• Nenhum resultado encontrado

Biblioteca Digital do IPG: Determination of antipsychotic drugs in hospital and wastewater treatment plant samples by gas chromatography/tandem mass spectrometry

N/A
N/A
Protected

Academic year: 2021

Share "Biblioteca Digital do IPG: Determination of antipsychotic drugs in hospital and wastewater treatment plant samples by gas chromatography/tandem mass spectrometry"

Copied!
9
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Chromatography

B

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / c h r o m b

Determination

of

antipsychotic

drugs

in

hospital

and

wastewater

treatment

plant

samples

by

gas

chromatography/tandem

mass

spectrometry

F.

Logarinho

a,1

,

T.

Rosado

a,b,1

,

C.

Lourenc¸

o

c

,

M.

Barroso

d

,

A.R.T.S.

Araujo

c,e

,

E.

Gallardo

a,b,∗

aCentrodeInvestigac¸ãoemCiênciasdaSaúde,FaculdadedeCiênciasdaSaúdedaUniversidadedaBeiraInterior(CICS-UBI),Covilhã,Portugal bLaboratóriodeFármaco-Toxicologia—UBIMedical,UniversidadedaBeiraInterior,Covilhã,Portugal

cInstitutoPolitécnicodaGuarda(IPG),EscolaSuperiordeSaúde,Guarda,Portugal

dServic¸odeQuímicaeToxicologiaForenses,InstitutodeMedicinaLegaleCiênciasForenses-Delegac¸ãodoSul,RuaManuelBentodeSousa,Lisboa,Portugal eUnidadedeInvestigac¸ãoparaoDesenvolvimentodoInteriordoIPG(UDI/IPG),Guarda,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received29May2016

Receivedinrevisedform12October2016 Accepted23October2016

Availableonline24October2016 Keywords:

Antipsychotics Solidphaseextraction

Gaschromatography–tandemmass spectrometry

Wastewaterssamples

a

b

s

t

r

a

c

t

Thedevelopmentandperformanceevaluationofamethodforthesimultaneousdeterminationofsix antipsychoticdrugsinhospitaleffluentsandwastewatertreatmentplants(WWTP)samplesareherein presented.Themethodinvolvesanoff-linemixedmode(reversed-phaseandstrongcationexchange) solidphaseextraction(SPE)withgaschromatography(GC)coupled totandemmassspectrometry (MS/MS).Thepresentmethodologywasvalidatedfollowinginternationallyacceptedcriteria,andthe studiedparametersincludedselectivity,linearity,limitsofdetection(LOD)andquantitation(LLOQ), instrumentallimits,precisionandaccuracy,stabilityandrecovery.Theprocedurewaslinearfor con-centrationsrangingfrom0.1to10␮g/L(0.02to2␮g/Lforhaloperidol),withdeterminationcoefficients higherthan0.99forallanalytes.Intra-andinter-dayprecisionwaslowerthan15%forallanalytesatthe studiedconcentrations,whileaccuracyremainedbetweena±15%interval.Recoveriesrangedfrom31% to83%.LowLODswereachieved,between2and10ng/L,allowingareliableidentificationofallanalytes attracelevels,usingonly50mLassamplevolume.Allstudiedparameterscompliedwiththedefined criteriaandthemethodwassuccessfullyappliedtogatherpreliminaryresultsofthedeterminationof antipsychoticsonhospitaleffluentsandoninfluentandeffluentofWWTPs,openingperspectivesforthe studyoftheirfateintheaquaticenvironment.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Pharmaceuticalsareconsideredaclassofnew,socalled “emerg-ing”contaminantsthathaveraisedgreatconcerninthelastyears [1]. They are continuously being released in the environment mainlyduetoinsufficientremovalinwastewatertreatmentplants (WWTPs)(70–80%),whereastheremaining20–30%isduetoother sourcesofpollution,suchaslivestockandindustrialwastes, hos-pitaleffluentsanddisposalofunusedorexpiredpharmaceuticals [2].

夽 Selected paperfromtheXVI Latin-AmericanCongressonChromatography (XVICOLACRO)andthe9thNationalMeetingonChromatography(9ENC),5th–9th January2016,Lisbon,Portugal.

∗ Correspondingauthorat:CentrodeInvestigac¸ãoemCiênciasdaSaúde, Univer-sidadedaBeiraInterior,Av.InfanteD.Henrique,6201-556,Covilhã,Portugal.

E-mailaddress:egallardo@fcsaude.ubi.pt(E.Gallardo).

1 Theseauthorscontributedequallytothispaper.

Asaresult,theamountofpharmaceuticalsandtheirbioactive metabolitesbeingintroducedintotheenvironmentisincreasingly high,whichleadstoharmfulconsequencesduetothetheir recog-nized(eco)toxicity,aswellasunpredictableenvironmentalimpact. Nowadays, a largediversityof pharmaceuticals hasbeenfound intheenvironment,includingclassessuchasanti-inflammatory drugs,analgesics,antibiotics,antiepileptics,␤-blockers,lipid reg-ulators,antidepressants,anxiolytics,sedatives,contraceptives,etc. [3].

Regarding the psychiatric drugs, anxiolytics, sedatives, hyp-notics and antidepressant groups have been determined in wastewaters and aqueous environmental matrices [4]. Surpris-ingly,theantipsychotics(APs)grouphasnotreceivedpractically anyresearchattention.Furthermore,inarecentstudyofpsychiatric drugsuseinPortugal,itwasverifiedanincreaseoftheconsumption ofthesedrugsintheperiod2000–2012,andparticularly

expres-http://dx.doi.org/10.1016/j.jchromb.2016.10.031

(2)

sivefor thegroupofAPs(+171%)[5].Thisrising numbercould beexplainedbytheincreaseoftheprevalenceofpsychosis dis-turbs,thelengtheningofthedurationoftreatment,thebroadening oflicensedtherapeuticindicationsobtainedforsecond-generation APsand therisingproportionofoff-label prescriptionsofthese drugs[6].

Schizophrenia is a debilitating and emotionally devastating illness with long-term impacton patients’ lives. Many experts considerschizophreniatobethemostsevereexpressionof psy-chopathology,encompassingsignificantdisruptions of thinking, perception, emotion, and behavior. Schizophrenia is usually a lifelongpsychiatricdisability[7].APsdrugsaretheelective treat-ment and they have been broadly classified into two groups. Theolderagents are referred toastypical orconventional APs or dopamine receptor antagonists, with pharmacologicactivity attributedto the blockade of central dopamine receptors, par-ticularly the D2 receptor subtype. Examples of typical agents include haloperidol (HAL), fluphenazine, thiothixene, chlorpro-mazine(CPZ),cyamemazine(CYA),levomepromazine(LVMP)and thioridazine[8].Neweragents,commonlyreferredtoasatypical, serotonin-dopamineantagonists,orsecond-generationAPs, con-sistofclozapine(CLZ),risperidone,olanzapine,quetiapine(QTP), ziprasidone,aripiprazole,paliperidone,iloperidone,asenapine,and lurasidone,which have demonstratedpostsynapticeffects at 5-HT2AandD2receptors[9,10].ThisnewgenerationofAPslargely overcametheextrapyramidalside-effectsviadecreasedactivityat dopaminereceptorscomparedwiththeirtraditionalcounterparts [11].Theyaretheagentsoffirstchoiceintreatmentof schizophre-niaand evidencesupports that theyhave superior efficacy for treatmentofnegativesymptoms,cognition,andmood[12].

Nowadays,inourcountrysince2000itwasverifiedthattheuse offirst-generationAPsremainedpracticallyunchanged,andthere hasbeenaneffectiveincreaseintheuseofsecond-generationAPs, withQTPbeingthedrugwiththehighestrateofuse[5].

Ingeneral,APsareadministeredatrelativelylowdailydosages andtheyarewidelymetabolizedinthebody.Inconsequence,the concentrationofthesedrugsinhumanspecimensisverylow,and itexhibitsinter-individualvariations,whichsuggeststheneedfor clinicalmonitoringofpatientsundergoingtherapy,inadditionto minimizethesideeffects[13].Inthisregard,APdrugshavebeen determinedinbiologicalmatricesbynumerousmethods,suchas gaschromatography(GC)coupledtoeithernitrogen-phosphorus detector[14,15],massspectrometric(MS)detection[16]or tan-dem massspectrometry(MS/MS) [17],high-performance liquid chromatography(LC)coupledtoUVordiodearray[18–20], coulo-metric[21],chemiluminescence[22],MS[23]orMS/MSdetectors [24–27],capillaryelectrophoresiswithelectrochemiluminescence [28]orUVdetection[29],andelectrochemicalmethods[30,31].

Concerningtheenvironmentfate,tothebestofourknowledge, therearefewreportsthatreferthedeterminationofAPsin aque-ousmatricesinmulti-residueanalysis,allusingLC–MS/MS,namely risperidoneintheUnitedStates[32],olanzapineinSerbia[33],CPZ, CLZ,olanzapineandrisperidoneinGreece [34],risperidoneand haloperidolinEurope[35],andatotalofnineAPs(CPZ, olanzap-ine,CLZ,risperidone,sulpiride,QTP,ziprasidone,aripiprazoleand perphenazine)inChina[36].

Therefore,themain goalofthis workis concernedwiththe development,optimizationandvalidationofananalytical method-ology for the specific and sensitive determination of different antipsychoticdrugs(HAL,CPZ,CYA,LVP,CLZ,andQTP).These com-poundswereselectedbasedonprescriptionandconsumptionrates inourcountry[37].Themethodologyusedherewasbasedon solid-phaseextraction(SPE)usingpolymericStrataX-Ccartridges,afast microwave-assistedderivatizationandGC–MS/MS.Thematrices usedinthisworkarehospitalwastewatersandsamplesandit con-stitutesafirstapproachtoassessthepotentialcontributionofthis

groupofpsychotropicdrugstothepharmaceuticalloadofWWTPs andthereforeitisintendedtodeterminetheoccurrenceandfate ofthesedrugsforabetterunderstandingofthepotential environ-mentalimplications.

2. Experimental

2.1. Reagentsandstandards

Standardmethanolicsolutionsofhaloperidol(HAL),clozapine (CLZ),chlorpromazine(CPZ)wereacquiredfromLGCPromochem (Barcelona, Spain) at the concentration of 1mg/mL. Promazine (PRZ)(IS),levomepromazine(LVP)andcyamemazine(CYA)were acquiredfromSigma-Aldrich(Lisbon,Portugal).Quetiapine(QTP; 98%purity)waskindlydonatedbyAstraZenecaPLC(London,UK).It shouldbepointedthatPRZisnotcommerciallyavailableas thera-peuticdruginPortugal,andthereforeitsappearanceinanauthentic sample,impairingquantitativeanalysis,ishighlyunlikelytooccur. Furthermore,thiscompound’schemicalstructureissimilartothat of studied compounds’, allowing improving linearity, precision andaccuracy,whileminimizinganalytelossesduringthesample preparationprocess.Methanol(MerckCo,Darmstadt,Germany), hydrochloricacid(HCl)(Panreac,Barcelona,Spain)andammonium hydroxide(J.T.Baker,Lisbon,Portugal)wereofHPLCgrade. Potas-siumdihydrogenphosphate(KH2PO4)wasacquiredfromPanreac (Barcelona,Spain),N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA)andtrimethylchlorosilane(TMCS)werepurchasedfrom Macherey-Nagel(Düren,Germany).Ultrapurewaterwasobtained byaMilli-QSystem(Millipore,Billerica,MA,USA).Phenomenex StrataTM-X-Cextractioncartridges (200mg)wereobtainedfrom Tecnocroma(CaldasdaRainha,Portugal).

Workingstandardsolutionswerepreparedbyproperlydiluting thestocksolutionswithmethanoltofinalconcentrationsof0.1,1 and10␮g/Lofallanalytes,exceptHAL(0.02,0.2and2␮g/L).The internalstandardworkingsolutionwaspreparedinmethanoltoa concentrationof10␮g/mL.Allworkingandstocksolutionswere storedintheabsenceoflightat4◦C.

2.2. Samplecollectionandpre-treatment

Thesamplesusedinthisworkwerewastewatersfromahospital andWWTPintheurbanregionofPorto,Portugal.Allsampleswere collectedinamberglassbottles, previouslywashedwith deter-gentandthenrinsedthoroughlywithMilli-Qwater.Everysample wascollectedinduplicate(about0.5L).Thehospitalwastewaters werecollectedattwodistinctsamplingpoints:attheeffluentof theinternmentservicesandatdifferentsitesofthefinaleffluentof thehospitalWWTP.Influentandeffluentwastewatersampleswere collectedfromoneWWTPnetwork.Thesampleswerethenbrought tothelaboratoryinice-packedcontainers.Uponarrival,allsamples wereimmediatelyvacuum-filteredthrougha1-␮mglass microfi-brefilter(TypeA/EGlassFiberFilters,PallCorporation)andthen througha 0.45-␮mmixed celluloseesterfilter(GN-6Metricel® MCEMembraneDiscFilters,PallCorporation).Finally,theywere storedat4◦Cuntilanalysis.

2.3. Gaschromatographyandmassspectrometryconditions Chromatographicanalysis wasdoneusing an HP 7890Agas chromatography system equipped with a model 7000B triple quadrupolemass spectrometer,both fromAgilentTechnologies (Waldbronn,Germany),aMPS2autosamplerandaPTV-injector fromGerstel(MülheimanderRuhr,Germany).Acapillarycolumn (30m×0.25-mmI.D.,0.25-␮mfilm thickness)with5% phenyl-methylsiloxane(HP-5MS),suppliedbyJ&WScientific(Folsom,

(3)

Table1

RetentiontimeandGC–MS/MSparameters(quantitationtransitionsunderlined).

Analyte Molecularweight(g/mol) Retentiontime(minutes) Transitions(m/z) Collisionenergy(eV) Dwelltime(␮s)

PRZ 284.13 10.95 179.2−>179.2 5 50 CPZ 318.10 11.73 271.8−≥257.1 20 19.1 318.5−>233.2 20 10.3 LVP 328.16 11.83 242.0−≥210.2 20 20.4 242.0−>227.1 20 15.0 CYA 323.14 12.21 323.7−≥277.2 20 30.8 323.7−>100.3 20 20.4 CLZ 326.13 14.02 255.6−≥192.1 20 30.6 255.6−>239.0 20 19.9 HAL 375.14 14.69 296.4−≥296.3 10 10.0 296.4−>103.2 10 50.1 QTP 455.21 18.56 320.7−≥210.2 30 79.1 208.8−>139.0 30 79.1

CA,USA),wasusedforthechromatographicresolutionofthe

phar-maceuticalsubstances.

Theinitialoventemperaturewasheldat120◦Cfor2min,then

raisedto300◦Cat20◦C/min(heldfor14min),givingatotalrun

timeof25min.Thetemperaturesoftheinjectionportandtheion

sourceweresetat250◦Cand280◦C,respectively.Thesamplewas

introducedintothegaschromatographbysplitlessinjectionmode

andtheflowofhelium(carriergas)was0.8mL/minataconstant

flowrate.

Themassspectrometerwasoperatedwithafilamentcurrent

of35␮Aandelectronenergy70eVinthepositiveelectron

ion-izationmode.Nitrogenwasusedascollisiongasataflowrateof

2.5mL/min.Datawasacquiredinthemultiplereaction

monitor-ing(MRM)modeusingtheMassHunterWorkStationAcquisition

Softwarerev.B.02.01(AgilentTechnologies).

Initially,theretentiontimesandmassspectrawereobtained

byindividuallyinjectingderivatizedstandardsolutionsatahigh

concentration(5␮g/mL).Bothretentiontimesandmass-to-charge

ratio(m/z)wereusedforcompoundidentification.Twotransitions

werechosenforeachcompound(onequantitativeandone

qualita-tive),andtheselectionwasperformedinsuchmannerinorderto

obtainbetterselectivityandsensitivityfortheanalytesandfewer

matrixinterferences.Thechoiceoftheionswasbasedonthehigher

massesandmoreabundantmasspeaks(especiallythemostspecific

massesforeachcompound)tomaximizesignal-to-noiseratioin

matrixextracts.Tandemmassspectrometryconditionswere

opti-mizedbyinjectingastandardsolutionatdifferentcollisionenergies

anddwelltimes.Thetransitionswerechosenbasedonthebest

selectivityand abundance,in ordertomaximizesignal-to-noise

ratioinmatrixextracts.Themostabundanttransitionwasused

forquantitation,whereasthesecondtransitionwasfor

confirma-tion.Table1resumestheprecursor,productions,collisionenergies,

retentiontimesanddwelltimeselectedforeachcompound.

2.4. Samplepreparation

ForAPsextraction,thefollowingprocedurewasused:a50mL ofwatersamplewasfortifiedwith25␮LoftheISsolution.After stirred-mixedfor15min,themixturewasloadedontotheSPE car-tridgespreviouslyconditionedwith2mLof methanoland2mL ofacidifiedultrapurewater (pH5).Interferenceswereremoved fromthe sorbentwith2mLof 0.1M HCl in water and2mLof 0.1MHCl inmethanol.Afterwashing,thecartridgesweredried underfullvacuumfor15mintoremovealltracesofwater.Finally, theretainedanalyteswereeluted with2mLof5%ammonia in methanol.Theelutionsolventwasevaporatedtodrynessundera gentlestreamofN2 andthedryextractswerederivatizedusing 65␮L ofMSTFA/TMCSin a microwavereactor at800Wduring 2min.Aftercoolingdowntoroomtemperature,theseextractswere

transferredtoautosamplervialsanda2␮Laliquotoftheresulting solutionwastheninjectedintheGC/MS–MSsystem.

3. Resultsanddiscussion

3.1. Derivatizationprocedure

Forthederivatizationprocedure,adomesticdigitalmicrowave ovenwithanominalpowerof800W,wasusedinthisstudy.A com-parisonwasmadewithaconventionalheatingblockat85◦Cduring 45min.Forthispurpose,twolotsofsampleswithalltheanalytes atconcentrationof1and10␮g/L(0.2and2␮g/LfromHAL)were prepared.Allthesampleswereextractedbytheaforementioned methodandderivatizationwasmadeusingbothheating proce-durestocomparetheirability.Similarresultswereobtainedfor bothsetsofexperiments(Fig.1).AfterapplicationofF-Testand t-Test witha significancelevel of0.05 itwasverifiedthatboth derivatizationproceduresarecomparable.Thisscorerepresentsa majorimprovementwhencomparedtotheclassicderivatization process,namelyinthereductionoftheanalysistime.

3.2. Validationprocedure

Thedescribedmethodwasfullyvalidatedaccordingtothe guid-ingprinciplesoftheFoodandDrugAdministration(FDA)[38]and oftheInternationalConferenceonHarmonization(ICH)[39].The validation wasperformedfollowing a5-day validationprotocol andincludedselectivity,linearityandlimits,intra-andinter-day precisionandaccuracy,recoveryandstability.

3.2.1. Selectivity

The method’s selectivity was evaluated by analyzing blank wastewater samples of ten different origins, to investigate the potentialinterferencesattheretentiontimesandselected tran-sitions of the studied compounds. Samples were pooled and separatedin20aliquots(tenanalyzedasblanksandtenspikedwith alltheanalytes),allspikedwiththeIS.Qualitycontrols(QC) sam-ples wereprepared and analyzedsimultaneously. Identification criteriaforpositivityincludedanabsoluteretentiontimewithin 2%or±0.1minoftheretentiontime ofthesameanalyteinthe controlsampleandthepresenceoftwotransitionspercompound. Toguaranteeasuitableconfidenceinidentification,themaximum allowedtolerancesfortherelativeionintensitiesbetweenthetwo transitions(asapercentageofthebasepeak)wereasfollows:ifthe relativeionintensityinthecontrolsamplewashigherthan50%, thenanabsolutetoleranceof±10%wasaccepted;ifthisvaluewas between25and50%,arelativetoleranceof±20%wasallowed; ifit wasbetween5 and25%,an absolutetoleranceof±5%was accepted;and,finally,forrelativeionintensitiesof5%orless,a relativetoleranceof±50%wasused[40].

(4)

Fig.1. Comparisonbetweenclassicalderivatizationusingathermalblockandtheuseofmicrowave-assistedderivatization.

Fig.2. IonchromatogramofaspikedsampleattheLOD(A)andablank(B)sample.

Usingtheabovementionedcriteriaforpositivity,alltheanalytes weresuccessfullyand unequivocally identifiedinallthespiked samples,whereasintheblanksamplesnointerferingpeakscould bedetectedand/ormisidentifiedasbeingtheanalyte.Therefore, the methodwas considered selective for the selected antipsy-choticsinwastewatersamples.Representativeionchromatograms ofaspiked(attheLOD)andablanksampleareshowninFig.2.

3.2.2. Calibrationmodelandlimits

Linearityofthemethodwasestablishedonspikedsamples pre-paredandanalyzedusingthedescribedextractionprocedure(five replicates)intherangeof0.1–10␮g/Lforallcompoundsexcept

forHAL(0.02–2␮g/L).Calibrationcurveswereobtainedby plot-tingthepeakarearatiobetweeneachanalyteandtheISagainst analyteconcentration.Theacceptancecriteriaincludeda determi-nationcoefficient(R2)valueofatleast0.99and thecalibrators’ accuracywithin±15%(exceptatthelowerlimitofquantification (LLOQ),where±20%wasconsideredacceptable).Themethodwas linearwithintheadoptedcalibrationrangesforallanalytes; how-ever,sincetheadoptedcalibrationrangeswerewideandinorder tocompensateforheterocedasticity,weightedleastsquares regres-sionshadtobeadopted.Sixweightingfactorswereevaluatedfor eachanalyte(1/√x,1/x,1/x2,1/√y,1/y,1/y2),andtheoneforwhich thesumofrelativeerrors(dataobtainedduringtheassessmentof

(5)

Table2

Linearitydata(n=5).

Analyte Weight Linearrange(␮g/L) Linearity R2* LLOQ(␮g/L) LOD(ng/L) IQL(␮g/L) IDL(ng/L) Slopea Intercepta CPZ 1/x 0.1–10 0.055±0.016 −0.013±0.0013 0.995±0.001 0.1 10 0.02 2 LVP 1/x 0.1–10 0.066±0.016 0.002±0.0004 0.994±0.003 0.1 10 0.04 4 CYA 1/x 0.1–10 0.029±0.006 −0.001±0.0001 0.993±0.003 0.1 10 0.03 3 CLZ 1/x 0.1–10 0.009±0.003 0.006±0.001 0.993±0.004 0.1 10 0.03 3 HAL 1/x 0.02–2 0.048±0.009 −0.001±0.003 0.994±0.004 0.02 2 0.008 0.8 QTP 1/x 0.1–10 0.003±0.001 0.002±0.001 0.993±0.001 0.1 10 0.03 3

aMeanvalues±standarddeviation.

inter-dayprecisionandaccuracy)wasthelowest,presenting simul-taneouslyameanR2valueofatleast0.99waschosen(Table2).This factorwas1/xforallanalytes.

Bymeansoftheseweightedleastsquaresregressions,linear relationshipswereobtained,andthecalibrators’accuracy(mean relativeerror(bias)betweenthemeasuredandspiked concentra-tions)waswithina±15%intervalforallconcentrations,exceptat theLLOQ(±20%).CalibrationdataareshowninTable2.

Togetherwitheachcalibrationcurve,azerosample(blank sam-plewithIS)andthreequalitycontrol(QC)samplesatlow[LQC: 0.8␮g/L;0.16␮g/L(HAL)],medium[MQC:3␮g/L;0.6␮g/L(HAL)] andhigh[HQC:6␮g/L;1.2␮g/L(HAL)]concentrations(n=3)were alsoanalyzed.

TheLLOQwasdefinedasthelowestconcentrationthatcouldbe measuredwithadequateprecisionandaccuracy,i.e.witha coef-ficientofvariation(CV,%)lessthan20%andarelativeerror(RE, %)within±20%ofthenominalconcentration.Themethod’slimits ofdetection(LOD)weredeterminedasthelowestconcentrations thatshowedadiscretepeakclearlydistinguishablefromtheblank withasignal-to-noiseratioofatleast3,inwhichtheanalytescould beunequivocallyidentified,andweredeterminedbyanalyzingsix replicatesofspikedsamples.

The LLOQs were 0.1␮g/L for all antipsychotics except HAL (0.02␮g/L). The LODswere10ng/Land 2ng/L for (HAL).These limitswereconsideredsatisfactory,especiallywhencomparedto thoseobtainedbyotherauthors.Asitcanbeobserved,theLODs obtainedbyourmethodwerecomparabletothosereportedby Borova et al. [34]. Indeed, these authors report LODs between 2.5–4.9ng/LforclozapineandchlorpromazinebyLC/MS/MS. Fur-thermore,andtothebestofourknowledge,GC–MS/MShasnot beenusedyetfortheremainingantipsychoticsdeterminationin thiskindofsample.Additionally,inthis work,even thoughthe derivatizationproceduremaybealimitingstepwhencomparing liquidchromatography(LC)andGCmethods,weconsiderthatthe GCtechnique(coupledtotandemMS)exhibitsasprincipal advan-tagethefactthatitislesssusceptibletomatrixeffects,thatrequires specialattentionwhenit isusedaLCtechniqueandevenmore whendealing withhighcomplexity samplesasthewastewater samples.

Instrumentaldetectionlimits(IDL)andinstrumental quantifica-tionlimits(IQL)werecalculatedusingsignal-to-noiseapproachin standardspreparedinthereagentofderivatizationasthe concen-trationsofeachcompoundcorrespondingtosignal-to-noiseratio of3:1and10:1,respectively.ThesevaluesareresumedinTable2.

3.2.3. Intra-andinter-dayprecisionandaccuracy

Precisionwasexpressedintermsofcoefficientofvariation(CV, %)andcalculatedbytheone-wayanalysisofvariation(ANOVA).

Intra-dayprecisionwasevaluatedbyanalyzinginthesameday 5replicatesofblanksamplesspikedwiththestudiedanalytesat 4concentrationlevels(0.5,1,5and10␮g/L)and(0.1,0.2,1,and 2␮g/LforHAL).Inter-dayprecisionwasevaluatedataminimumof sixconcentrationlevelswithina5-dayperiod.Theaccuracyofthe

methodwascharacterizedintermsofthemeanREbetweenthe measuredandthespikedconcentrations;theacceptedlimitwas ±15%forallconcentrations,exceptattheLLOQ,where±20%was accepted.

Theobtainedvaluesforintra-dayprecision(CV<12.97%)and bias(±14.34%),aswellastotheininter-dayprecision(CV<11.46%) andbias(±12.75%)wereacceptableatallconcentrations.These resultsaresummarisedinTable3.

Also,intermediateprecision(combinedintra-andinterday)was evaluated using theQC samplesprepared and analyzed simul-taneously with the calibration curves on 5 different days (15 measurementsforeachconcentration)[38].TheCVsweretypically below13%forallcompoundsatallconcentrations,whileaccuracy waswithin±12%ofthenominalconcentration(Table3).

3.2.4. Extractionrecovery

Forrecoverystudies,blanksampleswerespikedwithboth ana-lytesatthreeconcentrations(0.5,1and10␮g/L)and(0.1,0.2,and 2␮g/LforHAL)andanalyzedbythedescribedmethod(n=3),after whichtheIS wasadded.Atthesametime,blankextractswere spikedwiththesamequantityoftheanalytesandISafterelution. Theobtainedpeakarearatioswerecomparedbetweenextracted andnon-extractedsamples(thelatterwereusedasneatstandards). Usingtheaforementionedapproach,theabsoluterecoveryvalues rangedfrom31to83%forthestudiedanalytes(Table4).

Theserecoveryvalueswerefoundadequate,despiteofthefact thattheywerenotsohighinabsolutevalue.Yet,lowlimitsof detec-tionandquantificationwereobtained,meaningthatthemethodis sensitiveenoughtodetectlowlevelsofthecompounds.Ourvalues arelowerthanthoseobtainedbyotherauthors,namely concern-ingCPZandCLZ[34,36].However,Borovaet.al[34]havecalculated recoveriesusingauthenticsamples,whileinourcasespiked sam-pleswere used,sinceauthentic samplespositivefor allstudied compoundswerenotavailable.

3.2.5. Stability

Inordertostudyshort-termstability,blanksampleswerespiked attheabove-mentionedLQC,MQCandHQClevelsandleftatroom temperaturefor24h[38].Duringtheentirestabilityprocedurethe analyzedsampleswerecomparedwithsamplesfreshlyprepared andanalyzedinthesameday(bothsetsofsampleswere quan-tifiedinthesamecalibrationcurve,theobtainedconcentrations werecomparedandtherespectiveREwascalculatedrelativelyto thetheoreticalconcentrations;theCVsbetweenthetwosetsof sampleswerecalculated aswell).Theanalyteswereconsidered stableifboththeCVbetweenthetwosetsofsamplesandthe cal-culatedREswereinaccordancewiththeabove-mentionedcriteria forprecisionandaccuracy(CVsbelow15%andREswithina±15% interval)[38](Table5).

(6)

F. Logarinho et al. / J. Chromatogr. B 1038 (2016) 127–135 Table3

Intra-interdayandintermediateprecisionandaccuracy.

Analyte Intradayprecisionandaccuracy(n=5) Interdayprecisionandaccuracy(n=5) Intermediateprecisionandaccuracy(n=15)

Concentration (␮g/L) Measured Concentration (␮g/L)a CV(%) RE(%) Concentration (␮g/L) Measured Concentration (␮g/L)a CV(%) RE(%) Concentration (␮g/L) Measured Concentration (␮g/L)a CV(%) RE(%) CPZ 0.1 0.10±0.00 1.01 −4.49 0.5 0.57±0.00 0.33 14.34 0.5 0.55±0.02 4.44 9.48 0.8 0.83±0.03 3.80 4.15 1 0.96±0.12 12.97 −3.02 1 1.01±0.07 7.07 1.45 3 2.84±0.22 7.92 −5.39 2 1.75±0.04 2.09 −12.75 5 4.46±0.19 4.31 −10.36 5 5.26±0.09 1.70 5.16 6 5.68±0.44 7.71 −5.37 8 7.75±0.06 0.80 −3.10 10 9.58±0.15 1.57 4.52 10 10.12±0.09 0.90 1.23 0.83±0.03 3.80 4.15 LVP 0.1 0.10±0.01 9.59 −2.52 0.5 0.55±0.01 2.23 9.74 0.5 0.54±0.01 1.19 7.47 0.8 0.89±0.02 2.53 11.43 1 1.11±0.11 9.90 11.95 1 1.03±0.08 7.57 3.07 3 3.01±0.18 5.85 1.59 2 1.82±0.01 0.28 −8.99 5 4.42±0.18 4.17 −10.83 5 5.14±0.13 2.55 2.72 6 6.16±0.67 10.89 1.49 8 7.89±0.56 7.04 −1.32 10 9.55±1.18 12.37 2.21 10 10.19±0.66 6.47 1.92 CYA 0.1 0.10±0.01 11.04 1.13 0.5 0.52±0.03 5.66 4.68 0.5 0.50±0.01 2.70 −0.32 0.8 0.79±0.04 5.36 −0.72 1 0.98±0.08 8.50 1.16 1 1.00±0.02 1.76 −0.46 3 2.79±0.16 5.89 −6.87 2 1.79±0.11 6.17 −10.40 5 4.82±0.37 7.64 −3.60 5 5.23±0.19 3.65 4.64 6 5.90±0.16 2.63 −1.68 8 7.85±0.35 4.43 −1.81 10 9.73±1.02 10.45 −2.70 10 10.03±0.47 4.66 0.31 CLZ 0.1 0.11±0.00 1.92 6.93 0.5 0.50±0.05 9.51 −2.82 0.5 0.50±0.01 1.89 0.87 0.8 0.76±0.04 4.94 −4.85 1 1.05±0.03 4.75 5.02 1 1.00±0.08 8.10 −0.36 3 3.21±0.28 8.68 6.93 2 1.86±0.08 4.51 −6.90 5 5.63±0.02 0.35 11.78 5 4.97±0.19 3.91 −0.54 6 6.00±0.35 5.81 0.03 8 7.89±0.50 6.31 −1.33 10 10.71±0.02 3.70 7.10 10 10.46±0.45 4.28 4.65 0.76±0.04 4.94 −4.85 HAL 0.02 0.02±0.00 0.83 7.54 0.1 0.11±0.06 13.2 10.15 0.1 0.10±0.01 6.27 −0.40 0.16 0.16±0.05 6.38 2.80 0.2 0.22±0.03 11.9 12.40 0.2 0.19±0.01 4.71 −7.22 0.6 0.59±0.38 12.96 −1.45 0.4 0.37±0.02 4.34 −6.33 1 1.69±0.08 1.42 13.46 1 1.03±0.01 1.39 2.67 1.2 1.23±0.46 7.52 2.61 1.6 1.59±0.03 1.67 −0.59 2 2.75±0.90 8.39 7.49 2 2.02±0.00 0.11 0.97 QTP 0.1 0.10±0.01 5.59 0.07 0.5 0.47±0.05 10.29 −5.03 0.5 0.49±0.02 5.02 −2.92 0.8 0.77±0.06 7.51 −3.65 1 1.01±0.03 3.15 5.11 1 1.03±0.12 11.46 2.81 3 2.67±0.19 7.16 −7.71 2 1.79±0.06 3.57 −10.66 5 5.61±0.16 2.81 12.18 5 4.84±0.33 6.77 −3.26 6 5.36±0.42 7.86 −8.53 8 8.08±0.12 1.43 0.96 10 11.40±0.01 0.08 13.97 10 10.25±0.20 1.94 2.51

CV—Coefficientofvariation;RE—Relativeerror(measuredconcentration-spikedconcentration/spikedconcentration)×100. aMeanvalues±standarddeviation.

(7)

Table4

Absoluterecovery(n=3).

Analyte Concentration(␮g/L) Recoverya(%)

CPZ 0.5 56.7±3.8 1 45.3±6.7 10 43.2±5.4 LVP 0.5 45.0±2.7 1 34.1±1.4 10 30.5±4.6 CYA 0.5 62.6±5.1 1 67.5±3.8 10 64.6±1.2 CLZ 0.5 66.5±11.7 1 46.2±1.1 10 56.3±7.0 HAL 0.1 83.1±1.7 0.2 75.8±7.5 2 78.9±6.1 QTP 0.5 83.3±6.7 1 72.6±6.6 10 81.3±4.2

aMeanvalues±standarddeviation.

Table5 Short-termstability(n=3). Analyte Concentration (␮g/L) Measured Concentration (␮g/L)a Measured Concentrationfresh samples(␮g/L)a CPZ 0.8 0.80±0.06 0.85±0.02 3 2.65±0.06 2.59±0.10 6 6.18±0.72 5.36±0.07 LVP 0.8 0.82±0.11 0.91±0.01 3 2.70±0.15 2.58±0.14 6 5.37±0.08 5.18±0.11 CYA 0.8 0.78±0.04 0.75±0.03 3 2.56±0.09 2.58±0.47 6 6.11±0.04 5.48±0.31 CLZ 0.8 0.77±0.12 0.85±0.06 3 2.68±0.07 2.92±0.12 6 6.15±0.62 5.73±0.60 HAL 0.16 0.15±0.09 0.16±0.01 0.6 0.50±0.12 0.68±0.00 1.2 1.13±0.30 1.22±0.09 QTP 0.8 0.67±0.07 0.70±0.06 3 2.63±0.18 2.66±0.54 6 5.51±0.12 5.25±0.01

aMeanvalues±standarddeviation.

3.3. Identificationandquantificationofantipsychoticsinhospital wastewaterandWWTPsamples

Thepresentedanalyticalmethodwasdevelopedwiththe ulti-matepurposeofaccuratelymeasurea representativelistofthe availableantipsychoticsoneffluentsfromanurbanhospitaland oninfluentandeffluentwastewatersfromWWTP.

TheresultsobtainedaresummarisedinTable6,andan elucida-tivechromatogramofasampleispresentedinFig.3.

Asexpected,thehighernumberofantipsychoticswasfound atthe hospitaleffluentof theinternment services,namelyCPZ (<LLOQ)CYA,CLZ,LVP,probablyduefromtheiruseinthe man-agementofemergencyepisodes.Regardingthefinaleffluentofthe hospitalWWTP,indifferentsamplingsites,thesamecompounds werefound,exceptforCPZ,generallyatlowerlevelsthanthose foundattheeffluentofinternmentservices.Inaddition,QTPhas alsobeendetected.

Infact,theconcentrationsofAPsinthesesampleswerelower than1␮g/L(excludingQTPinonehospitaleffluentsample).Yuan etal. [36]reportedconcentrations of5.5–12.8␮g/Lfor CLZand 2–5␮g/LforQTP,butinpsychiatrichospitalWWTPsamples.

The results obtained for the hospital wastewaters couldbe explainedbytheeliminationoftheemergencyservices-admitted

Table6

Concentrationvaluesofthetargetcompounds.

Sample Origin Compounda Concentration(␮g/L)a

#1 Hospitaleffluentof internmentservices CPZ <LLOQ CYA 0.10±0.02 CLZ 0.50±0.06 LVP 0.10±0.01 #2 Hospitaleffluent LVP <LLOQ #3 Hospitaleffluent CYA 0.10±0.02 #4 Hospitaleffluent CYA 0.85±0.03

CLZ <LLOQ QTP 2.32±0.09 #5 Hospitaleffluent LVP <LLOQ

CLZ <LLOQ QTP <LLOQ #6 WWTPinfluent CLZ 0.15±0.02 QTP <LLOQ #7 WWTPeffluent CLZ 0.10±0.01 #8 WWTPeffluent CLZ <LLOQ

aTheotherstudiedcompoundsarenotdetectedinthesesamples.

patients’treatmentthroughthehospitalsewagesystem,andalso inthecaseofdaypatients,wholeftthehospitalaftertreatment.

Furthermore, thecontribution of this group of psychotropic drugstothepharmaceuticalloadofWWTPswasalsoaddressed. AttheinfluentoftheurbanWWTPnetwork,CLZandQTP(<LLOQ) weredetermined,whileattheeffluentonlyCLZ(100ng/L) was detected, probably due to the efficient removal of QTP by the WWTP.ThesefindingsconfirmedtheAPseffectiveeliminationin theWWTPandeventoitseffluentatrelevantconcentrations.

Inamulti-residuemethoddevelopedbyBorovaetal.[34]for thedeterminationofahighernumberofpsychoactive pharmaceu-ticals,illicitdrugs,andrelatedhumanmetabolitesinfiveWWTPs, CPZwasnotdetectedinanysampleandCLZwasonlydetermined inoneWWTPataconcentrationlowerthan50ng/L.Yuanetal. [36]determinedCPZ(<LLOQ),CLZ(<50ng/L)andQTP(<10ng/L)in municipalWWTPs.

Undoubtedly,theuseofpharmaceuticalsisgrowing,in agree-ment with the occurrences of pharmaceutical residues at low ␮g/LintheWWTPeffluents [41],andnamelytheconsumption ofAPs,andinthissensetheirinputtotheaquaticenvironment isincreasingmakingthemofincreasingenvironmentalrelevance. Thenumberofstudiesonitisatthemomentlimited.Moreover, in thisstudy,toreally confirmhospital loads,it wouldbe nec-essarytomeasuretheAPsnotonlyasparentcompounds,butin theirconjugatedformaswell;thereforetheactualoccurrenceof thosecompoundsinwastewatersmayhavebeenunderestimated. Infact,theseconjugateswhenpassingthroughthesewageplant couldbeconvertedbacktotheparentcompounds,whichcould leadtohigherconcentrationsintheeffluentthaninits correspond-inginfluent[42].Additionally,besidesthetransformationproducts, theanalysisofthemetabolitesshouldbealsoassessed,togivemore informationontheiroccurrenceinhospitalwastewaterandtheir fateinsubsequentWWTPs.

4. Conclusions

An analytical method using solid-phase extraction and gas chromatography/tandemmassspectrometrywasdevelopedand optimizedforthequantificationofsixantipsychoticsin wastewa-tersanditwassuccessfullyappliedtohospitaleffluentsandWWTP residualsamples.Thevalidatedmethodwaslinearintherange of0.1–10␮g/L(0.02–2␮g/LforHAL),withadequateprecisionand accuracyandreallowlimitsofdetection(≤0.01␮g/L)usingonly 50mLofsample.Furthermore,thefactthatmicrowave-assisted derivatizationresumestheprocessto2minmakesthewhole pro-cedurequickandlesstime-consuming.

(8)

Fig.3.Ionchromatogramofanauthenticsample(CLZ<LLOQ,CYA0.85andQTP2.32␮g/L).

Ourworkfocusedin afirstinstanceonthedeterminationof theseAPsinhospitalwastewaterseffluentsandsomepreliminary resultsfromfieldmeasurementswerereported.Itwasexpectable thathospitaleffluentwillcontributetosomeextenttothe pharma-ceuticalloadintheinfluententeringaWWTP.Theanalysisofthe receivingWWTPconfirmedthepresenceofthedrugsand there-foreprovidedmoreanalyticalinformationaboutthepathwayof theseemergingpollutants,pointingouttheneedoftheassessment oftheirecotoxicology(evaluationofeffectsonnon-target organ-isms)andalsothattheremoval/degradationprocessesefficacyof WWTPsshouldbeurgentlyimproved.Inconclusion,thepresent workpointsoutthenoteworthyimportanceoftheevaluationof thefate,theoccurrence,thepersistenceandbioaccumulationand thepotentialtoxicityoftheAPsintheaquaticenvironment,with possiblenegativeconsequencestotheaquaticecosystemsandin generaltothehealthpublic.

Acknowledgments

This work is supported by FEDER funds through the POCI—COMPETE2020—Operational ProgrammeCompetitiveness andInternationalisationin AxisI—Strengthening research, tech-nological development and innovation (Project POCI-01-0145-FEDER-007491) and National Funds by FCT—Foundation for ScienceandTechnology(ProjectUID/Multi/00709/2013).T.Rosado acknowledgestheProgramaOperacionalRegionaldoCentro 2007-2013QREN(Programa“MaisCentro”)intheformofafellowship (CENTRO-07-ST24-FEDER-002012),referenceTDM-2-006).

References

[1]C.G.Daughton,T.A.Ternes,Pharmaceuticalsandpersonalcareproductsinthe environment:agentsofsubtlechange?Environ.HealthPerspect.107(Suppl. (6))(1999)907–938.

[2]L.Patrolecco,N.Ademollo,P.Grenni,A.Tolomei,A.B.Caracciolo,S.Capri, Simultaneousdeterminationofhumanpharmaceuticalsinwatersamplesby

solidphaseextractionandHPLCwithUV-fluorescencedetection,Microchem. J.107(2013)165–171.

[3]O.A.Jones,N.Voulvoulis,J.N.Lester,Partitioningbehavioroffive pharmaceuticalcompoundstoactivatedsludgeandriversediment,Arch. Environ.Contam.Toxicol.50(2006)297–305.

[4]V.Calisto,V.I.Esteves,Psychiatricpharmaceuticalsintheenvironment, Chemosphere77(2009)1257–1274.

[5]M.Areia,A.D.Pereira,A.Banhudo,G.Coutinho,Non-steroidal

anti-inflammatorydrugsandgastroprotectiongapamongfamilyphysicians: resultsfromasurvey,GEJ.Port.deGastrenterologia20(2013)243–249.

[6]H.Verdoux,M.Tournier,B.Begaud,Antipsychoticprescribingtrends:a reviewofpharmaco-epidemiologicalstudies,ActaPsychiatryScand.121 (2010)4–10.

[7]M.Blouin,M.Rhainds,Useofnonsteroidalanti-inflammatorydrugsin colorectalsurgery:dotheriskscastashadowonthebenefits?Ann. Pharmacother.48(2014)1662–1664.

[8]L.B.Dixon,A.F.Lehman,J.Levine,Conventionalantipsychoticmedicationsfor schizophrenia,Schizophr.Bull.21(1995)567–577.

[9]H.Y.Meltzer,M.Huang,Invivoactionsofatypicalantipsychoticdrugon serotonergicanddopaminergicsystems,Prog.BrainRes.172(2008)177–197.

[10]J.Horacek,V.Bubenikova-Valesova,M.Kopecek,T.Palenicek,C.Dockery,P. Mohr,C.Hoschl,Mechanismofactionofatypicalantipsychoticdrugsandthe neurobiologyofschizophrenia,CNSDrugs20(2006)389–409.

[11]E.Saar,J.Beyer,D.Gerostamoulos,O.H.Drummer,Theanalysisof antipsychoticdrugsinhumanmatricesusingLC-MS(/MS),DrugTest.Anal.4 (2012)376–394.

[12]A.Figueras,D.Capella,J.M.Castel,J.R.Laorte,Spontaneousreportingof adversedrugreactionstonon-steroidalanti-inflammatorydrugs.Areport fromtheSpanishsystemofpharmacovigilance,includinganearlyanalysisof topicalandenteric-coatedformulations,Eur.J.Clin.Pharmacol.47(1994) 297–303.

[13]G.Zhang,A.V.TerryJr.,M.G.Bartlett,Bioanalyticalmethodsforthe determinationofantipsychoticdrugs,Biomed.Chromatogr.22(2008) 671–687.

[14]C.SanchezdelaTorre,M.A.Martinez,E.Almarza,Determinationofseveral psychiatricdrugsinwholebloodusingcapillarygas-liquidchromatography withnitrogenphosphorusdetection:comparisonoftwosolidphase extractionprocedures,ForensicSci.Int.155(2005)193–204.

[15]V.Samanidou,C.Stathatos,S.Njau,L.Kovatsi,Disposablepipetteextraction forthesimultaneousdeterminationofbiperidenandthreeantipsychotic drugsinhumanurinebyGC-nitrogenphosphorusdetection,Bioanalysis5 (2013)21–29.

[16]I.Vardakou,A.Dona,C.Pistos,G.Alevisopoulos,S.Athanaselis,C.Maravelias, C.Spiliopoulou,ValidatedGC/MSmethodforthesimultaneousdetermination ofclozapineandnorclozapineinhumanplasma.Applicationinpsychiatric

(9)

patientsunderclozapinetreatment,J.Chromatogr.B:Anal.Technol.Biomed. LifeSci.878(2010)2327–2332.

[17]B.M.daFonseca,I.E.Moreno,M.Barroso,S.Costa,J.A.Queiroz,E.Gallardo, Determinationofsevenselectedantipsychoticdrugsinhumanplasmausing microextractioninpackedsorbentandgaschromatography-tandemmass spectrometry,Anal.Bioanal.Chem.405(2013)3953–3963.

[18]G.Zhang,A.V.Terry,M.G.Bartlett,Simultaneousdeterminationoffive antipsychoticdrugsinratplasmabyhighperformanceliquidchromatography withultravioletdetection,J.Chromatogr.B856(2007)20–28.

[19]C.Waldschmitt,B.Pfuhlmann,C.Hiemke,Analysisofmultipleantidepressant andantipsychoticdrugsincludingactivemetabolitesinserumofpsychiatric patientsbyLCwithcolumnswitchingandspectrophotometricdetection, Chromatographia69(2009)821–827.

[20]L.Kovatsi,K.Redifis,K.Mihailidou,P.Pavlidis,V.Samanidou,Avalidated UHPLC-diodearraydetectormethodforthebioanalysisofatypical antipsychoticsinwholeblood,urineandcerebrospinalfluidfollowingSPE, Bioanalysis4(2012)2929–2938.

[21]M.A.Saracino,M.Amore,E.Baioni,C.Petio,M.A.Raggi,Determinationof selectedphenothiazinesinhumanplasmabysolid-phaseextractionand liquidchromatographywithcoulometricdetection,Anal.Chim.Acta624 (2008)308–316.

[22]S.A.Bellomarino,A.J.Brown,X.A.Conlan,N.W.Barnett,Preliminary evaluationofmonolithiccolumnhigh-performanceliquidchromatography withtris(2,2’-bipyridyl)ruthenium(II)chemiluminescencedetectionforthe determinationofquetiapineinhumanbodyfluids,Talanta77(2009) 1873–1876.

[23]E.Choong,S.Rudaz,A.Kottelat,D.Guillarme,J.L.Veuthey,C.B.Eap, Therapeuticdrugmonitoringofsevenpsychotropicdrugsandfour metabolitesinhumanplasmabyHPLC-MS,J.Pharm.Biomed.Anal.50(2009) 1000–1008.

[24]N.Ansermot,M.Brawand-Amey,A.Kottelat,C.B.Eap,Fastquantificationof tenpsychotropicdrugsandmetabolitesinhumanplasmabyultra-high performanceliquidchromatographytandemmassspectrometryfor therapeuticdrugmonitoring,J.Chromatogr.A1292(2013)160–172.

[25]L.Patteet,K.E.Maudens,B.Sabbe,M.Morrens,M.DeDoncker,H.Neels,High throughputidentificationandquantificationof16antipsychoticsand8major metabolitesinserumusingultra-highperformanceliquid

chromatography—tandemmassspectrometry,Clin.Chim.Acta429(2014) 51–58.

[26]J.Gradinaru,A.Vullioud,C.B.Eap,N.Ansermot,Quantificationoftypical antipsychoticsinhumanplasmabyultra-highperformanceliquid

chromatographytandemmassspectrometryfortherapeuticdrugmonitoring, J.Pharm.Biomed.Anal.88(2014)36–44.

[27]J.M.Juenke,P.I.Brown,F.M.Urry,K.L.Johnson-Davis,G.A.McMillin, SimultaneousUPLC-MS/MSassayforthedetectionofthetraditional antipsychoticshaloperidol,fluphenazine,perphenazine,andthiothixenein serumandplasma,Clin.Chim.Acta423(2013)32–34.

[28]J.Li,F.Zhao,H.Ju,Simultaneousdeterminationofpsychotropicdrugsin humanurinebycapillaryelectrophoresiswithelectrochemiluminescence detection,Anal.Chim.Acta575(2006)57–61.

[29]F.J.Lara,A.M.Garcia-Campana,F.Ales-Barrero,J.M.Bosque-Sendra, Developmentandvalidationofacapillaryelectrophoresismethodforthe determinationofphenothiazinesinhumanurineinthelownanogramper milliliterconcentrationrangeusingfield-amplifiedsampleinjection, Electrophoresis26(2005)2418–2429.

[30]M.Arvand,M.G.Shiraz,Voltammetricdeterminationofclozapinein pharmaceuticalformulationsandbiologicalfluidsusinganInsitu surfactant-modifiedcarbonionicliquidelectrode,Electroanalysis24(2012) 683–690.

[31]B.Nigovic,J.Spajic,Anovelelectrochemicalsensorforassayingof antipsychoticdrugquetiapine,Talanta86(2011)393–399.

[32]B.J.Vanderford,S.A.Snyder,Analysisofpharmaceuticalsinwaterbyisotope dilutionliquidchromatography/tandemmassspectrometry,Environ.Sci. Technol.40(2006)7312–7320.

[33]M.Petrovi ´c,B. ˇSkrbi ´c,J. ˇZivanˇcev,L.Ferrando-Climent,D.Barcelo, Determinationof81pharmaceuticaldrugsbyhighperformanceliquid chromatographycoupledtomassspectrometrywithhybridtriple quadrupole—lineariontrapindifferenttypesofwaterinSerbia,Sci.Total Environ.468–469(2014)415–428.

[34]V.L.Borova,N.C.Maragou,P.Gago-Ferrero,C.Pistos,N.S.Thomaidis,Highly sensitivedeterminationof68psychoactivepharmaceuticals,illicitdrugs,and relatedhumanmetabolitesinwastewaterbyliquidchromatography-tandem massspectrometry,Anal.Bioanal.Chem.406(2014)4273–4285.

[35]R.Loos,R.Carvalho,D.C.António,S.Comero,G.Locoro,S.Tavazzi,B. Paracchini,M.Ghiani,T.Lettieri,L.Blaha,B.Jarosova,S.Voorspoels,K. Servaes,P.Haglund,J.Fick,R.H.Lindberg,D.Schwesig,B.M.Gawlik,EU-wide monitoringsurveyonemergingpolarorganiccontaminantsinwastewater treatmentplanteffluents,WaterRes.47(2013)6475–6487.

[36]S.Yuan,X.Jiang,X.Xia,H.Zhang,S.Zheng,Detection,occurrenceandfateof 22psychiatricpharmaceuticalsinpsychiatrichospitalandmunicipal wastewatertreatmentplantsinBeijingChina,Chemosphere90(2013) 2520–2525.

[37]Infarmed,Psicofármacos:Evoluc¸ãodoconsumoemPortugalContinental (2000–2012),Infarmed,I.P.,Lisboa,2013,pp.1–21.

[38]FDAFoodDrugAdministration,GuidanceforIndustry:BioanalyticalMethod Validation,U.S.DepartmentofHealthandHumanServices,FDA,Maryland, 2001.

[39]ICH,InternationalConferenceonHarmonization(ICH),Validationof AnalyticalProcedures:TextandmethodologyQ2(R1),2005.

[40]WADA,WorldAnti-dopingAgency,Internationalstandardforlaboratories: identificationcriteriaforqualitativeassaysincorporatingcolumn chromatographyandmassspectrometry,(2010).

[41]M.Petrovi ´c,M.D.Hernando,M.S.Díaz-Cruz,D.Barceló,Liquid chromatography—tandemmassspectrometryfortheanalysisof

pharmaceuticalresiduesinenvironmentalsamples:areview,J.Chromatogr. A1067(2005)1–14.

[42]K.H.Langford,K.V.Thomas,Determinationofpharmaceuticalcompoundsin hospitaleffluentsandtheircontributiontowastewatertreatmentworks, Environ.Int.35(2009)766–770.

Referências

Documentos relacionados

Por isso, este estudo teve como objetivos: Elaborar, aplicar e validar um instrumento para avaliar o desempenho funcional e social de sujeitos amputados de

Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by

Simultaneous determination of udenafil and its active metabolite, DA-8164, in human plasma and urine using ultra-performance liquid chromatography–tandem mass

Liquid Chromatography and tandem mass spectrometry method for the quantitative determination of saxagliptin and its major pharmacologically active 5-monohydroxy metabolite in

Neste sentido, e atendendo a que a dotação de enfermeiros se encontra particularmente relacionada com a qualidade dos cuidados prestados (Ordem dos Enfermeiros, 2014a) e com

Liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for the determination of catecholamines and metanephrines in human urine using deuterated

evaporative stages based on commonly measured quantities: the 0.05 cm depth soil water content and the class A pan evaporation..

2 — As áreas referidas no número anterior são constituídas por uma faixa de protecção non -aedificandi de 25 metros para cada lado do eixo indicado na Planta de