• Nenhum resultado encontrado

Methane conversion to hydrogen and nanotubes on Pt/Ni catalysts supported over spinel MgAl2O4.

N/A
N/A
Protected

Academic year: 2021

Share "Methane conversion to hydrogen and nanotubes on Pt/Ni catalysts supported over spinel MgAl2O4."

Copied!
5
0
0

Texto

(1)

Neftalí

L.V.

Carre ˜

no

d

,

Luiz

F.D.

Probst

a,∗

,

Joel

Barrault

f

aLaboratóriodeCatáliseHeterogênea,LABOCATH,DepartamentodeQuímica,UniversidadeFederaldeSantaCatarina,88040-900Florianópolis,SC,Brazil

bDepartamentodeQuímica,UniversidadeFederaldeOuroPreto,35400-000OuroPreto,MG,Brazil

cDepartamentodeEngenhariaQuímica,UniversidadeFederaldeSantaMaria,97150-900SantaMaria,RS,Brazil

dDepartamentodeQuímicaAnalíticaeInorgânica,UniversidadeFederaldePelotas,96010-900,CapãoLeão,RS,Brazil

ePro-reitoriadePesquisaeInovac¸ãoTecnológica,UniversidadedoSuldeSantaCatarina,88137-270Palhoc¸a,SC,Brazil

fLaboratoiredeCatalyseenChimieOrganique,ESIP,UMRCNRS6503,40avenueduRecteurPineau,86022PoitiersCedex,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Available online 14 November 2010 Keywords: Carbonnanotubes Free-hydrogen Ni–Pt–MgAl2O4catalyst Methaneconversion

a

b

s

t

r

a

c

t

Methanedecompositionisanendothermicprocess.Thereforeahightemperatureincreasesthemethane conversionandimprovesthecarbonaccumulation.Neverthelessathightemperatureconditionsafaster deactivationofcatalystisgenerallyobserved.Tokeepthestabilityofthecatalyst,lowerreaction tem-peraturescanbeusedaswellasmethanedilutionbutthecatalyticactivityislowered.Theaimofthe presentworkconsistsinthestudyofthecatalyticpropertiesofNi–PtsupportedoverMgAl2O4forthe selectiveconversionofmethaneintohydrogenandcarbonnanotubes.

TheadditionofasmallamountofPttoanickel–MgAl2O4catalystpromotestheformationofcarbon nanotubeswithasignificantselectivitytoMWCNT.Theinterestofusingabimetallic(Pt–Ni)catalystis tofavourthereductionoftheNiprecursor(andtheformationofsmallnickelparticles).

ForthecatalystthatwepreparedmethaneismainlytransformedintostructuredMWCNTsifthe reduc-tioniscompletewhilegraphitizationisobservedoverpartiallyreducedcatalysts.Afinecharacterization ofthecatalystsurfaceaftereachstepofthepreparationanduseiscurrentlyunderinvestigationinorder toprogressintherelationshipsbetweenthesurfacecompositionandtheCNTsformation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Carbonnanotubes(CNTs)havebecomeacategoryofthemost activelyinvestigatedmaterials.Carbon nanotubeshave a struc-turesimilartographenesheetrolledinto acylinderform with a diameter rangingfrom 0.8 to 300nm. Carbonnanotubes can becategorizedintosingle-walledcarbonnanotubes(SWNTs)and multi-walledcarbonnanotubes(MWNTs)dependingonthe num-berofgraphenelayer.AconceptofCO-freehydrogenco-production forfuelcellsfrommethanedecompositionwasproposedLietal. [1].Moreoveritwaspostulatedthatmetalparticlesareactivefor nanotubesnucleationandgrowthonlyiftheyaresufficientlysmall (≤20nm)Daietal.[2]andAmelinckxetal.[3].

∗ Correspondingauthor.

E-mailaddresses:giqmc@hotmail.com(G.D.B.Nuernberg),

hfajardo@hotmail.com(H.V.Fajardo),foletto@smail.ufsm.br(E.L.Foletto),

sonia.hickel@unisul.br(S.M.Hickel-Probst),nlv.carreno@yahoo.com.br

(N.L.V.Carre ˜no),probst@qmc.ufsc.br(L.F.D.Probst),

joel.barrault@univ-poitiers.fr(J.Barrault).

Methanedecompositionisanendothermicprocess.Thereforea hightemperatureincreasesthemethaneconversionandimproves thecarbonaccumulation.Neverthelessathightemperature con-ditionsafasterdeactivationofcatalystisgenerallyobserved.To keepthestabilityofthecatalyst,lowerreactiontemperaturescan beusedaswellasamethanedilutionbutthecatalyticactivityis lowered.Theaimofthepresentworkconsistsinthestudyofthe catalyticpropertiesofNi–PtsupportedoverMgAl2O4forthe

selec-tiveconversionofmethaneintohydrogenandcarbonnanotubes.

2. Experimentalpart

2.1. Catalystspreparation

Firstspinel-likecompoundswithanAlexcess(MgO1·4Al2O3)

wereprepared.Fortheprecursorsynthesis,twosolutions(0.2Mof MgandAlalkoxides)usingrespectivelymethanolandisopropanol assolventsweremixedand heatedtothealcohol boilingpoint, undervigorousstirring,thenwater(15%oftotalalcoholsvolume) wasadded.Thesystemiskeptunderheatingandstirringto com-pletehydrolysisreaction.Theformedmaterialwasseparatedfrom

0920-5861/$–seefrontmatter © 2010 Elsevier B.V. All rights reserved.

(2)

Fig.1.Schematicdiagramofthereactorsystem.

alcoholsbyfiltrationandfurtherdriedat120◦Cfor24h.Thefine powderwassieved(100mesh)andcalcinedinairatmosphereata temperatureof1100◦Cfor4h.Thespinelsupportwasthen impreg-natedwithanickelnitratesolutioninordertofitanickelcontentof 15wt%afteraircalcinationat700◦C.Inathirdstepplatinumwas depositedfromahexachloroplatinicacidsolutiontoobtaina plat-inumcontentbetween0.05and0.3wt%.Inthiswork,thecatalyst usedwas0.1wt%Ptandcalcinationat700◦Cinair,thesamplewas named0.1%Pt–15%–NiMgAl2O4#700◦C.

2.2. Catalystscharacterization

Samples were characterized (before and after the catalyst tests) by N2 adsorption/desorption isotherms obtained at the

temperature of liquid nitrogen in an automated physisorption instrument(Autosorb-1C,QuantachromeInstrument).Priortothe measurement,thesampleswereoutgassedundervacuumat200◦C for 2h. Specific surface areas were calculated according tothe Brunauer–Emmett–Teller(BET)methodandtheporesize distribu-tionswereobtainedaccordingtotheBarret–Joyner–Halenda(BJH) method,fromtheadsorptiondata.

Temperatureprogrammedreduction (TPR)analysiswas per-formedinaquartzreactorunder5vol%H2/N2 flow(30mL/min)

from30to920◦Cataheatingrateof5◦C/min.Athermal conduc-tivitydetector(TCD)wasusedtomonitortheH2consumption.APM

5Acolumnwasusertotrapwaterformedduringtheprocess. Thecrystallinephases(offreshlypreparedcatalystsandtheir reducedforms)werecharacterizedbyX-raydiffraction(XRD)ina SiemensD-5000,withgraphitemonochromatedCuK␣irradiation. The sample morphology was observed with scanning elec-tron microscope (SEM) obtained with a Philips XL30 scanning microscopeoperatingatanacceleratingvoltageof20kVand trans-missionelectron microscope(TEMJEM –1011)operating atan acceleratingvoltageof120kVandRamanspectroscopyobtained withaRamanspectrometer(Renishaw–RGH22)withaArlaser wavelengthof514.5nm.

2.3. Catalyststesting

ThedecompositionreactionofCH4wascarriedoutina

quartz-tubefixedbedflowreactorheatedbyanelectricfurnace(Fig.1).The 0.1%Pt–15%Ni/MgAl2O4catalysts(100mg)werepre-treatedinsitu

inaH2streamat700◦Cwithaheatingrateof10◦Cmin−1for1hor

3h.Theexperimentswereconductedunderatmosphericpressure at550and700◦C.ThereactiongaswascomposedofN2andCH4in

7:1molarratio(N2:CH4).Thetotalflowrateofthereactiongaswas

Fig.2.Crystallitessizeofthespinelpowder,asafunctionofthecalcination

tem-perature.

80mLmin−1.Thereactantand theproductgaseswereanalyzed withaShimadzuGC-8Agaschromatograph,equippedwitha ther-malconductivitydetector,aPorapak-Qcolumnanda5Amolecular sievecolumnwithArasthecarriergas.

Nitrogen was used as a diluent and as an internal analysis standard.Catalyticactivitywasevaluatedintermsofmethane con-versiondefinedas

C(CH4)(%)=QQconv CH4

×100 (1)

whereQconvrepresentsthequantity(moles)ofconvertedmethane;

QCH4representsthetotalquantity(moles)ofmethanefedintothe reactor.

3. Resultsanddiscussion

InFig.2thecrystallitessizeofthespinelpowderasafunction ofthecalcinationtemperatureispresented.Untilatemperature of950◦C,small particles(ø<12nm)are obtainedand athigher temperaturesthereisasignificantincreaseofthecrystallitessize (about30nmat1100◦C)Folletoetal.[4].

Fig.3showstheX-raydiffractogramsoftheprecursorand cal-cinatedsamplesattemperaturesbetween600and1100◦C.

Itcanbeseenthattheprecursor,which isamixtureof alu-miniumandmagnesium hydroxides,isan amorphousmaterial. After calcination at 600◦C the formation of the spinel phase

(3)

Fig.4. TPRanalysisofcatalysts.

occurs.However,therealsoappearedsomeimpurities,probably the presence of aluminium and magnesium hydroxides, which werenotconverted.Nevertheless,calcinationatatemperatureof 700◦Corhigherpromotedtheformationofapurespinelphase [4].

Fig.4showstheTPRprofilesfortheNiandPtcatalysts. TPRprofilespresentedinFig.4showthattheadditionof plat-inumfavourasexpectedthereduction ofnickeloxideparticles (spill-overmechanism).It wasobservedthat byadding asmall amountofPt(0.05%)toa15%–NiMgAl2O4,thereduction

tempera-turedecreasesfrom652to475◦C).WhenahigheramountofPtwas added,forexample,0.3%,thereductiontemperaturedecreasedto 430◦Cinrelationtothesamplewith15%Niwhichconfirmedthe spill-overeffect[4].

In order to investigate the catalytic activity of the 0.1%Pt–15%–NiMgAl2O4#700◦C catalyst the decomposition

reaction ofmethane wascarried out. Fig. 5shows thecatalyst behaviourwithdifferentN2:CH4molarratios.

Theresults showedthat undera feed flow conditionwhere methanewasmorediluted,thecatalystgavethehighestinitial cat-alyticactivityvalue(14%).Ontheotherhand,whenthemethane wasveryconcentratedinthereactionfeedflow,thatis,usinga (N2:CH4)molarratioof1:3thecatalystgavetheinitialcatalytic

activityvalueof8%.Inbothreactions,initialcatalyticactivitieswere followedbyarapiddropuntilatotallossofactivityafter85min.

Fig.5.Methanedecompositionover0.1%Pt–15%Ni–MgAl2O4#700catalyst.N2:CH4

molarratios()7:1and( )1:3,reduction:700◦C.

Fig.6.Methanedecompositionover0.1%Pt–15%Ni–MgAl2O4#700catalystinthe

CH4 conversionat 550◦C.Effect ofthereduction rate:() 1hand ( ) 3h;

N2:CH4=7:1;reduction,700◦C.

Fig. 6 shows the effect of the reduction rate of a 0.1%Pt–15%–NiMgAl2O4#700◦C catalyst on methane

decom-position.

ItcanbeseeninFig.6thatthehighestinitialmethaneconversion value(37%)wasachievedbythecatalystreducedfor3h.Whenthe catalystwasreducedfor1hinitialCH4conversionwasabout15%.

Thiscatalyst(1h)showedinitialmethaneconversionvalueof14%. However,bothcatalystswerefollowedbyarapiddropinactivity duetocarbondepositionattheirsurfaces,untilatotaldeactivation after80minofreactionoverthecatalystreducedfor1h.

Theperformanceofthe0.1%Pt–15%–NiMgAl2O4#700◦C

cata-lystonthemethanedecompositionatdifferenttemperaturescan beseeninFig.7.

Whenthereactionwasperformedat550◦Ctheinitialmethane conversionwaslow(15%),andthedeactivationwasratherrapid (i.e.after 80min) If the reactiontemperature wasincreased to 700◦C, the initial reaction rate increased to 45%, then a rapid decreaseofCH4conversionwasobservedin20minandthe

con-versiondecreaseslowlyuntil240min.Theseresultssuggestedthat

Fig.7.Methanedecompositionover0.1%Pt–15%Ni–MgAl2O4#700catalystinthe

CH4conversionatdifferenttemperatures:()550◦Cand( )700◦C;N2:CH4=7:1;

(4)

Fig.8. SEMandTEMimagesofcatalystsurface(a)before,(b),(c)and(d)0.1%Pt–15%–NiMgAl2O4#700◦C,aftertheCH4decompositionreactiontemperatureofthe550◦C

(reducedat700◦Cfor1h).

differentcarbonspecies wereformedaccording tothereaction temperature.

TheSEMandTEMcharacterizationsofthecarbon-containing materialsaftertheCH4 reactionarepresentsinFig.8.Themain

formof the carbonated depositionseems tobe CNTs (Fig.8b), neverthelessitwasalsonoticedtheformationofirregularcarbon agglomerates.

Fig.8canddshowstheendofMWCNTswithPt–Niparticles (darkspotsinFig.8d).

Fig.9. Ramanspectraofthe0.1%Pt–15%–NiMgAl2O4#700◦Csamples afterthe

catalyticdecompositionofmethane(a)reducedat700◦Cfor3handreaction

tem-peratureofthe550◦C,N2:CH4=7:1,(b)reducedat700◦Cfor1handreaction

temperatureofthe550◦C,N2:CH4=7:1,(c)reducedat700◦Cfor1handreaction

temperatureofthe700◦C,N2:CH4=7:1and(d)reducedat700Cfor1handreaction

temperatureofthe550◦C,N2:CH4=1:3.

TheRamanspectraofthecatalystaftercatalytictestsareshown inFig.9.

Thespectraobtainedwiththe0.1%Pt–15%–NiMgAl2O4#700◦C

catalystreducedat700◦Cfor1hor3hatareactiontemperatureof 550◦Cor700◦CwithaN2/CH4(7:1and1:3)indicatedthepresence

ofbandsoriginatedfromcarbonstructures.

Firstlythepresenceofalowfrequencyband,attributedtothe radialbreathingmode(RBM)ofthecarbonnanotubes, character-isticofsingle-walled nanotubes(SWNTs)Almeidaetal.[5] was observed.Theintensityof thatbandseemstoindicatethatthe SWCNTsformationwasratherlowZengaetal.[6].

SecondlytheappearanceofaDbandaround1356cm−1 was alsoa clear indicationof theformation of multi-walledcarbon nanotubes(MWCNTs)[6].

Furthermore,theratioofID/IGwhichcouldberelatedtothe natureofCNTsgavesomeadditiveinformationaboutMWCNTs. Indeed a ID/IG ratio of 1.18 was observed for the experiment (Fig.9b).Whilefortheexperiment(Fig.9b)theratiowasonlyof 0.69.Thisresultindicatesthatafterapartialreductionofthe cat-alystthegraphitizationdegreewasmoreimportantinagreement withtheSEMandTEMimagespresentedinFig.8.

Ifthereductiontemperaturewasincreasedupto700◦C,the for-mationofCNTsislessimportantandMWCNTsaremainlyobserved

4. Conclusion

TheadditionofasmallamountofPttoanickel–MgAl2O4

cata-lystpromotestheformationofcarbonnanotubeswithasignificant selectivitytoMWCNT.Theinterestofusingabimetallic(Pt–Ni) catalystis tofavourthereduction oftheNi precursor(andthe formationofsmallnickelparticles).

For thecatalyst that we prepared methaneis mainly trans-formedintostructuredMWCNTsifthereductioniscompletewhile

(5)

Referências

Documentos relacionados

Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts: influence of operating conditions on catalyst deactivation and carbon characteristics.

In particular, DPPH radical is widely used for quickly assessing the ability of antioxidants to transfer labile H atoms to radicals (Brand-Williams et al. Following a similar line

The data revealed that the informal caregivers presented higher levels of emotional distress, feelings of sadness and daily working hours (19.8 hours) compared to the

From the 12 studies included (13 entries) in this meta-analysis, they all started from the same research assumption, in which the elderly with classifications according to the

After the reaction completes, the reaction mixture brought to room temperature where the solvent used were extracted from the reaction medium and the product was isolated from

After the complete reaction, the mixture was brought to room temperature and was directly filtered through silica gel, using hexane/ethyl acetate (7:3) as solvent and the

The partial oxidation of methane by these catalysts was investigated by temperature programmed surface reaction (TPSR) and the stability of the catalysts was probed in a

However, the glycerol conversion was lower than that of reaction without removal of catalyst at the same reaction time, demonstrating that the filtrated catalyst performed