• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número6"

Copied!
5
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Chemical

constituents

from

Bauhinia

acuruana

and

their

cytotoxicity

Roberto

W.S.

Góis

a

,

Leôncio

M.

de

Sousa

a

,

Horlando

C.

da

Silva

a

,

Francisco

E.F.

da

Silva

a

,

Antonia

T.A.

Pimenta

a

,

Mary

A.S.

Lima

a

,

Angela

M.C.

Arriaga

a

,

Telma

L.G.

Lemos

a

,

Raimundo

Braz-Filho

b,c

,

Gardenia

C.G.

Militão

d

,

Paulo

B.N.

da

Silva

d

,

Francisco

J.T.

Gonc¸

alves

e

,

Gilvandete

M.P.

Santiago

f,∗

aDepartamentodeQuímicaOrgânicaeInorgânica,CentrodeCiências,UniversidadeFederaldoCeará,Fortaleza,CE,Brazil

bLaboratóriodeCiênciasQuímicas,CentrodeCiênciaseTecnologia,UniversidadeEstadualdoNorteFluminenseDarcyRibeiro,CamposdosGoytacazes,RJ,Brazil cDepartamentodeQuímica,InstitutodeCiênciasExatas,UniversidadeFederalRuraldoRiodeJaneiro,Seropédica,RJ,Brazil

dDepartamentodeFisiologiaeFarmacologia,CentrodeCiênciasBiológicas,UniversidadeFederaldePernambuco,Recife,PE,Brazil eInstitutoFederaldoMatoGrossodoSul,CampusNovaAndradina,FazendaSantaBárbara,NovaAndradina,MS,Brazil

fDepartamentodeFarmácia,FaculdadedeFarmácia,OdontologiaeEnfermagem,UniversidadeFederaldoCeará,Fortaleza,CE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2June2017

Accepted21September2017

Availableonline31October2017

Keywords:

Fabaceae Bibenzyls

Oxepinderivatives

Flavonoids Terpenoids Cytotoxicity

a

b

s

t

r

a

c

t

Phytochemical investigation of Bauhinia acuruana Moric., Fabaceae, resulted in the isolation of sixteenconstituents,includingtwonewcompounds2′-hydroxy-2,3,5-trimethoxybibenzyl(1), (2R,3S)-2-(3,4′-dihydroxyphenyl)-5-methoxy-6-methylchroman-3,7-diol(2),togetherwithfourteenknownones (3–16).Thestructuresofthecompoundswereestablishedbyspectroscopicanalysisincluding HR-ESI-MS,1Dand2DNMRdata,followedbycomparisonwithpreviouslyreporteddatafromtheliterature. Compounds1,2,6,7,8and9wereevaluatedfortheircytotoxicity,whichturnedouttobemarginalina panelofsixhumancancercelllines.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Bauhinia,Fabaceae,isalargegenuscontainingabout500species of shrubs, and small trees distributed throughout the tropical areasof Brazil,Peru,Asia,Paraguay, and Argentina (Soares and Scarminio,2008).Manyspeciesofthisgenushavebeenwidelyused infolkmedicinetotreatdiabetes,infections,painandinflammation (CechinelFilho,2009).

BauhiniaacuruanaMoric.,isashruborsubshrubthatusually growsinmountainousareasand/orwithaltitudesof600–1100m (VazandTozzi,2003).Previousstudieshaveshownthatthe essen-tialoilfromleavesof B. acuruanaand pacharin (6), compound isolatedfromtherootsofthisspecies,showedlarvicidalactivity againstAedesaegypti(Goisetal.,2011;Góisetal.,2013).Previous investigationscarriedoutwithpacharin(6)andbauhiniastatin1 (7)haveshownthatthesecompoundsexhibitedsignificantgrowth inhibitionagainstpancreasadenocarcinoma(BXPC-3),breast ade-nocarcinoma(MCF-7),CNSglioblastoma(SF268),lung largecell

∗ Correspondingauthor.

E-mail:gilvandete@pq.cnpq.br(G.M.Santiago).

(NCI-H460),andprostatecarcinoma(DU-145)humancancercell lines(Pettitetal.,2006).

InthesearchforbioactivenaturalcompoundsfromB. acuru-ana,theisolationandstructuralelucidationoftwonewcompounds (1–2), together with fourteen known compounds (3–16) are reported herein. In addition, the cytotoxicity of 2′

-hydroxy-2,3,5-trimethoxybibenzyl (1), (2R,3S)-2-(3′,4

-dihydroxyphenyl)-5-methoxy-6-methylchroman-3,7-diol(2),pacharin(6), bauhias-tatin1(7),fisetinidol(8),and(2R,3S)-2-(3′,4

-dihydroxyphenyl)-5-methoxychroman-3,7-diol (9) were assessed against colon carcinoma(HTC-116), glioblastoma(SF-295),ovarian carcinoma (OVCAR-8),breastadenocarcinoma(MCF-7),lungcarcinoma (NCI-H292) and pro-myelocytic leukemia(HL-60) humancancercell lines.

Materialsandmethods

Generalexperimentalprocedures

Meltingpoints weredeterminedona digital Mettler Toledo FP82HTapparatusandareuncorrected.Infrared(IR)spectrawere recorded ona Perkin-ElmerFT-IR 1000 spectrometerwith KBr

https://doi.org/10.1016/j.bjp.2017.09.002

0102-695X/©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

pellets. Optical rotations were obtained on a Perkin-Elmer Q-200polarimeter,at589nmand25◦C.1Hand13CNMR(1Dand

2D)spectrawereperformedonBrukerAvanceDPXand/or DRX-500spectrometers, operatingat 300and500MHzfor 1H NMR, and 75 and 125MHz for 13C NMR, respectively. The chemical shifts(ı)areexpressedinppm.Thehighresolutionmassspectra wererecordedonaShimadzuLCMS-IT-TOFspectrometerequipped withaZ-sprayESI(electrospray)source.Highperformanceliquid chromatography(HPLC)analysiswasperformedonaShimadzu chromatographerequippedwithaternarypump(Shimadzu LC-20AT)andUVdetector(ShimadzuSPD-M20A),usingPhenomenex RP-18 column (analytical: 250×4.6␮m, 5m; semi-preparative: 250×10mm,10␮m).HPLCgradesolventswerepurchasedfrom TediaCo.(SãoPaulo,Brazil)andHPLCgradewaterwasobtained byaMilli-Qpurificationsystem.Silicagel60(70–230mesh,Vetec, RiodeJaneiro,Brazil)andSephadexLH-20(Pharmacia)wereused for column chromatography. Thin layer chromatography (TLC) wasperformedonprecoated silicagel polyestersheets (kiesel-gel60 F254, 0.20mm, Silicycle,Quebec, Canada), and the spots werevisualizedbyUVdetectionand/orheatingaftersprayingwith vanillin/perchloricacid/EtOHsolution.Thehumantumorcelllines wereobtainedfromtheBancodeCélulasdo Rio deJaneiro(RJ, Brazil)andLaboratóriodeOncologiaExperimentaldaUniversidade FederaldoCeará(CE,Brazil).

Plantmaterial

Theleavesandstalks ofBauhiniaacuruana Moric.,Fabaceae, werecollectedinMay2008,whiletherootswerecollectedinJune 2011atTianguáCounty,StateofCeará,Brazil.Theplantmaterial wasidentifiedbyEdsonPereiraNunesfromtheHerbário Prisco Bezerra(EAC),DepartamentodeBiologia,UniversidadeFederaldo Ceará,Brazilwherevoucherspecimens(#42405and#49268)have beendeposited.

Extractionandisolation

Air-dried and finely powdered roots (1.1kg) were exhaus-tivelyextractedwithEtOH(4×8l)atroomtemperatureforthree weeks,andevaporatedunderreducedpressuretoyieldthecrude EtOH extract (50.3g), which was subjected to silica gel col-umnchromatographyelutedwithhexane,CH2Cl2,CH2Cl2/EtOAc (1:1),EtOAcand MeOHtogivehexane (0.85g),CH2Cl2 (1.59g), CH2Cl2/EtOAc (1:1)(3.89g), EtOAc(8.71g) and MeOH (21.15g) fractions.TheCH2Cl2fractionwassubmittedtosilicagelcolumn chromatography,usingahexane/CH2Cl2gradientfrom4:1to0:1, toaffordsixfractions(F1–F6).FractionF6(254.8mg;CH2Cl2)and fractionF5(136.5mg;hexane/CH2Cl2,1:4)wereindividually puri-fiedbysilicagelcolumnchromatographyelutedwithCH2Cl2 to obtaincompounds1(19.4mg)and3(22.5mg),respectively.The CH2Cl2/EtOAc(1:1)fractionwaschromatographedonasilicagel columnelutedwithagradientofhexane/EtOAc(4:1to0:1)to pro-videsevenfractions(F1–F7).SeparationoffractionF3(390.5mg; hexane/EtOAc, 4:1)by silicagel columnchromatography, using hexane/CH2Cl2 (1:1),hexane/CH2Cl2 (1:3)andCH2Cl2 aseluent, yieldedthemixtureamixtureofsitosterol(4)andstigmasterol(5) (28.8mg;hexane/CH2Cl2,1:1)andpacharin(6;26.0mg;CH2Cl2). A partof EtOAcfraction(2.4g) was subjectedto silicagel col-umnchromatography,elutedwithagradientofhexane/EtOAc(6:4 to0:1) to producesix fractions (F1-F6). Fraction F2(144.3mg; hexane/EtOAc,6:4)wasfurtherchromatographed onasilicagel column,usinghexane/EtOAc(17:3)aseluent,toafford bauhini-astatin 1 (7; 26.2mg), while fraction F6 (64.2mg, EtOAc) was submittedtosemi-preparativeRP-18HPLCanalysis,usingan iso-craticmixtureMeOH/H2O(9:11)toyieldcompounds8(29.6mg;

tR4.6min),9(4.2mg;tR5.3min)and2(21.3mg;tR7.2min).

Air-driedleaves(0.9kg) weresuccessivelyextractedatroom temperaturewithhexane(4×5l)forthreeweeks,EtOAc(4×5l) forthreeweeks,andthenwithEtOH(4×5l)forthesameperiod. Afterfiltration,thesolventswereevaporatedunderreduced pres-suretogive:hexane (21.0g), EtOAc(29.0g) andEtOH (108.0g) extracts.Apartofhexaneextract(15.7g)wasfractionedover sil-icagelbyelutionwithhexane,CH2Cl2,EtOAc,andMeOHtogive fourfractions:hexane (9.3g), CH2Cl2 (4.3g), EtOAc(0.95g) and MeOH(0.13g).Thehexanefractionwassubjectedsilicagelcolumn chromatographyelutingwiththemixtureofhexane/CH2Cl2 and CH2Cl2/EtOAcinincreasingorderofpolarity.Fractionselutedwith hexane/CH2Cl2 (1:1)werecombinedandchromatographedona silicagelcolumn,usingagradientofhexane/EtOAc(19:1to0:1)to givecompounds10(13.6mg;hexane/EtOAc,9:1),and11(7.7mg; hexane/EtOAc, 17:3). The EtOAc extract (29.0g) wassubmitted tosilicagelcolumnchromatographyelutedwithhexane/CH2Cl2, CH2Cl2,CH2Cl2/MeOH,andMeOHtoprovidetwentyfourfractions (F1-F24).FractionF20(554mg;CH2Cl2/MeOH,4:1)wassubjected torepeatedSephadexLH-20columnelutedwithCHCl3/MeOH(1:1) toobtainquercetin3-O-rhamnoside(12;7.1mg)anddaucosterol (13;9.5mg).

Air-driedandfinelypowderedstalks(1.2kg)wereexhaustively extractedwithEtOH(4×5l)atroomtemperatureforthreeweeks, andevaporatedunderreducedpressuretoyieldthecrudeEtOH extract(70g),whichwassubmittedtosilicagelcolumn chromatog-raphyelutedwithhexane,CH2Cl2,EtOAcandMeOHtogivehexane (694mg),CH2Cl2(1.17g),EtOAc(4.11g)andMeOH(36.27g) frac-tions.The hexanefractionwaschromatographed ona silicagel column elutedwitha gradient of hexane/EtOAc(9:1 to0:1)to affordlupeol(14;22.5mg),andphyscion(15;14.7mg).TheEtOAc fractionwassubjectedtosilicagelcolumnchromatographyusing aCH2Cl2/MeOHgradientfrom19:1to1:1,toobtaineleven frac-tions (F1–F11). Fraction F9(339.1mg; CH2Cl2/MeOH, 4:1) was furthersubmittedtosilicagelcolumnchromatography,elutedwith CH2Cl2/MeOH(17:3)toyieldastilbin(16;112.0mg).

Spectraldata

2′-Hydroxy-2,3,5-trimethoxybibenzyl=

2-[2-(2,3,5-trimethoxyphenyl)ethyl]phenol (1): Light brown oil; IR (KBr) √

max:3419,2960,1600,1493,1458,1202cm−1;NMRdata(CDCl3, 300and75MHz)seeTable1; HRESIMSm/z: 311.1254[M+Na]+ (calcdforC17H20NaO4+:311.1259).

(2R,3S)-2-(3′,4

-Dihydroxyphenyl)-5-methoxy-6-methylchroman-3,7-diol (2):Yellow solid;[␣]D20=−2.6 (c=0.1, MeOH);IR(KBr)√max:3394,1618cm−1;NMRdata(CD3OD,300 and75MHz)seeTable1;HRESIMSm/z:353.0819[M+Cl]− calcd

forC17H18ClO6−:353.0792.

Cytotoxicityassay

The humantumor cell lines used in this work wereMCF-7 (breastadenocarcinoma),NCI-H292 (lungcarcinoma)andHL-60 (pro-myelocyticleukemia),whichwereobtainedfromtheBanco de Células do Rio de Janeiro (RJ, Brazil), and HTC-116 (colon carcinoma),SF-295(glioblastoma),OVCAR-8(ovariancarcinoma) obtained from the Laboratório de Oncologia Experimental da UniversidadeFederal doCeará(Ceará,Brazil).Cancercellswere maintainedinRPMI1640mediumorDMENsupplementedwith 10% fetal bovine serum, 2mm/l glutamine, 100U/ml penicillin, 100␮g/mlstreptomycinat37◦Cwith5%CO2.Thecytotoxic

(3)

Table1

1H(300MHz)and13CNMR(75MHz)dataof1(inCDCl3)and2(inCD3OD),includingdataobtainedbyHSQCandHMBCcorrelations.ıinppm,JinHz.

Position 1 2

ıC ıH HMBC(H→C) ıC ıH HMBC(H→C)

1 135.90 – – –

2 140.99 – CH2(7) 82.90 4.60(d,J=7.3) C(9),C(1′),CH(2′),CH(6′)

3 153.42 – 68.81 3.99(m)

4 98.73 6.42(d,J=2.9) C(2),C(3),C(5),CH(6) 28.83 2.63(dd,J=16.1,8.0) 2.91(dd,J=16.1,5.2)

CH(2),C(10)

5 156.41 – 158.80 –

6 105.29 6.32(d,J=2.9) C(2),CH(4),C(5) 111.41 –

7 32.12 2.81(s) C(1),CH(6) 156.44 –

8 32.66 2.81(s) C(1),C(1′),C(2),CH(6) 99.78 6.15(s) C(6),C(7),C(9),C(10)

9 – – 154.33 –

10 – – 106.37 –

1′ 127.44 132.35

2′ 154.64 115.32 6.83(d,J=1.6) CH(2),C(4),CH(6)

3′ 115.97 6.90(d,J=6.0) C(1) 146.36

4′ 128.00 7.14(dt) 146.36

5′ 120.55 6.80(dt) C(1) 116.28 6.76(d,J=8.1) C(1),C(3) 6′ 130.10 7.12(d,J=6.0) CH2(8),C(2) 120.09 6.70(dd,J=8.1,1.6) CH(2),C(4)

MeO-2 61.29 3.86(s) C(2) – –

MeO-3 55.99 3.88(s) C(3) – –

MeO-5 55.79 3.78(s) C(5) 60.46 3.67(s) C(5)

Me-6 – – 8.83 2.04(s) C(5),C(6),C(7)

HSQC,HeteronuclearSingleQuantumCoherenceSpectroscopy;HMBC,HeteronuclearMultipleBondConnectivity.

adherentcellsor3×105cells/mlforleukemia).Compounds1,2,6, 7,8and9dissolvedinDMSO1%wereaddedtoeachwelland incu-batedfor72h.ControlgroupsreceivedthesameamountofDMSO. Thecompoundconcentrationsaddedtothecellsrangedfrom0.39 to25.00␮g/ml.After69hoftreatment,MTT(0.5mg/ml)wasadded, 3hlater,theMTT formazan productwasdissolvedin 100␮lof DMSO,and absorbancewasmeasuredat 570nm inplate spec-trophotometer(VarioskanFlask,ThermoScientific).Doxorubicin wasusedaspositivecontrol.IC50valuesandtheir95%confidence intervalsfortwodifferentexperimentswereobtainedbynonlinear regressionusingGraphpadPrismversion5.0forWindows (Graph-PadSoftware,SanDiego,California,USA).

Resultsanddiscussion

TheEtOHextractfromrootsofB.acuruanawassubjectedto multiplechromatographicstepstoyieldtwonewcompounds(1–2) andtheknowncompounds(3–9).Theair-driedleaveswere succes-sivelyextractedwithhexane,EtOAc,andEtOH.Chromatographic fractionationofthehexaneandEtOAcextractsofB.acuruanaleaves yieldedthecompounds(10–11)and(12–13),respectively.Three knowncompounds(14–16)wereisolatedfromtheEtOHextract fromstalksofB.acuruana.Thestructuresofknowncompounds (3–16)wereidentifiedas2′-hydroxy-3,5-dimethoxybibenzyl (3) (Takasugietal.,1987;DeSousaetal.,2016),amixtureof sitos-terol (4) and stigmasterol (5) (Da Silva et al., 2012), pacharin (6)(Pettitetal.,2006;Anjaneyuluetal.,1984),bauhiniastatin1 (7)(Pettitetal.,2006),fisetinidol(8)(Imaietal.,2008),(2R,3S

)-2-(3′,4-dihydroxyphenyl)-5-methoxychroman-3,7-diol(9)(

Cren-Olivéetal.,2002),1␤,6␣-dihydroxy-4(14)-eudesmene(10)(Moujir etal.,2011),aromadendrane-4␤,10␣-diol(11)(Meiraetal.,2008), quercetin3-O-rhamnoside(12)(Slowingetal.,1994),daucosterol (13)(Lendletal.,2005),lupeol(14)(Imametal.,2007),physcion (15)(Danielsenetal.,1992),andastilbin(16)(Bezerraetal.,2013) bycomparisonoftheirspectroscopicdatawiththosereportedin theliterature.

Compound 1 was isolated as a brown viscous liquid and possessed a molecularformula C17H20O4 witheight degrees of unsaturationfromitshigh-resolutionelectrosprayionization spec-trum(HRESIMS)atm/z311.1254[M+Na]+,(calcd311.1259).The molecularformulawasfurthersubstantiatedbythe13CNMRand distortionlessenhancementbypolarizationtransfer(DEPT)spectra of1whichshowed17carbonresonances,includingthreemethyl, twomethylene,sixmethine,andsixquaternarycarbons,including fouroxygenatedatıC140.99,153.42,154.64and156.41(Table1). TheIRspectrumshowedabsorptionbandsforhydroxylgroupat 3419cm−1andaromaticringat1600and1458cm−1.Its1HNMR spectrumexhibitedtwodoubletsatıH6.42(J=2.9Hz,H-4)and 6.32(J=2.9Hz,H-6)for aromaticprotons meta-positioned, indi-catingtheoccurrenceofa1,2,3,5-tetrasubstitutedbenzenering, foursignalsatıH6.90(d,J=6.0Hz,H-3′),7.14(dt,H-4′),6.80(dt, H-5′),and7.12(d,J=6.0Hz,H-6)whichallowedtopostulatethe

presence ofa 1,2-disubstituted benzenering, and onesignalat

(4)

Table2

Cytotoxicactivityofcompounds1,2,6,7,8and9.

Compound IC50(␮M)(95%confidenceintervals)a

HCT-116 SF-295 OVCAR-8 MCF-7 NCI-H292 HL-60

(coloncarcinoma) (gliobastoma) (ovariancarcinoma) (breastadenocarcinoma) (lungcarcinoma) (pro-myelocyticleukemia)

1 23.96(19.79–28.47) 37.85(27.08–52.08) 40.62(25.69–64.24) >86.80 57.63(35.42–94.44) 19.44(15.62–23.96)

2 >78.62 >78.62 >78.62 >78.62 >78.62 >78.62

6 19.26(16.30–22.96) 14.44(10.74–19.63) 23.33(18.52–30.37) 20.00(14.81–26.67) 11.11(9.63–12.59) 8.15(7.41–8.89)

7 25.70(22.53–28.87) 21.13(12.32–36.97) 22.89(18.66–27.82) 21.83(14.44–32.75) 10.91(9.51–12.68) 10.21(7.75–13.03)

8 >91.24 >91.24 >91.24 >91.24 >91.24 >91.24

9 >82.24 >82.24 >82.24 >82.24 >82.24 >82.24

Doxorubicin 0.18(0.18–0.36) 0.36(0.36–0.55) 0.55(0.36–0.55) 0.55(0.36–0.92) 0.36(0.18–0.92) 0.04(0.02–0.04)

HCT-116,coloncarcinoma;SF-295,glioblastoma;OVCAR-8,ovariancarcinoma;MCF-7,breastadenocarcinoma;NCI-H292,lungcarcinoma;HL-60,pro-myelocyticleukemia.

aTheresultsweremeansoftwoindependentexperiments.

indicatedthat1wasabibenzyl(Kittakoopetal.,2000;Boonphong etal.,2007;Apisantiyakometal.,2004;Yangetal.,2014;Chen etal.,2014;Xuetal.,2014).Detailedanalysisofits1Hand13C NMRspectrashowedthatcompound1wassimilartocompound3

(Takasugietal.,1987;DeSousaetal.,2016),exceptforthepresence ofthesignalatıH3.86(s,3H)observedinthe1HNMRspectrum of1,whichwasassignedtoanadditionalmethoxylgroup (MeO-2).IntheHMBCspectrum,thecorrelationsfromthesignalatıH 6.42(d,J=2.9Hz,H-4)withthecarbonsignalsatıC140.99(C-2), 153.42(C-3),and156.41(C-5),andcorrelationsfromthesignalat

ıH6.32(d,J=2.9Hz,H-6)withthecarbonsignalatıC98.73(C-4) allowedtoassignthelocationofmethoxylgroupsatC-2,C-3and C-5.Similarly,thecorrelationsfromH-6′atıH7.12(d,J=6.0Hz)

withC-8 (ıC 32.66), and C-2′ (ıC 154.64), and the correlations fromH2-7atıH2.81(s)withC-1(ıC135.90),andC-6′(ıC130.10) allowedtoassignaphenolichydroxylgroupatC-2′andconfirmed

thelocationofthe CH2CH2 unit,respectively(Table1).Onthe basisofthesespectroscopicdata,compound 1wasidentifiedas 2′-hydroxy-2,3,5-trimethoxybibenzyl.

Compound 2 was obtained as yellow solid with a specific rotationof[␣]D20=−2.6.IthadthemolecularformulaC17H18O6 based on its HRESIMS (observed m/z 353.0819 [M+Cl]−, calcd

353.0792)and13CNMRdata,indicatingninedegreesof unsatura-tion.ItsIRspectrumshowedabsorptionbandsforhydroxylgroup at3394cm−1andaromaticringat1618cm−1.The1Hand13CNMR

dataof2exhibitedsignalsoftwooxygenatedCHgroupsatıH/ıC 3.99(m,H-3)/68.81,and4.60(d,J=7.3Hz,H-2)/82.90,CH2groupat

ıH/ıC2.63(dd,J=16.1and8.0Hz,H-4a)/28.83,andıH/ıC2.91(dd,

J=16.1and5.2Hz,H-4b)/28.83,andtwosignalsofCH3groupsat

ıH/ıC2.04(s,Me-6)/8.83,and3.67(s,MeO-5)/60.46,togetherwith one1,2,3,4,5-pentasubstituted(ıH/ıC6.15(s,H-8))/99.78,andone 1,3,4-trisubstituted(ıH/ıC6.83(d,J=1.6Hz,H-2′)/115.32,6.76(d,

J=8.1Hz,H-5′)/116.28,and6.70(dd,J=8.1and1.6Hz,H-6)/120.09)

benzenerings(Table1).AcomparisonoftheNMRdataof2(Table1) with those reported for (2R,3S)-2-(3′,4

-dihydroxyphenyl)-5-methoxychroman-3,7-diol(9)(Cren-Olivéetal.,2002)showedhigh similarity.Thedifferencebetweencompounds2and9isthe pres-enceofthesignalatıH/ıC2.04(s,3H)/8.83observedintheNMR spectraof2,whichwasassigned toamethylgroupofaromatic ring(Me-6).ThelocationofthemethylgroupatC-6was estab-lishedaccordingtoobservedcorrelationsfromthesignalatıH2.04 (s,Me-6)withthecarbonsignalsatıC111.41(C-6),156.44(C-7), and158.80(C-5),andfromthesignalatıH6.15(s,H-8)withthe car-bonsignalsatıC111.41(C-6)intheHMBCspectrum.Therelative stereochemistryof2wassubstantiatedbytheNOESYdata,which showedNOEcorrelationsbetweenthepseudoaxialhydrogenH-2 (ıH4.60(d,J=7.3Hz))andH-3(ıH3.99(m)),andbycomparisonof itsopticalrotationwiththereporteddatafor8(Imaietal.,2008) and9(Cren-Olivé etal.,2002).In addition,wereobservedNOE effectbetweenhydrogenatoms:H-2(ıH4.60(d,J=7.3Hz))and H-2′(ıH6.83(d,J=1.6Hz));H-2(ıH4.60(d,J=7.3Hz))andH-6(ıH

6.70(dd,J=8.1and1.6Hz));andH-3(ıH3.99(m))andH-6′(ıH6.70 (dd,J=8.1and1.6Hz))(Table1).Fromtheabovedata,thestructure of 2wasdetermined tobe(2R,3S)-2-(3′,4

-dihydroxyphenyl)-5-methoxy-6-methylchroman-3,7-diol.

2′-Hydroxy-2,3,5-trimethoxybibenzyl (1), (2R,3S)-2-(3,4

-dihydroxyphenyl)-5-methoxy-6-methylchroman-3,7-diol (2), pacharin (6), bauhiastatin 1 (7), fisetinidol (8), and (2R,3S )-2-(3′,4-dihydroxyphenyl)-5-methoxychroman-3,7-diol (9) were

evaluated for their cytotoxic activity against colon carcinoma (HTC-116),glioblastoma(SF-295),ovariancarcinoma(OVCAR-8), breast adenocarcinoma (MCF-7), lung carcinoma (NCI-H292) andpro-myelocyticleukemia(HL-60)humancelllinesbythe 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)assay(Mosmann,1983),usingdoxorubicinaspositive con-trol.Thecytotoxicactivitiesofthesecompoundsaresummarizedin Table2.Compound6,whichinpreviousstudiesshowedsignificant growth inhibition against pancreas adenocarcinoma (BXPC-3), breastadenocarcinoma(MCF-7),CNSglioblastoma(SF268),lung largecell(NCI-H460),and prostatecarcinoma (DU-145)human cancercelllines(Pettitetal.,2006),exhibitedcytotoxicityagainst pro-myelocyticleukemia(HL-60)humancelllines,withIC50value of8.15␮M,butwasinactiveagainsttheothertestedhumancell lines.Inadditioncompounds1,2,7,8and9wereinactive.These results indicated that compound 6 displays cytotoxic activity, whichareinaccordancewithotherstudiesreportingthatdifferent oxepinderivatives(Pettitetal.,2006;Boonphongetal.,2007;Li etal.,2013)canexertcytotoxicactivitiesoncancercelllines.

The phytochemical investigation of B. acuruana led to the isolationoftwonewcompounds,identifiedas2′

-hydroxy-2,3,5-trimethoxybibenzyl (1) and (2R,3S)-2-(3,4′

-dihydroxyphenyl)-5-methoxy-6-methylchroman-3,7-diol (2), along with a known bibenzyl(3), threestreoids(4,5,13), twooxepinderivatives(6,

7),fourflavonoids(8,9,12,16),twosesquitepenes(10,11),one triterpene(14)andoneanthraquinone(15).Thisisinaccordance withpreviousreportsonthechemicalconstituentsisolatedfrom theBauhiniagenus.Notably,compound9wasaflavonoidisolated forthefirsttimeasnaturalproduct,butreportedpreviouslyasa syntheticderivative(Cren-Olivéetal.,2002).

Sincepreviousreportsdescribed thecytotoxicpropertiesfor speciesoftheBauhiniagenus,ourexpectativewasthatsomeofthe isolatedcompoundscoulddisplaythiseffect,but,unfortunately, exceptfor pacharin(6)which showedcytotoxicityagainst pro-myelocyticleukemia(HL-60)humancelllines,thecompounds1,

2,7,8and9wereinactive.

Ethicaldisclosures

(5)

Confidentialityofdata. Theauthorsdeclarethattheyhave fol-lowed theprotocolsof theirworkcenter onthe publicationof patientdata.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authors’contributions

RWSG(PhD student) did thecompound isolation procedure andcontributed incompoundidentificationbyNMRand litera-turesearch.LMS,HCS,FEFSandATAPcontributedincarryingout thelaboratorywork,andinterpretationofthespectroscopicdata. MASL,AMCA,TLGLandRBFcontributedintheinterpretationof thespectroscopic data.GCCG and PBNS contributedto biologi-calassays.FJTGcontributedtoplantcollectionandconfectionof herbarium.GMPSdesigned thestudy,supervisedthelaboratory workandwrotethemanuscript.LMScontributedtocritical read-ingofthemanuscript.Alltheauthorshavereadthefinalmanuscript andapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsaregratefultoCNPq,CAPES,FUNCAPandPRONEX forthefellowshipsandfinancialsupport.Wealsothankto CENAU-REMN (UFC)and LEMANOR for NMR and highresolution mass spectra,respectively.

References

Anjaneyulu, A.S.R., Reddy, A.V.R., Reddy, D.S.K., Ward, R.S., Adhikesavalu,D.,

Cameron,T.S.,1984.Pacharin:anewdibenzo(2,3-6,7)oxepinderivativefrom

BauhiniaracemosaLank.Tetrahedron40,4245–4252.

Apisantiyakom,S.,Kittakoop,P.,Manyum,T.,Kirtikara,K.,Bremner,J.B.,

Thebtara-nonth,Y.,2004.NovelbiologicallyactivebibenzylsfromBauhiniasaccocalyx

PIERRE.Chem.Biodivers.1,1694–1701.

Bezerra,G.P.,Góis,R.W.S.,DeBrito,T.S.,DeLima,F.J.B.,Bandeira,M.A.M.,Romero,

N.R.,Magalhães,P.J.C.,Santiago,G.M.P.,2013.Phytochemicalstudyguidedby

themyorelaxantactivityofthecrudeextract,fractionsandconstituentfrom stembarkofHymenaeacourbarilL.J.Ethnopharmacol.149,62–69.

Boonphong,S.,Puangsombat,P.,Baramee,A.,Mahidol,C.,Ruchirawat,S.,Kittakoop,

P.,2007.BioactivecompoundsfromBauhiniapurpureapossessingantimalarial,

antimycobacterial,antifungal,anti-inflammatory,andcytotoxicactivities.J.Nat. Prod.70,795–801.

CechinelFilho,V.,2009.Chemicalcompositionandbiologicalpotentialofplants

fromthegenusBauhinia.Phytother.Res.23,1347–1354.

Chen,X.-J.,Mei,W.-L.,Cai,C.-H.,Guo,Z.-K.,Song,X.-Q.,Dai,H.-F.,2014.Fournew

bibenzylderivativesfromDendrobiumsinense.Phytochem.Lett.9,107–112.

Cren-Olivé,C.,Lebrun,S.,Rolando,C.,2002.Anefficientsynthesisofthefourmono

methylatedisomersof(+)-catechinincludingthemajormetabolitesandofsome dimethylatedandtrimethylatedanaloguesthroughselectiveprotectionofthe catecholring.J.Chem.Soc.,PerkinTrans.16,821–830.

Danielsen,K.,Aksnes,D.W.,Francis,G.W.,1992.NMRstudyofsomeanthraquinones

fromRhubarb.Mag.Reson.Chem.30,359–363.

DaSilva,F.M.A.,Koolen,H.H.F.,Barison,A.,DeSouza,A.D.L.,Pinheiro,M.L.B.,2012.

SteroidsandtriterpenefromthebarkofUnonopsisguatterioidesR.E.Fr. (Anon-naceae).Int.J.Pharm.Pharm.Sci.4,522–523.

DeSousa,L.M.,DeCarvalho,J.L.,DaSilva,H.C.,Lemos,T.L.G.,Arriaga,A.M.C.,

Braz-Filho,R.,Militão,G.C.G.,Silva,T.D.S.,Ribeiro,P.R.V.,Santiago,G.M.P.,2016.New

cytotoxicbibenzylandotherconstituentsfromBauhiniaungulataL.(Fabaceae). Chem.Biodivers.13,1630–1635.

Gois,R.W.S.,DeSousa,L.M.,Lemos,T.L.G.,Arriaga,A.M.C.,Andrade-Neto,M.,

Santi-ago,G.M.P.,Ferreira,Y.S.,Alves,P.B.,DeJesus,H.C.R.,2011.Chemicalcomposition

andlarvicidaleffectsofessentialoilfromBauhiniaacuruana(Moric)against Aedesaegypti.J.Essent.OilRes.23,59–62.

Góis,R.W.S.,DeSousa,L.M.,Santiago,G.M.P.,Romero,N.R.,Lemos,T.L.G.,Arriaga,

A.M.C.,Braz-Filho,R.,2013.LarvicidalactivityagainstAedesaegyptiofpacharin

fromBauhiniaacuruana.Parasitol.Res.112,2753–2757.

Imai,T.,Inoue,S.,Ohdaira,N.,Matsushita,Y.,Suzuki,R.,Sakurai,M.,DeJesus,J.M.H.,

Ozaki,S.K.,Finger,Z.,Fukushima,K.,2008.Heartwoodextractivesfromthe

Ama-zoniantreesDipteryxodorata,Hymenaeacourbaril,andAstroniumlecointeiand theirantioxidantactivities.J.WoodSci.54,470–475.

Imam,S.,Azhar,I.,Hasan,M.M.,Ali,M.S.,Ahmed,S.W.,2007.Twotriterpenes

lupanoneandlupeolisolatedandidentifiedfromTamarindusindicaLinn.Pak.J. Pharm.Sci.20,125–127.

Kittakoop,P.,Kirtikara,K.,Tanticharoen,M.,Thebtaranonth,Y.,2000.

Antimalar-ialpreracemosolsAandB,possiblebiogeneticprecursorsofracemosolfrom BauhiniamalabaricaRoxb.Phytochemistry55,349–352.

Lendl,A.,Werner,I.,Glasl,S.,Kletter,C.,Mucaji,P.,Presser,A.,Reznicek,G.,Jurenitsch,

J.,Taylor,D.W.,2005.PhenolicandterpenoidcompoundsfromChionevenosa

(SW.)Urbanvar.venosa(BoisBandé).Phytochemistry66,2381–2387.

Li,Y.-K.,Zhou,B.,Ye,Y.-Q.,Du,G.,Niu,D.-Y.,Meng,C.-Y.,Gao,X.-M.,Hu,Q.-F.,2013.

TwonewdiphenylethylenesfromArundinagraminifoliaandtheircytotoxicity. Bull.KoreanChem.Soc.34,3257–3260.

Meira,M.,David,J.M.,David,J.P.,Araújo,S.V.,Regis,T.L.,Giulietti,A.M.,DeQueiróz,

L.P.,2008. ConstituintesquímicosdeIpomoeasubincanaMeisn.

(Convolvu-laceae).Quim.Nova31,751–754.

Mosmann,T.,1983.Rapidcolorimetricassayforcellulargrowthandsurvival:

appli-cationtoproliferationandcytotoxicityassays.J.Immunol.Methods65,55–63.

Moujir,L.M.,Seca,A.M.L.,Araujo,L.,Silva,A.M.S.,Barreto,M.C.,2011.Anew

nat-uralspiroheterocycliccompoundandthecytotoxicactivityofthesecondary metabolitesfromJuniperusbrevifolialeaves.Fitoterapia82,225–229.

Pettit,G.R.,Numata,A.,Iwamoto,C.,Usami,Y.,Yamada,T.,Ohishi,H.,Cragg,G.M.,

2006.Antineoplasicagents.551.Isolationandstructuresofbauhiniastatins1–4

fromBauhiniapurpurea.J.Nat.Prod.69,323–327.

Slowing,K.,Sollhuber,M.,Carretero,E.,Villar,A.,1994.Flavonoidsglycosidesfrom

Eugeniajambos.Phytochemistry37,255–258.

Soares,P.K.,Scarminio,I.S.,2008.Multivariatechromatographicfingerprint

prepa-rationandauthenticationofplantmaterialfromthegenusBauhinia.Phytochem. Anal.19,78–85.

Takasugi,M.,Kawashima,S.,Monde,K.,Katsui,N.,Masamune,T.,Shirata,A.,1987.

AntifungalcompoundsfromDiscoreabatatas inoculatedwith Pseudomonas cichorii.Phytochemistry26,371–375.

Vaz,A.M.S.F.,Tozzi,A.M.G.A.,2003.Bauhiniaser.Cansenia(Leguminosae:

Caesalpin-ioideae)noBrasil.Rodriguésia54,55–143.

Xu,F.-Q.,Xu,F.-C.,Hou,B.,Fan,W.-W.,Zi,C.-T.,Li,Y.,Dong,F.-W.,Liu,Y.-Q.,Sheng,

J.,Zuo,Z.-L.,Hu,J.-M.,2014.Cytotoxicbibenzyldimersfromthestemsof

Den-drobiumfimbriatumHook.Bioorg.Med.Chem.Lett.24,5268–5273.

Yang,D.-S.,Wei,J.-G.,Peng,W.-B.,Wang,S.-M.,Sun,C.,Yang,Y.-P.,Liu,K.-C.,Li,

X.-L.,2014.CytotoxicprenylatedbibenzylsandflavonoidsfromMacarangakurzii.

Referências

Documentos relacionados

Material e Método Foram entrevistadas 413 pessoas do Município de Santa Maria, Estado do Rio Grande do Sul, Brasil, sobre o consumo de medicamentos no último mês.. Resultados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Dentro dessa corrente doutrinária há quem entenda que a inversão do ônus da prova deve ser decretada na fixação dos pontos controvertidos, pois o dispositivo fala em facilitação

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

In the studies with species of the genus Senecio, it was observed that secondary compounds were responsible for the change in the germination pattern of the target

A infestação da praga foi medida mediante a contagem de castanhas com orificio de saída do adulto, aberto pela larva no final do seu desenvolvimento, na parte distal da castanha,