdiagnosticmethods andsignificant

limitationsofcurrentchemotherapyavailable(Urbina,2010).

Chagasdiseasebegins withan acutephase characterizedby

thepresenceofparasitesinthebloodstreamanddifferenttissues

oftheinfectedindividual.Nonspecificsymptomsandmyocarditis

arecommonfeaturesduringtheearlystageoftheinfection(Dias,

1992).InfiltrationofTcellsandmacrophagesintothehearttissue

duringtheacutephaseoftheinfectionisessentialforcontrolling

theparasitereplication(Hardisonetal.,2006).Additionally,cardiac

parasitismwasapparentlyrelatedtotheincreasedexpressionof

cytokinesandchemokines(Villaltaetal.,1998;Talvanietal.,2000),

inwhichthechemokinescorrelatedintheuptakeandkillingofthe

intracellularparasitesbyinducingNOsynthaseactivation

enhanc-ingNOproductionbymacrophagesandcardiomyocytes(Villalta

etal.,1998;Teixeiraetal.,2002;TalvaniandTeixeira,2011).

Molecularassayshavebeenwidelyusedforthediagnosisand

monitoringofdiseaseprogressionandtherapyoutcomein

Cha-gasdisease(Moseretal.,1989;Junqueiraetal.,1996;Kirchhoff

etal.,1996;Marconetal.,2002).PCRsarealternativemethods,

moresensitivethanconventionalparasitologicaltechniques,such

ashemoculture, whichduetotheirlowsensitivitiesare

consid-eredunsuitable for these purposes (WHO, 2002). For instance,

nested-PCR(N-PCR)hasdemonstratedgreatersensitivitythan

con-ventionalPCRandithasbeendescribedasanextremelysensitive

methodforthediagnosisofChagasdisease(Marconetal.,2002).

However,thedisadvantageofthistechniqueisthetimerequired

fortheirachievementandthegreatriskoffalsepositivesresults

causedbycontaminatingamplicons(Pironetal.,2007).

In contrast, real-time PCR uses fluorescent dyes or probes

allowingthe continuousmonitoring of the reactionduring the

amplificationprocess, insteadof theamountoftarget

accumu-latedafterafixednumberofcycles.Thiscompletelyrevolutionizes

thewaytoapproach the quantificationof DNA and RNA.Once

thenucleicacidamplificationanddetectionstepsareperformed

inone tube,theriskof releasingamplifiednucleicacidstothe

environmentandcontaminationofsubsequentassaysisverylow

compared to therisk conferred by conventional PCR or N-PCR

(Cockerill,2003;BankowskiandAnderson,2004).Thus,the

com-binationofexcellentsensitivityandspecificity,lowcontamination

riskandgreaterspeedofworkhasmadethetechnologyof

real-timePCRahighlyapplicabletool,usefulformanypurposes,such

aslaboratorydiagnostics,geneexpressionanalysis,quantification

ofparasitesandmanyotherapplicationsinthefieldofresearch

(Duffyetal.,2009;deFreitasetal.,2011).Theaimofthisstudy

wastostandardizeanaccuratereal-timePCRstrategyfor

detec-tionandquantificationofT.cruziDNAinthebloodandheartof

infectedmiceduringtheacutephaseandchronicdisease

transi-tion,assessingthecorrelationbetweenbloodandtissueparasitism,

inflammatorymediatorsCCL2,CCL5,nitricoxideandthe

applica-bilityofthisapproachtomonitorthecourseofinfectionduringthe

treatmentofmice.

2. Materialsandmethods

2.1. Parasiteandinfection

TheVL-10strainofT.cruzi,DTUII(Morenoetal.,2010)whichis

resistanttobenznidazoletreatment(FilardiandBrener,1987)has

beenmaintainedcryopreservedinliquidnitrogenatLaboratoryof

Chagasdisease,UniversidadeFederaldeOuroPreto(UFOP),Brazil.

ThirtyfemaleSwissmice(age,3–4weeks;weight,18–22g)were

inoculatedingroupswith5× 103bloodstreamformsofT.cruziby

intraperitonealrouteinatotaloftwoindependentexperiments.

All procedures and experimental protocols were conducted in

accordance withtheCOBEA (Brazilian Schoolof Animal

Exper-imentation) guidelines for the use of animals in research and

approvedbytheEthics CommitteeinAnimalResearch atUFOP

(number2009/17).

2.2. Bloodandtissueparasitequantification

Blood parasitequantification wereperformed at 10, 12, 14,

16,20, 30, 40,50, 60,and 120daysafterinfection(d.i.) (n=6).

Twomethodswere usedfor measurementof blood parasitism:

(i)microscopicfreshbloodexamination(FBE):5␮Lofbloodwere

collectedfromthemouse’stailandthenumberofparasiteswas

estimatedasdescribedbyBrener(1962).(ii)Real-timePCR:200␮L

ofbloodwascollectedfromorbitalvenoussinusofanimalsand

mixedto35␮Lof129mMsodiumcitratesolution(DOLES,BR).The

collectedmaterialwassubjectedtoDNAextraction.Theextracted

DNAwasfrozenat−20◦Cuntilrequired.Inbothmethods(i)and

(ii),curveswereplottedusingparasitemiaaverageofsixmice.

Thecurvesofcardiacparasitismweregeneratedbyreal-time

PCR.Wecollected30mgofhearttissueofanimalsat10,16,30,60

and120d.i(n=6).Thismaterialwasstoredat−70◦CuntilDNA

extraction. Theextracted DNAwasfrozenat −20◦Cfor later T.

cruziquantificationbyreal-timePCR.Curveswereplottedusing

parasitismaverageofsixmice.

2.3. Treatmentschedule

Groups of 24 miceinoculated intraperitoneally with5×103

trypomastigotes were treated with Itraconazole (Itz):

4-[4-[4- [4-[[2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-

1,3-dioxolan-4-yl]methoxy]phenyl]-1-piperazinyl]phenyl]-2,4-dihydro-2-(1-methylpropyl)-3H-1,2,4-Triazol-3-one. Treatments

werestartedonthe10thdayafterinfectionandwereadministered

bygavagefor20consecutivedays.Itzweresuspendedinwater

with4%methylcellulose(Sigma)andwereadministeredindosesof

100mg/kgbodyweight.Thistreatmentprotocolwasstandardized

previouslybyToledoetal.(2003).

2.4. DNApreparationandreal-timePCR

TheextractionoftotalgenomicDNAfrombloodandtissueof

animalsinfectedwithT.cruziwasperformedusingthe

commer-cialkit (Wizard® GenomicDNA Purification Kit,Promega) with

modificationsforDNAextractionfromcardiactissueofmouse.The

modificationconsistedintheincubationof30mgofsampleat55◦C

for2hwith120␮Lof0.5MEDTAsolution(pH8.0)(Sigma®),500␮L

ofnucleiclysissolution(Promega)and9␮LofproteinaseK(fungal)

(InvitrogenTM)at20mg/mLfollowedbymacerationandtreatment

according tothemanufacturer’s specifications for extractionof

tissueDNA.DNAwasquantifiedbyspectrophotometer

(Pharma-ciaBiotechGenequant)andtheconcentrationswereadjustedto

25ng/␮L.

ThePCRreactionwereperformedin10␮Lcontaining50ngof

genomicDNA,5␮LofSYBR®GreenPCRMastermix(Applied

Biosys-tems)andeither0.35␮MforT.cruzi195basepairs(bp)repeat

DNA-specificprimersor0.50␮Mofmurine-specifictumor

necro-sisfactor-␣ (TNF-␣)primers. Theprimersfor T.cruzi repetitive

DNA (TCZ-F5-GCTCTTGCCCACAMGGGTGC-3,where M=Aor C

andTCZR5-CCAAGCAGCGGATAGTTCAGG-3)amplifya182-bpas

describedbyCummingsandTarleton(2003).Primersformurine

TNF-␣ (TNF-52415-TCCCTCTCATCAGTTCTATGGCCCA-3and

TNF-54115-CAGCAAGCATCTATGCACTTAGACCCC-3)amplifya170-bp

product(CummingsandTarleton,2003).Thecyclingprogram

con-sistedofaninitialdenaturationat95◦Cfor10min,followedby

(3)

acquisitionat64.3◦C.Amplificationwasimmediatelyfollowedby

ameltprogramwithaninitialdenaturationof15sat95◦C,

cool-ingto60◦Cfor1minandthenastepwisetemperatureincreaseof

0.3◦C/sfrom60to95◦C.

Each96-wellreactionplatecontainedstandardcurveandtwo

negativecontrols.Negativecontrolsconsistedofareactionwith

T.cruzi-specificormurine-specificprimerswithoutDNAandalso

withbloodortissueDNAfromnon-infectedmice.EachDNAsample

wasquantifiedinduplicate.ThemeanquantificationvaluesforT.

cruziDNAwerenormalizedbythedataobtainedwiththe

murine-specific(TNF-␣) primersasfollows:normalized value=(meanT.

cruziDNA/meanTNF-␣DNA)×1000,where“1000”correspondsto

theexpectedvalueforTNF-␣from200␮Lofbloodor30mgofheart

tissue.Theefficienciesofamplificationweredetermined

automat-icallybytheStepOneTM Softwarev2.0bycalculating:efficiency

(E)=10(−1/slope)(Stordeuretal.,2002).

2.5. T.cruzistandardcalibrationcurve

Standard curvesweregenerated fromfiveserial dilutionsin

water(1:10)ofDNAextractedfrombloodandtissuestandards

con-taining5× 106parasites/0.1mLofbloodand106parasites/30mg

ofhearttissue, respectively.Thelimitsofdetectionof parasites

wereverifiedby6serialdilutions(1:10)of100parasiteequiv.(from

bloodandcardiactissuestandards)inDNA(25ng/␮L)fromblood

andhearttissueofhealthymice.Theterms“bloodstandard”and

“tissuestandard”refertoDNAextractedfromoptimizedvolumes

ofbloodsamplesandmassofhearttissuespecimensfromhealthy

micespikedwithaknownquantityofepimastigotes(VL-10strain).

Thestandardsweregeneratedinsufficientquantitiesforall

real-timePCRassays.

2.6. Histopathologyandmorphometricanalysis

Forhistopathologicalanalysis,experimentalmicewere

sacri-ficedondays10,30and120(6animals/group/day).Hearttissues

werefixedin10%formalinandembeddedinparaffin.Blockswere

cut into 4␮m sections and stained by Hematoxylin and Eosin

(H&E)forinflammationassessment.Twentyfieldsfromeachslide

wererandomlychosenat40×magnificationperformingatotalof

1.49×106␮m2analyzedmyocardiumarea.Imageswereobtained

throughaLeicaDM5000Bmicrocamera(LeicaApplicationSuite,

model2.4.0R1)andprocessedbythesoftwareLeicaQwinV3image

analyzer.Theinflammatoryprocesswasevaluatedbythe

correla-tionindexbetweenthenumberofcellsobservedinmyocardium

musclefromnon-infectedandinfectedanimals(Caldasetal.,2008).

2.7. Immunoassays

Immunoassayswereperformedusingplasmafromall

exper-imental animalsto detectmonocyte chemoattractant protein-1

(MCP-1/CCL2) and Regulated upon Activation, normal T-cell

expressedand secreted (RANTES/CCL5). Briefly, flat-bottom

96-well microtiter plates (Nunc) were coated with 100␮L/well of

the CCL2 and CCL5 specific chemokine monoclonal antibodies

(0.2␮g/mLand2.0␮g/mL,respectively)for18hat4◦Candthen

washedwithPBSbuffer(pH7.4)containing0.05%Tween20(wash

buffer).Nonspecificbindingsiteswereblockedwith300␮L/wellof

1%BSAinPBS.Plateswererinsedwithwashbuffer,and50␮L/well

ofsamples andstandards addedfollowed byincubation for2h

atroomtemperature. Sevenpoint standardcurves using 2-fold

serial dilutions with 1% BSA in PBS, and high CCL2 and CCL5

standardsof250pg/mLand2000pg/mLwereused,respectively.

Plateswerethenwashedand100␮L/welloftheappropriateCCL2

(50ng/mL)andCCL5(400ng/mL)biotinylateddetection

antibod-iesdiluted in blocking buffercontaining0.05% Tween 20 were

added for 1hat room temperature. Plateswere, then, washed

andstreptavidin–horseradishperoxidase(0.1␮g/mL)wasadded

for30minofincubationatroomtemperature.Finally,plateswere

washedand100␮L/wellofthesubstratesolution–1:1mixture

ofcolorreagentA(H2O2)andcolorreagentB

(Tetramethylbenzi-dine)–wasaddedandafter30minofadarkincubationatroom

temperature,thereactionwasstoppedby50␮L/wellof1MH2SO4

solution.Plateswerereadat450nmwithwavelengthcorrection

at570nminaspectrophotometer(MicroplateReader,model680,

BioRad).AllsampleswereassayedinduplicateusingDuoSet®ELISA

DevelopmentSystem,RandDSystems®,Minneapolis,MNsystems.

2.8. Nitricoxidedetection

Nitritelevelsintheplasmaofmiceweredeterminedusingthe

GriessreactionasanindexofNOproduction(Vespaetal.,1994).

Briefly,50␮Lofplasmafromeachanimalwasdilutedwith50␮L

ofwaterandtreatedwith15␮LofamixofNADPH,FADandnitrate

reductase(atconcentrationsof1U/mL–Sigma®).About18hafter

incubationat37◦C,samplesweredeproteinatedwith10␮Lofzinc

sulfate(300g/L–Sigma®)andcentrifugedat2000×gfor5min.

50␮Lofsupernatantsampleswascombinedinaflat-bottom

96-wellmicrotiterplates(Nunc)witha1:1mixtureof1%sulfanilamide

in 2.5%H3PO4 and 0.1%naphtylethylenediamidein 2.5%H3PO4

(Sigma®).Plateswereincubatedfor10minatroomtemperature,

andtheabsorbancewasmeasuredat550nmusingtheautomated

MicroplateReader,model680,BioRad.Nitriteconcentrationswere

determinedbyusingastandardcurveofsodiumnitritefrom125

to1␮M.

2.9. Statisticalanalysis

Datawereexpressedasmean±standarddeviation.Statistical

differenceforparasitologicaldataamongvariousgroupsofmice

atdifferentdaysaswellascytokinelevelsandintensityof

inflam-mationweredeterminedbythenonparametricTukey’sMultiple

ComparisonTest.Mann–Whitneytestwasusedwhentwogroups

ofanimalswereanalyzed.Pearson’scorrelation(r)wasalsoused

toevaluatetheassociationofparasitisminbloodandhearttissues.

Valuesofp<0.05wereconsideredsignificant.

3. Results

3.1. Standardcurvesandsensitivityofreal-timePCRassay

Theprimarygoalofthis studywastostandardizeastrategy

basedonreal-timePCRforasensitiveandreproducible

quantifi-cationofparasiteloadinperipheralbloodandhearttissueduring

acuteandchronicexperimentalChagasdiseaseinmice,aswell

asitsapplicationinthemonitoringofexperimental

chemother-apy.Thetissueandbloodstandardscurvesweregeneratedfrom

fiveserialdilutionsofDNAfrom106parasites/30mgofheart

tis-sueand5×106parasites/0.1mLofbloodforthequantificationof

T.cruzi(basedonourpreviousexperiencewithFBEshowing

maxi-mumparasitemiasaround3–4millionparasitesper0.1mLblood).

TheTNF-␣DNAwasassignedasanarbitraryvalueof103inboth

bloodandtissuestandards.Fig.1AshowsamplificationcurvesofT.

cruziandTNF-␣DNAinfourlogdilutions.Fig.1Bshowsthe

stan-dardcurvesgeneratedfromthelinearregionofeachamplification

curve.Theefficiency(E)andrvaluesforthehearttissuesamples

weresimilar.Fig.1C illustratestypicalmelting curvesobserved

afteramplificationofT.cruziandinternalcontrol.Thetemperature

ofmelting(Tm)observedfortheparasitewas∼81◦Candforthe

internalcontrolwas∼79.3◦CineitherDNAextractedfromblood

(4)

Fig.1.StandardcurvegeneratedwithDNAextractedfrombloodofhealthymicespikedwithTrypanosomacruziepimastigotes(VL-10strain).TheblacklinesrefertoT.cruzi DNAandthegraylinestoTNF-␣DNA(referencegene).(A)CurvesweregeneratedwithT.cruziandTNF-␣primersfromfiveserialdilutionsinwater(1:10)ofDNAextracted frombloodstandardscontaining5× 106parasites/0.1mLofblood.(B)Standardcurvesweregeneratedfromthelinearregionofeachamplificationcurve.Efficiencyof

amplificationforeachprimersetwasdeterminedusingtheequation:efficiency(E)=10(−1/slope),beingT.cruziE=93.989%andR2=0.997andTNF-␣E=93.07%andR2=0.993.

(C)TypicalmeltingcurvesweregeneratedafteramplificationofT.cruziandTNF-˛DNAshowingpeaksaround81◦Cand79.3◦C,respectively.

Fig.2. LimitsofdetectionforbothTrypanosomacruziDNAfromblood(graysquares) andhearttissues(blacksquares)ofmice.Thelimitofdetectionwas0.1parasite equiv./50ngofDNAinbothtissues(bloodandheart).

Fig.2showsthesensitivityofreal-timePCRtodetectT.cruziDNA

frombloodandhearttissueofmice.Thelimitsofdetectionwere

0.1parasiteequiv./50ngDNA.Table1representsthe

reproducibil-ityoftwoindependenttestsofreal-timePCRwiththebloodand

hearttissuesfromsixmice.TheresultsofthePCRreproducibility

wereexpressedinparasiteequiv./50ngDNAfrom0.1mLofblood

and30mgofhearttissue.

Table1

Reproducibilityofquantifiedproductfromtwoindependentreal-timePCRtests performedwiththebloodandhearttissuesfromsixmice.

Parasiteequiv./50ngDNA

Bloodsample Run1 Run2 Mean (S.D.) 1 0.128 0.120 0.124 (0.01) 2 0.520 0.530 0.525 (0.01) 3 0.818 0.825 0.821 (0.01) 4 10.012 9.879 9.946 (0.09) 5 5.082 5.567 5.324 (0.34) 6 3.965 4.081 4.023 (0.08) Cardiacmusclesample

1 2.673 2.975 2.824 (0.21) 2 2.272 2.388 2.330 (0.08) 3 1.616 1.651 1.634 (0.02) 4 3.962 4.050 4.006 (0.06) 5 0.927 0.775 0.851 (0.11) 6 3.130 3.057 3.093 (0.05)

3.2. QuantitativeanalysisofT.cruziloadinbloodandcardiac

tissues

Next,weassessedtheparasiteloadduringtheacuteandchronic

disease transition by real-time PCR and FBE. The parasitemia

profiles curves weresimilar for both quantification techniques

during the acute phase of the infection. In contrast, parasites

couldbe quantifiedonly by real-time PCR at a ratioof 159.38

and 174.63parasites/0.1mLofblood at60 and 120d.i.,

respec-tively(Fig.3).Inaddition,real-timePCRdetectedparasiteDNAin

bloodandcardiactissuesin100%ofinfectedmiceinevery

analy-sisperformed,whileFBEshowedlowandintermittentparasitemia

quantificationat40(16.6%)and50(33%)d.i.andnegativeresults

at60and120d.i.asshowedinFig.4.

Inthenext,correlationsbetweenbloodandcardiactissues

par-asiteburdenwasevaluatedbyreal-timePCRondays10,16,30,60

and120afterinfection.Duringtheacutephaseofinfection

para-siteswereeasilydetectedinboth,bloodandcardiactissues,being

theirburdensignificantlylarger(p<0.05)inbloodsamplethanin

cardiactissue (Fig.5).Interestingly, after60 d.i.parasites were

moreeasilydetectedincardiac tissuethan inperipheralblood.

Fig.3.Averagenumberofparasitesdetectedbyreal-timePCR(blackcolumns)and freshbloodexamination-FBE(whitecolumns)onpredetermineddaysafter infec-tioningroupsofsixmiceinfectedwiththeVL-10strainofT.cruzi.Datashowthe averagesoftwoindependentexperiments.Asteriskdenotesasignificantdifference, asdeterminedbytheMann–Whitneytest(p<0.05).

(5)

Fig.4. Percentageofpositiveresultsbyfreshbloodexamination(FBE)andreal-time PCRinblood(PCR–blood)andhearttissues(PCR–heart)ofmiceinfectedwith 5×103trypomastigotesofT.cruzi(VL-10strain)atdifferentdaysafterinfection.

Thedatarepresenttheaverageoftwoindependentexperiments.

Consideringtheresultsofreal-timePCR,theaveragenumberof

par-asitesdetectedinthehearttissueat60and120d.i.were2608.83

and925.31parasites/30mgofcardiactissueandintheperipheral

bloodwere159.38and174.63parasites/0.1mLofblood,

respec-tively.TherewasasignificantPearsoncorrelationbetweenparasite

loadpresentintheperipheralbloodandinthecardiactissue

dur-ingacuteandchronicphasesofdisease(p<0.001andrvalueof

0.8068).

Later, in the group of treated animals (Fig. 6), at 30 d.i.

(end of chemotherapeutic schedule), the PCR performed with

DNA extracted from heart (PCR-H) detected an average of

416.69parasites/30mgofhearttissueandthePCRperformedwith

DNAfromblood(PCR-B)foundanaverageof1.16parasites/0.1mL

ofblood.Afterthisperiod,thelevelsofparasitism(inbloodand

heart)increasedagain,beingequivalentat60and120d.i.by

real-timePCRdetection.The“+”signat120d.i.indicatesapositiveresult

byFBE,detectedafterexhaustiveanalysissincetheparasitecount

Fig.5. Bloodandhearttissueparasitismdetectedbyreal-timePCRinblood(PCR– blood)andhearttissues(PCR–heart)ofmiceinfectedwith5×103trypomastigotes

ofTrypanosomacruzi(strainVL-10)atdays10,16,30,60and120afterinfection.The datarepresenttheaverageoftwoindependentexperiments.Asteriskdenotesa sig-nificantdifference,asdeterminedbytheMann–Whitneytest(p<0.05).Theinsert representthecorrelationanalysisoftissueandbloodparasitism,beingPearson (r)=0.8068andp<0.001.

Fig.6.ParasitesdetectedbyFreshBloodExamination(FBE)andbyreal-timePCR inblood(PCR–blood)andincardiactissues(PCR–heart)ofmiceinoculatedwith 5×103trypomastigoteformsofTrypanosomacruzi(VL10strain)andtreatedwith

Itraconazole.Thetreatmentwasperformedondays10–30post-infection.Different symbolsindicatesignificantdifference(p<0.05).

bythemethodofBrener (1962)showednegativeresults.These

datashowedthattheVL-10strainofT.cruziwasfullyresistantto

Itz,sincealltreatedanimalsshowedparasitismupto90daysafter

treatment.

3.3. Immunologicalanalysisandquantificationofcardiac

inflammation

Correlatingwiththeincreasinginparasiteburden,serumlevels

ofCCL2(Fig.7A)andCCL5(Fig.7B)wereproportionallyelevated

duringtheearlyacutephase(10d.i.)oftheinfectionpeakingat30

d.i.withserumlevels∼6-fold(CCL2)and∼3-fold(CCL5)higher

compared tonon-infectedmice,except forthetreated animals,

whichshowedsimilarlevelstothosenon-infectedanimals.

How-ever,atthe90daysaftertreatment,thelevelsofthesechemokines

increasedandbecamesimilartothosenon-treatedinfected

ani-mals,whichwere3and2-foldlowers,respectively,thanthelevels

observedat30d.i.,butyethighercomparedtonon-infectedmice.

Levelsofnitricoxide(NO)werealsomeasuredinbothphasesof

infection,asshowedin Fig.7C. At30d.i. serumconcentrations

ofNO reached∼3.3-fold higherthanthose observedtohealthy

mice.Interestingly,whentheparasitismwascontrolled,therewas

adecreaseinNOlevelsreachingsimilarlevelstohealthyanimals

at120d.i.,aswellasthetreatedones,whichalwayshadNOlevels

similartothosenon-infectedmice.

Besides,attheendoftreatment(30d.i.),treatedinfected

ani-mals(Fig.8C)showedlessinflammatoryinfiltratethannon-treated

infectedcontrol(Fig.8D)butsignificantlyhigher(p<0.001)than

the healthy mice (Fig. 8B). Furthermore, the partial protection

observedafterthetreatmentwasnotmaintainedthroughoutthe

courseofinfection(Fig.8A)and,at120d.i.,weobservedhigh

cel-lularityininfectedanimals,regardlessoftheyhavebeentreatedor

nottreated.

4. Discussion

In research laboratories, PCR has been proposed to be an

alternativetoolforT.cruziquantificationsinceitismoresensitive

thanthetraditionalparasitologicaltechniques,suchasfreshblood

examination,xenodiagnosisandhemoculture(Moseretal.,1989;

(6)

Fig.7. CCL2(A),CCL5(B)andnitricoxide(C)detectedintheplasmaofmiceinfectedwithT.cruzi(I),non-infected(NI)andtreatedinfected(TI)at10,30and120daysof infection(d.i.).Differenceswereconsideredsignificantatp<0.05.

ThedisadvantageofconventionalPCR,however,istimeconsuming

andhighriskoffalsepositiveresultsduetocarry-over

contamina-tion(sincetheamplifiedproductisdetectedbygelelectrophoresis)

alongwiththeimpossibility ofperformingquantitativeanalysis

(Piron etal.,2007),oncethecalculationofamplifiedproductis

limitedtotheplateauphaseoftheamplificationreaction.

In this context, the quantitative real-time PCR is emerging

asanappropriatemoleculartoolformonitoringparasiteloadin

experimentalT.cruzi infections.Real-time PCRacquires dataat

eachcycleofthePCRreaction,allowingthecalculationof

prod-uctamountfromthelog-linearregionoftheamplificationcurve

(CummingsandTarleton,2003).Asatargetforamplification,

satel-liteT.cruziDNA(representedin104to105copiesintheparasite

genome)highlyconserved(Gonzalezetal.,1984;Moseretal.,1989;

Eliasetal.,2005)wasusedtoprovideaccurateandefficientPCR

based-measurements.PrimersetusedforT.cruziDNA(Cummings

andTarleton,2003)iscapableofamplifyingatandemlyrepeated

genomicsequenceof195basepairs(Gonzalezetal.,1984;Moser

etal.,1989).Theinternalcontrol(asinglecopyofthemouseTNF-␣

gene)wasusedtocorrectvariationsininitialsamplesamount,DNA

recovery,and samples loading(Cummings andTarleton, 2003).

Theoptimizationoftheabovementionedreal-timePCRstrategy

allowedarapid,reproducibleandsensitivequantificationofT.cruzi

directlyinbloodandhearttissuesofmice,aswellasmonitoringthe

courseofinfectioninanimalsunderspecifictreatment.The

proto-colwasfollowedbyconfirmationoftheamplificationspecificityby

analysisofmeltingcurves.

Inthiswork,PCRinhibitorswhichcaninterferewiththe

ampli-ficationcyclesandalter thereactionefficiencywereminimized

withtheuseofanoptimizedextractionprotocolfollowedby

dilu-tionoftheextractedDNAinordertoobtaintheconcentrationof

25ng/␮LofDNA.Theendpointofthecurve(100parasiteequiv.)

wasdilutedwith25ng/␮LofDNAtomakesurethatthehigh

sen-sitivityobservedin thetest wasnot favored bydilution ofthe

standardsinwater.Thus,itwasfoundthatdilutionofthestandards

inwaterorDNAdoesnotinterferewiththetestsensitivity.The

Fig.8.AnalysisofhistologicalsectionsofheartsfrommiceinfectedwithVL-10strainofTrypanosomacruzi.(A)CellularityofthemyocardialsectionsofmiceinfectedwithT. cruzi(I),non-infected(NI)andtreatedinfected(TI)at10,30and120daysofinfection(d.i.).SectionsofmyocardiumofNI(B),TI(C)andI(D)at30d.i.(H&E,40×magnification). Differenceswereconsideredsignificantforp<0.05.

(7)

standardcurvesgeneratedforquantificationofbloodandtissue

parasitesshowedamplificationefficienciesabove90%.

SincetheDNArecoveryfrombloodandtissuewassignificantly

variable,itwasimportanttohaveaninternalcontroltonormalize

theamountofsamplebeinganalyzedineachreal-timePCRassay

(CummingsandTarleton,2003).TheDNAofTNF-␣presentinthe

standardsample(generatedwith200␮Lofbloodor30mgofheart

tissue)wasassignedasanarbitraryvalueof103,sincewedonot

needtoknowtheabsolutevalueofTNF-␣,buttheexpectedvalue

in200␮Lofbloodor30mgofcardiactissuetotherebynormalize

thesampleloadingerrors.Theuseofareferencegeneallowedus

toobtainreproduciblequantificationofT.cruziinbloodandheart

samples.Wedemonstratedthereproducibilityoftheassayby

per-formingthequantificationofthesamegroupofbloodandheart

tissuessamplesintwoPCRtestsconductedatdifferenttimes.

ToverifywhetherthequantificationofT.cruziDNAwouldreflect

thenumberofliveparasitespresentinbloodsamples,their

quan-tificationwasalwaysperformedinparallelbyFBEandreal-time

PCR.Similarprofilesofparasitemiawereobservedinbothmethods

ofquantification;however,thereal-timePCRwasabletoquantify

parasitesat60and120d.i.whenparasitemiawaslow.

Further-more,theFBEdoneinparallelwithPCRdemonstratesnoinhibition

andnodrugsinterferenceinthePCRquantificationofparasitemia.

Thestandardizationofreal-timePCRusing200␮Lofblood

con-tributedtothehighersensitivityofthistechniquecomparedwith

theFBE,whichrequires5␮Lofblood(mainlybecauselarger

vol-umesofbloodaffecttheperceptionandparasitesquantificationby

theobserver).However,wecannotdisregardthehighefficiencyof

FBEformonitoringtheparasitemiaduringtheacutephaseof

infec-tionand/orwhentheparasitemiaishigh.Thegreatadvantageof

PCR,however,isitsapplicationinmonitoringofparasitesinboth

bloodandcardiactissueofmicewithhighsensitivity.Attheendof

treatment,onlythereal-timePCRwasabletodetectandquantify

parasitism,aswellasduringthechronicphaseofinfection.

Besides,therewasa positive correlationbetweenblood and

tissueparasitism(r=0.8068andp<0.001)detectedbyreal-time

PCR.Previously,ithasalsobeendescribedacorrelationamongthe

parasiteburden,theintensityofinflammatoryprocessesandthe

severityofthediseaseinbothhumansandexperimentalanimals

(Zhangand Tarleton,1999;Pérez-Fuentesetal.,2003;Schijman etal.,2004;Benvenutietal.,2008).Althoughparasiteisthemain

triggerofcardiaclesions,theimmune systemof thevertebrate

host exerts a decisive role in the development of lesions. The

effectiveimmunedefenseofthevertebratehostrequiresaflow

directedandprecisepositioningofeffectorscellstowardthe

infec-tionsite(Luster,2002).ChemokinessuchasCCL2andCCL5,have

beenobservedinhumanandmurinemacrophagesand

cardiomy-ocytesinfectedbyT.cruzi(Villaltaetal.,1998;Alibertietal.,1999;

Machadoetal.,2000).Severalauthorshavedescribedtheroleof

thesechemokinestoleukocyteattractionanditslikelyinvolvement

incontrollingthegrowthofT.cruziandNOproduction(Sallusto

et al.,1998; Villaltaetal., 1998; Alibertiet al.,1999; Machado etal.,2000;Coelhoetal.,2002;Talvanietal.,2009;Talvaniand Teixeira,2011).Probablythehighparasitismintheheartandblood

(mainlyobservedwithin30d.i.intheinfectednon-treated

ani-mals),exertedinfluenceintheincreasedexpressionofCCL2and

CCL5bymacrophagesandactivatedCD4+andCD8+ Tcells,

con-tributing to thedirected migration of leukocytes to the injury

site.AccordingtoPaivaetal.(2009),thechemokineCCL2is

pro-ducedin large quantitiesin the heart of miceinfected withT.

cruziandplaysanimportantroleinthedestructionofparasites

bymacrophages.Infectedcardiomyocytescoupledtotheinfluxof

monocytes/macrophagestotheinfectedhearttissue,probably

con-tributetotheincreasedproductionofchemokinesand NO.This

viewalsoexplainsthelackofstimulationoftheseinflammatory

moleculesintreatedanimalsat30d.i.sincetheparasitismwas

controlledbythedrugatthistime. Ontheotherhands,NO,as

describedbyseveralauthors(Saefteletal.,2001;Machadoetal.,

2008)exertstrypanocidalactivitybutalsocausedamagetoinfected

tissue,whichcanbeaggravatedbytheinfluxofCD8+Tcellsrichin

granulysinandperforin(Stegelmannetal.,2005),directedtothe

siteofinfectioninaCCL5-dependentmanner.However,inparallel

withthedevelopmentofthespecificimmuneresponse,parasitism

levelswerecontrolledandtherespectivestimulusforthe

expres-sionofchemokines,cytokinesandNO,partially,reduced.Probably

thisisonereasonbywhichanimalshavelowlevelsofCCL2,CCL5

and NOat 120d.i.,regardlessof whethertheywere treatedor

non-treated.Buttheprevalenceofcardiacinflammationat120d.i.

(inbothtreatedandnon-treatedmice)suggestsanimbalancein

theimmuneresponseoftheseanimals.Therefore,infectionwith

T.cruzishouldnotbelinkedinvariablytoadistinctparasiteload,

butafinebalancebetweenresponsesthat,althoughessentialfor

hostresistance,mayalsocontributetoimmunopathology(Roggero

etal.,2002).

Finally,theexperimentalmodelofT.cruziinfectionusedinthis

studyinassociationwithrealtimePCR,asaprimarytool,was

suit-ableshowingtobeusefulininvestigationsinvolvingexperimental

chemotherapyandinflammatoryresponse.Besides,the

combina-tionofhighsensitivityandspecificity,lowcontaminationriskand

greaterspeedofworkconfirmthereal-timePCRtechnologyasa

moderntool toassist instudiesinvolvingthecourseofChagas’

infectioninexperimentalchemotherapy.

Acknowledgments

This work received financial support from the Drugs for

NeglectedDiseaseInitiative(DNDi;Geneva,Switzerland),theUBS

OptimusFoundationofSwitzerland,RedeMineiradeBioterismo

(FAPEMIG),UniversidadeFederaldeOuroPreto,andresearch

fel-lowshipsfromConselhoNacionaldeDesenvolvimentoCientíficoe

Tecnológico(Bahia,M.T.andTalvani,A.),fromFundac¸ãodeAmparo

àPesquisadoEstadodeMinasGerais(Caldas,S.)andCoordenac¸ão

deAperfeic¸oamentodePessoaldeNívelSuperior(CAPES)(Caldas,

I.S.).

References

Aliberti,J.C., Machado, F.S.,Souto,J.T.,Campanelli, A.P., Teixeira,M.M., Gazz-inelli, R.T.,Silva, J.S.,1999. Beta-Chemokinesenhance parasiteuptakeand promotenitricoxide-dependentmicrobiostaticactivityinmurine inflamma-torymacrophagesinfectedwithTrypanosomacruzi.InfectionandImmunity67, 4819–4826.

Bankowski,M.J.,Anderson,S.M.,2004.Real-timenucleicacidamplificationin clin-icalmicrobiology.ClinicalMicrobiologyNews26,9–15.

Benvenuti,L.A.,Roggerio,A.,Freitas,H.F.,Mansur,A.J.,Fiorelli,A.,Higuchi,M.L.,2008. ChronicAmericantrypanosomiasis:parasitepersistenceinendomyocardial biopsiesisassociatedwithhigh-grademyocarditis.AnnalsofTropicalMedicine andParasitology102,481–487.

Brener,Z.,1962.Therapeuticactivityandcriterionofcureonmiceexperimentally infectedwithTrypanosomacruzi.RevistadoInstitutodeMedicinaTropicalde SaoPaulo4,389–396.

Caldas,I.S.,Talvani,A.,Caldas,S.,Carneiro,C.M.,Lana,M.,Guedes,P.M.M.,Bahia, M.T.,2008.BenznidazoletherapyduringacutephaseofChagasdiseasereduces parasiteloadbutdoesnotpreventchroniccardiaclesions.ParasitologyResearch 103,413–421.

Chagas,C.,1909.Novatripanosomíasehumana:estudossobreamorfologiaeo cicloevolutivodoSchizotrypanumcruzin.gen.n.sp.,agenteetiológicodenova entidademórbidadohomem.MemoriasdoInstitutoOswaldoCruz1,159–218. Cockerill,F.R.,2003.Applicationofrapid-cyclereal-timepolymerasechain reac-tionfordiagnostictestingintheclinicalmicrobiologylaboratory.Archivesof PathologyandLaboratoryMedicine127,1112–1120.

Coelho,P.S.,Klein,A.,Talvani,A.,Coutinho,S.F.,Takeuchi,O.,Akira,S.,Silva,J.S., Can-izzaro,H.,Gazzinelli,R.T.,Teixeira,M.M.,2002. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi try-pomastigotes induce invivo leukocyterecruitment dependent on MCP-1 productionbyIFN-gamma-primed-macrophages.JournalofLeukocyteBiology 71,837–844.

Cummings,K.L.,Tarleton,R.L.,2003.RapidquantitationofTrypanosomacruziinhost tissuebyreal-timePCR.MolecularandBiochemicalParasitology129,53–59.

(8)

deFreitas,V.L.,daSilva,S.C.,Sartori,A.M.,Bezerra,R.C.,Westphalen,E.V.,Molina, T.D.,Teixeira,A.R.,Ibrahim,K.Y.,Shikanai-Yasuda,M.A.,2011.Real-timePCR inHIV/TrypanosomacruzicoinfectionwithandwithoutChagasdisease reacti-vation:associationwithHIVviralloadandCD4level.PLoSNeglectedTropical Diseases5,e1277.

Dias,J.C.,1992.EpidemiologyofChagasdisease.In:Wendel,S.,Brener,Z.,Camargo, M.S.,Rassi,A.(Eds.),Chagasdisease(AmericanTrypanosomiasis):itsimpacton transfusionandclinicalmedicine.ISBTBrasil,SãoPaulo,pp.49–80.

Dias,J.C.,Silveira,A.C.,Schofield,C.J.,2002.TheimpactofChagasdisease con-trolin LatinAmerica: areview. MemoriasdoInstituto OswaldoCruz97, 603–612.

Duffy,T.,Bisio,M.,Altcheh,J.,Burgos,J.M.,Diez,M.,Levin,M.J.,Favaloro,R.R., Freilij,H.,Schijman,A.G.,2009.Accuratereal-timePCRstrategyformonitoring bloodstreamparasiticloadsinchagasdiseasepatients.PLoSNeglectedTropical Diseases3,e419.

Elias,M.C.,Vargas,N.,Tomazi,L.,Pedroso,A.,Zingales,B.,Schenkman,S.,Briones, M.R.,2005.Comparativeanalysisofgenomic sequencessuggeststhat Try-panosomacruziCLBrenercontainstwosetsofnon-intercalatedrepeatsof satelliteDNAthatcorrespondtoT.cruziIandT.cruziIItypes.Molecularand BiochemicalParasitology140,221–227.

Filardi,L.S.,Brener,Z.,1987.SusceptibilityandnaturalresistanceofTrypanosoma cruzistrainstodrugsusedclinicallyinChagasdisease.TransactionsoftheRoyal SocietyofTropicalMedicineandHygiene81,755–759.

Gascon,J.,Albajar,P.,Canas,E.,Flores,M.,Prat,J.,Herrera,R.N.,Lafuente,C.A., Lucia-rdi,H.L.,Moncayo,A.,Molina,L.,Munoz,J.,Puente,S.,Sanz,G.,Trevino,B., Sergio-Salles,X.,2007.Diagnosis,managementandtreatmentofchronic Cha-gas’heartdiseaseinareaswhereTrypanosomacruziinfectionisnotendemic. RevistaEspanoladeCardiologia60,285–293.

Gonzalez,A.,Prediger,E.,Huecas,M.E.,Nogueira,N.,Lizardi,P.M.,1984. Minichromo-somalrepetitiveDNAinTrypanosomacruzi:itsuseinahigh-sensitivityparasite detectionassay.ProceedingsoftheNationalAcademyofSciencesoftheUnited StatesofAmerica81,3356–3360.

Hardison,J.L.,Wrightsman,R.A.,Carpenter,P.M.,Kuziel,W.A.,Lane,T.E.,Manning, J.E.,2006.TheCCchemokinereceptor5isimportantincontrolofparasite repli-cationandacutecardiacinflammationfollowinginfectionwithTrypanosoma cruzi.InfectionandImmunity74,135–143.

Junqueira,A.C.,Chiari,E.,Wincker,P.,1996.Comparisonofthepolymerasechain reactionwithtwoclassicalparasitologicalmethodsforthediagnosisofChagas diseaseinanendemicregionofnorth-easternBrazil.TransactionsoftheRoyal SocietyofTropicalMedicineandHygiene90,129–132.

Kirchhoff,L.V.,Votava,J.R.,Ochs,D.E.,Moser,D.R.,1996.ComparisonofPCRand microscopicmethodsfordetectingTrypanosomacruzi.JournalofClinical Micro-biology34,1171–1175.

Luster,A.D.,2002.Theroleofchemokinesinlinkinginnateandadaptiveimmunity. CurrentOpinioninImmunology14,129–135.

Machado,F.S.,Martins,G.A.,Aliberti,J.C.,Mestriner,F.L.,Cunha,F.Q.,Silva,J.S., 2000.Trypanosomacruzi-infectedcardiomyocytesproducechemokinesand cytokinesthattriggerpotentnitricoxide-dependenttrypanocidalactivity. Cir-culation102,3003–3008.

Machado,F.S.,Souto,J.T.,Rossi,M.A.,Esper,L.,Tanowitz,H.B.,Aliberti,J.,Silva,J.S., 2008.Nitricoxidesynthase-2modulateschemokineproductionbyTrypanosoma cruzi-infectedcardiacmyocytes.MicrobesandInfection10,1558–1566. Marcon,G.E.,Andrade,P.D.,deAlbuquerque,D.M.,Wanderley,J.S.,deAlmeida,E.A.,

Guariento,M.E.,Costa,S.C.,2002.Useofanestedpolymerasechainreaction (N-PCR)todetectTrypanosomacruziinbloodsamplesfromchronicchagasic patientsandpatientswithdoubtfulserologies.DiagnosticMicrobiologyand InfectiousDisease43,39–43.

Moreno,M.,D’avila,D.A.,Silva,M.N.,Galvão,L.M.,Macedo,A.M.,Chiari,E.,Gontijo, E.D.,Zingales,B.,2010.Trypanosomacruzibenznidazolesusceptibilityinvitro doesnotpredictthetherapeuticoutcomeofhumanChagasdisease.Memorias doInstitutoOswaldoCruz105,918–924.

Moser,D.R.,Kirchhoff,L.V.,Donelson,J.E.,1989.DetectionofTrypanosomacruzi byDNAamplificationusingthepolymerasechainreaction.JournalofClinical Microbiology27,1477–1482.

Paiva,C.N.,Figueiredo,R.T.,Kroll-Palhares,K.,Silva,A.A.,Silverio,J.C.,Gibaldi,D., Pyrrho,A.S.,Benjamim,C.F.,Lannes-Vieira,J.,Bozza,M.T.,2009.CCL2/MCP-1

controlsparasiteburden,cellinfiltration,andmononuclearactivationduring acuteTrypanosomacruziinfection.JournalofLeukocyteBiology86,1239–1246. Pérez-Fuentes,R.,Guégan,J.F.,Barnabé,C.,López-Colombo,A.,Salgado-Rosas,H., Torres-Rasgado,E.,Briones,B.,Romero-Díaz,M.,Ramos-Jiménez,J., Sánchez-Guillén, M.C.,2003. Severity ofchronic Chagasdisease is associated with cytokine/antioxidantimbalanceinchronicallyinfectedindividuals. Interna-tionalJournalforParasitology33,293–299.

Piron,M.,Fisa,R.,Casamitjana,N.,Lopez-Chejade,P.,Puig,L.,Verges,M.,Gascon,J., Prat,J.,Portus,M.,Sauleda,S.,2007.Developmentofareal-timePCRassayfor Trypanosomacruzidetectioninbloodsamples.ActaTropica103,195–200. Roggero,E.,Perez,A.,Tamae-Kakazu,M.,Piazzon,I.,Nepomnaschy,I.,Wietzerbin,

J.,Serra,E.,Revelli,S.,Bottasso,O.,2002.Differentialsusceptibilitytoacute Try-panosomacruziinfectioninBALB/candC57BL/6miceisnotassociatedwith adistinctparasiteloadbutcytokineabnormalities.ClinicalandExperimental Immunology128,421–428.

Saeftel, M., Fleischer, B., Hoerauf, A., 2001. Stage-dependent role of nitric oxideincontrolofTrypanosomacruziinfection.InfectionandImmunity69, 2252–2259.

Sallusto,F.,Lanzavecchia,A.,Mackay,C.R.,1998.Chemokinesandchemokine recep-torsinT-cellprimingandTh1/Th2-mediatedresponses.ImmunologyToday19, 568–574.

Schijman,A.G.,Vigliano,C.A.,Viotti,R.J.,Burgos,J.M.,Brandariz,S.,Lococo,B.E.,Leze, M.I.,Armenti,H.A.,Levin,M.J.,2004.TrypanosomacruziDNAincardiaclesions ofArgentineanpatientswithend-stagechronicchagasheartdisease.American JournalofTropicalMedicineandHygiene70,210–220.

Schofield,C.J.,Jannin,J.,Salvatella,R.,2006.ThefutureofChagasdiseasecontrol. TrendsinParasitology22,583–588.

Stegelmann,F.,Bastian,M., Swoboda,K., Bhat, R.,Kiessler, V.,Krensky,A.M., Roellinghoff,M.,Modlin,R.L.,Stenger,S.,2005.CoordinateexpressionofCC chemokineligand5,granulysin,andperforininCD8+Tcellsprovidesahost defensemechanismagainstMycobacteriumtuberculosis.JournalofImmunology 175,7474–7483.

Stordeur,P.,Poulin,L.F.,Craciun,L.,Zhou,L.,Schandené,L.,deLavareille,A.,Goriely, S.,Goldman,M.,2002.CytokinemRNAquantificationbyreal-timePCR.Journal ofImmunologicalMethods259,55–64.

Talvani,A.,Coutinho,S.F.,Barcelos,L.S.,Teixeira,M.M.,2009.CyclicAMPdecreases theproductionofNOandCCL2bymacrophagesstimulatedwithTrypanosoma cruziGPI-mucins.ParasitologyResearch104,1141–1148.

Talvani,A.,Ribeiro,C.S.,Aliberti,J.C.,Michailowsky,V.,Santos,P.V.,Murta,S.M., Romanha,A.J.,Almeida,I.C.,Farber,J.,Lannes-Vieira,J.,Silva,J.S.,Gazzinelli, R.T.,2000.Kineticsofcytokinegeneexpressioninexperimentalchagasic car-diomyopathy:tissueparasitismand endogenousIFN-gammaasimportant determinants of chemokinemRNA expressionduring infectionwith Try-panosomacruzi.MicrobesandInfection2,851–866.

Talvani,A.,Teixeira,M.M.,2011.InflammationandChagasdisease:some mecha-nismsandrelevance.AdvancesinParasitology76,171–194.

Teixeira,M.M.,Gazzinelli,R.T.,Silva,J.S.,2002.Chemokines,inflammationand Try-panosomacruziinfection.TrendsinParasitology18,262–265.

Toledo,M.J.,Bahia,M.T.,Carneiro,C.M.,martins-filho,O.A.,Tibayrenc,M.,Barnabé,C., Tafuri,W.L.,Lana,M.,2003.Chemotherapywithbenznidazoleanditraconazole formiceinfectedwithdifferentTrypanosomacruziclonalgenotypes. Antimicro-bialAgentsandChemotherapy47,223–230.

Urbina,J.A.,2010.SpecificchemotherapyofChagasdisease:relevance,current lim-itationsandnewapproaches.ActaTropica115,55–68.

Vespa,G.N.,Cunha, F.Q.,Silva,J.S., 1994.Nitricoxideis involvedincontrolof Trypanosomacruzi-inducedparasitemiaanddirectlykillstheparasiteinvitro. InfectionandImmunity62,5177–5182.

Villalta,F.,Zhang,Y.,Bibb,K.E.,Kappes,J.C.,Lima,M.F.,1998.Thecysteine-cysteine familyofchemokinesRANTES,MIP-1alpha,andMIP-1betainducetrypanocidal activityinhumanmacrophagesvianitricoxide.InfectionandImmunity66, 4690–4695.

WorldHealthOrganization(WHO),2002.ControlofChagasdisease.SecondReport oftheWHOExpertCommittee.WHOTechnicalReportSeries.905,Geneva,109p. Zhang,L.,Tarleton,R.L.,1999.Parasitepersistencecorrelateswithdiseaseseverity andlocalizationinchronicChagas’disease.JournalofInfectiousDiseases180, 480–486.

Referências

Documentos relacionados

Table 2 shows that in- fected BALB/c mice had significantly higher levels of nitrated plasma proteins than un- infected mice (&gt;7-fold), while MEG or GED treatment of infected

Abstract: The aim of the present study was to investigate the presence of Trypanosoma cruzi in the heart, liver, lung, and kidneys, using hemoculture and PCR analysis, of

Maximum number of trypomastigotes detected in the peripheral blood of mice infected with Trypanosoma cruzi Y strain and treated with daily doses 50, 75 or 100 mg/kg bodyweight

Polymerase chain reaction detection of Trypanosoma cruzi in hu- man blood samples as a tool for diagnosis and treatment evalua- tion.. A simple protocol for the physical cleavage of

The aim of this study was to detect and quantify Trypanosoma cruzi in paraffin-embedded tissue samples from chronic patients using NPCR (nested polymerase chain reaction) and

5: quantification of the acute inflammatory process in the cardiac tissue of mice infected with Trypanosoma cruzi Colombian strain.. Analy- sis of inflammatory infiltration in

The immunomodulatory effects of the Enalapril in combination with benznidazole during acute and chronic phases of the experimental infection with Trypanosoma cruzi. Martins

(2015) Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples.. This is an open access article