• Nenhum resultado encontrado

Landscape changes decrease genetic diversity in the Pallas’ long-tongued bat

N/A
N/A
Protected

Academic year: 2023

Share "Landscape changes decrease genetic diversity in the Pallas’ long-tongued bat"

Copied!
9
0
0

Texto

(1)

SupportedbyBotic´arioGroupFoundationforNatureProtection

www.perspectecolconserv.com

Research Letters

Landscape changes decrease genetic diversity in the Pallas’

long-tongued bat

Rosane G. Collevatti

a,∗

, Luciana C. Vitorino

b

, Thiago B. Vieira

c

, Monik Oprea

a

, Mariana P.C. Telles

a,d

aLaboratóriodeGenética&Biodiversidade,InstitutodeCiênciasBiológicas,UniversidadeFederaldeGoiás,CEP74001-970,Goiânia,Goiás,Brazil

bDepartamentodeBiodiversidadeeConservac¸ão,InstitutoFederalGoianocampusRioVerde,Cx.P.66,75901-970,RioVerde,Goiás,Brazil

cUniversidadeFederaldoPará,CampusAltamira,Altamira,Pará,Brazil

dEscoladeCiênciasAgráriaseBiológicas,PontifíciaUniversidadeCatólicadeGoiás,CEP74605-010,Goiânia,Goiás,Brazil

h i g h l i g h t s

•Thereplacementofnaturalvegeta- tiontoagriculture,pasturesorurban matricesdecreasedgeneticdiversity inthePalla’slong-tonguedbat.

•Pallas’slong-tonguedbathadaquasi- stable range distribution since the lastGlacialMaximum.

•TheQuaternaryclimatechangeshad nosignificanteffectsonthegenetic diversityofthePalla’slong-tongued

•bat.Populations of the Palla’s long-

tongued bat was differentiated by isolation-by-distance, but not by environment.

•Our findings point to the main- tenance of large areas of natural vegetationtoconservegeneticdiver- sityinthePalla’slong-tonguedbat.

g r a p h i c a l a b s t r a c t

a r t i c l e i n f o

Articlehistory:

Received5March2020 Accepted26June2020 Availableonline7August2020

Keywords:

Cerrado Connectivity

Ecologicalnichemodeling Habitatfragmentation Quaternaryclimatechanges Resistancesurface

a b s t r a c t

Specieswithhighmobilitymayhavelowgeneticdifferentiationamongpopulationsduetohistorical long-distancedispersal,butrecentstudiesshowthatbatdispersalmaybeaffectedbyhabitatlossand fragmentation.Here,weanalyzetheeffectsoflandscapecontemporarychangesanddynamicsinpale- odistributionduringtheQuaternaryongeneticdiversityanddifferentiationinthePallas’long-tongued bat,Glossophagasoricina.Wesampled18populationsinlandscapeswithdifferentlandcover,andused ninemicrosatellitelociandthesequenceofafragmentofthemitochondrialgenecytochromeb(CYB)to obtaingeneticdata.Weperformedecologicalnichemodellingandusedgenerallinearmixedmodelsand optimizationofmultipleresistancesurfacestoanalyzehowlandscapestructureandclimaticsuitability affectgeneticdiversityanddifferentiation.Ourresultsshowthattheconversionofnaturalvegetation, suchasforestsandsavannas,toagriculture,pasturesorurbanmatrices(unsuitablehabitats)decreases geneticdiversityandincreasesinbreeding,buthasnoeffectongeneticdifferentiationamongpopula- tions,thatwaslikelyaffectedbyspatialdistance.Ourfindingspointtotheimportanceofmaintenanceof largeareasofnaturalvegetationremnantstoconservegeneticdiversityofG.soricina,animportantbat pollinatorintheNeotropics.

©2020Associac¸˜aoBrasileiradeCiˆenciaEcol ´ogicaeConservac¸˜ao.PublishedbyElsevierB.V.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/

).

Correspondingauthor.

E-mailaddress:rosanegc68@hotmail.com(R.G.Collevatti).

https://doi.org/10.1016/j.pecon.2020.06.006

2530-0644/©2020Associac¸˜aoBrasileiradeCiˆenciaEcol ´ogicaeConservac¸˜ao.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

170 R.G.Collevattietal./PerspectivesinEcologyandConservation18(2020)169–177 Introduction

Animalmobilityanddispersalmaybeaffectedbyhabitatloss andfragmentation(e.g.Umetsuetal.,2008;Puttkeretal.,2011), andthere isevidence ofdeleterious effectsof habitatfragmen- tationongeneticvariabilityanddifferentiationoncommonand widespreadvertebratespecieswithhighmobility(Johanssonetal., 2007;Delaneyetal.,2010;Levyetal.,2019).Landscapestructure, suchasmatrixqualityanddistanceamonghabitats,mayisolate populations,limitingtheirdispersal(Umetsuetal.,2008;Boscolo andMetzger,2011)andthus,populationconnectivityandgenetic diversity(e.g.Dixoetal.,2009;Balkenholetal.,2013;Jacksonand Fahrig,2016).

Moreover,climatechangesduringtheQuaternarymightalso haveaffectedspeciesgeneticdiversityduetothecyclesofpopu- lationexpansionandcontraction(Hewitt,2000).Populationrange contractionmaydecreaseeffectivepopulationsize,leadingtoloss ofgeneticdiversityduetogeneticdrift.Shiftsinspeciesgeographi- caldistributionsduetotheQuaternaryclimatechangeshaveplayed animportantroleinshapingthegeneticdiversityofanimalspecies intheCerradobiome(e.g.Mirandaetal.,2019).Thus,disentan- glingcontemporaryandhistoricalprocessesleadingtopopulation effectivesizereductionandlossofgeneticdiversityisimportant topredictspeciesresponsetochangesinlandscapeintheAnthro- pocene.

Batspeciesaredifferentiallyaffectedbyhabitatfragmentation (e.g. Gorresen and Willig, 2004; Meyer et al., 2009; Centeno- Cuadros et al., 2017). Some bats avoid flying over open areas (Henryetal.,2007),watercourses(Albrechtetal.,2007),androads (Zurcheretal.,2010).Thus,fragmentationhasapotentialtoiso- latebatpopulationsandreducegeneticconnectivity(Rossiteretal., 2000)andcolonizationofnewareas(KerthandPetit,2005;Russell etal.,2005).Inadditiontothebarriersimposedbythelandscape, reproductivebehaviorandhistoricalpatternsofcolonizationmay alsoberesponsibleforrestrictedgeneflow(Wilmeretal.,1999).

Althoughhighlymobile,batsmayshowdifferentdispersalpatterns andbreedingsystems,includingvariationinroostingecology,and socialstructures(McCrackenandWilkinson,2000),thatmayaffect geneticstructure(e.g.Flandersetal.,2016).Indeed,severalstud- ieshaveshownsignificantpopulationsubstructureinbatspecies atdifferentspatialscales(e.g.Biollazetal.,2010;Rippergeretal., 2013;Flandersetal.,2016).

Glossophagasoricina(Pallas1766)(Glossophaginae),thePallas’

long-tonguedbat,isoneofthemostcommonandwidespreadnec- tarivorousbatsintheNeotropics(Reisetal.,2005),andalsofeeds oninsectsandfruits(Willigetal.,1993),andusesalargevariety ofroosts(caves,trees,human-madestructures).Adultmalesmay defendharemsandjuvenilesandbothmalesandfemalesdisperse fromtheirnatalcolony(Pink,1996).Becauseofitsgeographicaldis- tributionandnaturalhistory,aloweffectofhabitatfragmentation onG.soricinageneticdiversitymaybeexpectedorevennoeffectat all.However,morethanhalfoftheCerradobiomehasbeenrapidly transformedintopasturesandcrops(Silvaetal.,2006),affecting speciesgeneticdiversityandinbreeding(e.g.Arrudaetal.,2017) jeopardizingspecieslong-termconservation.

Here,weaddresstheeffectsofcontemporarychangesinland- scapestructureand paleodistributionduringtheQuaternaryon geneticdiversityandpopulationdifferentiationinG.soricinainthe Cerradobiome.Weusedamultiscalespatialapproachtospecif- icallytestwhetherhabitatamount(forestsandsavanna),matrix (unsuitableland covers)typeand past climatechanges explain thecurrentgeneticdiversityand differentiationamongpopula- tions.Thegeneticdatawereobtainedfromnuclearbiparentally inheritedmicrosatelliteloci and thematernally inheritedmito- chondrialcytochromeBgene(CYB).Thus,usingdatafrommarkers withdifferentinheritance and evolutionaryrates ourdatamay

trackdifferencesindispersalbetweenmaleandfemalebatsand alsodifferencesintimeofresponsetoQuaternaryclimatechanges andcurrentlandscapechanges.Weexpecttofindsignificantrela- tionshipsbetweenlandscapestructureandgeneticdiversityand differentiationformicrosatelliteloci,butnotforCYB.Conversely, weexpectthatCYBgeneticparameterswillbebetterexplained byclimaticchangesandhistoricaleffectivepopulationsizedueto lowermutationrate.

Materialsandmethods

Populationsandtissuessampling

We sampled 18 populations (229 individuals) of G. soricina throughout theBrazilianCerrado biome(Fig.1, TableS1). Pop- ulations were selected in landscapes with different land use composition, suchas habitat (savanna and forest)amount and matrix(unsuitablelandcover)type.Batswerecapturedwithmist netsinstalledatgroundlevelandwesampledapproximately3mm ofthewingmembrane(seedetailsinSupplementaryFileS1).

Geneticdata

Forgeneticdata,DNAwasextractedandindividualsweregeno- typedusingnine microsatelliteloci previouslydeveloped forG.

soricina(Opreaetal.,2012).Forsequencing,weusedtheprimers describedbyIrwinetal.(1991)toamplifya1140bpfragmentof thecytochrome-bmitochondrialgene(CYB).Detailsoftheproto- colsforgenotypingandsequencingaredescribedinSupplementary FileS1.

To obtain genetic parameters for microsatellite loci we estimated genetic diversity (heterozygosity expected under Hardy–Weinbergequilibrium, He),inbreedingcoefficient(f)and allelicrichnessforeachpopulation.Forpopulationgeneticdiffer- entiationweestimatedWright’sFST(Wright,1951),G’ST (Hedrick, 2005)andJost’sD(Jost,2008)usingPopGenReportpackage(Gruber andAdamack,2019)implementedinR3.6.1.(RCoreteam,2019).

WeusedaBayesianclusteringmethodimplementedinthesoft- wareStructure2.3.4(Pritchardetal.,2000),toidentifygenetically homogeneousgroupswithinoursamples.We estimateda pos- terioriprobabilityofK(numberofgroups)rangingfrom1to18 (correspondingtoeachsampledlocality).

ForCYB,weestimatednucleotide(␲)andhaplotype(h)diversity foreachpopulation,andpopulationdifferentiation(FST)usingthe softwareArlequin3.11(Excoffieretal.,2005).Populationstructure wasalsoassessedusingBayesianclusteringimplementedinthe softwareBAPSv6.0(Coranderetal.,2008)withanupperlimitofK

=18.

Tounderstandthegeographicaldistributionandphylogenetic relationshipsamongmtDNAhaplotypes,weinferredahaplotype networkusingthesoftwareNETWORK4.6.1.6(Forsteretal.,2004).

DetailsofgeneticanalysesareprovidedinSupplementaryFileS1.

Effectivepopulationsizeandconnectivity

Becausegeneticdiversitymaybeaneffectofchangesineffective populationsizeweestimatedhistoricalandcontemporaryeffec- tivepopulationsizes(Ne).Contemporary Newascalculated for microsatellitelociforeachpopulationwithNeEstimatorv.2.01 (Doetal.,2014)usingthemolecularcoancestrymethod(Nomura, 2008)toverifytheeffectofpopulationsizeongeneticparameters.

WeestimatedhistoricalNeusingcoalescentanalysisforboth microsatellitelociandCYB.Weestimatedthemutationparame- tertheta()andthenumberofimmigrantspergenerationamong

(3)

Fig. 1.Geographical distribution of the 18 samples of Glossophagasoricina in the Brazilian Cerrado and sampling design for landscapeanalysis. Two circular buffersdelimited eachpopulation.Theinner bufferhas2kmradius(red line)andtheouter(blackline)has5kmradius.Landusecategoriesare inlegends.

Other refers to mixing categories not detectableat the map scale. Landuse map was obtained from the MMA (Brazilian Ministry ofEnvironment) database http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm.

allpopulationpairsusingLamarc2.1.10software(Kuhner,2006).

DetailsaredescribedinSupplementaryFileS1.

Ecologicalnichemodeling

Weobtained13,069occurrencerecordsofG.soricinaacrossthe Neotropics(Fig.S1).Afterdatafiltering,theremaining2353occur- rencerecords(TableS2)weremappedinagridofcellsof2.5×2.5 (longitude×latitude),encompassingtheNeotropics,togenerate thematrixofpresenceusedtocalibratetheENMs.

The climatic layers were represented by five bioclimatic variables:annualmeantemperature,meandiurnalrange,isother- mality,precipitationofwettestquarter,andprecipitationofdriest quarter,selectedbyfactorialanalysiswithVarimaxrotationfrom 19 bioclimatic variables obtained in the ecoClimate database (Lima-Ribeiro et al., 2015).Bioclimatic variables were obtained forpre-industrial(representingcurrentclimateconditions),mid- Holocene(6ka)andLastGlacialMaximum(LGM;21ka)fromfive Atmosphere-OceanGeneralCirculation Models(AOGCM) (Table S3).

Estimatesofthecurrentand pastpotentialdistributionofG.

soricinawereobtainedbymodelingitsecologicalnicheusingfive algorithms(TableS4).TheENMswerethenbuiltonthecurrentcli- maticscenarioandprojectedontotheclimaticconditionsduring boththemid-Holocene(6ka)andLGM(21ka).AllENMprocedures wererun in theintegrated computationalplatformBIOENSEM- BLES,whichprovidespredictionsbasedontheensembleapproach (Diniz-Filhoetal.,2009).

ForeachalgorithmandAOGCM,modelswerebuiltusing75%of occurrencesandtestedagainsttheremainingrecords(25%).Models withpoorperformancewereeliminated(TSS<0.7).Thefrequency ofpredictedpresencewasusedasameasureofconsensussuitabil- ityfrom50initialmodels.

Finally,thefullensemblewasobtainedforeach timeperiod usingthepredictiveperformances(TSS)tocomputea weighted meanofsuitabilities,fromwhichhistoricalrefugiaweremapped (i.e.allgridcellswithsuitabilityvalues≥0.5duringthethreetime periods).DetailsareprovidedinSupplementaryFileS1.

Landscapeandclimaticeffectsongeneticdiversity

Toanalyzetheeffectoflandscapestructureongeneticdiver- sitywequantifiedlandscapevariablesatnodelevel(Wagnerand Fortin,2013).Wedrewlandscape-buffersof2.0and5.0kmradius aroundeachsampledlocation(Fig.1)usinghigh-resolutionimages availableatthemapdatabaseoftheGeographicInformationSys- teminArcGisv.9.3(ESRI®a).Wechosetheselandscape-buffersizes becauseofthehomerangeofG.soricina(e.g.Aguiaretal.,2014).

Ineachlandscape-bufferweclassifiedthelandcoverandcalcu- latedtheareaandthepercentageofeachlandcovertypeinside each buffer (Fig. 1, Table S5) using ArcGis v.9.3.We examined thecorrelation among land cover amounts and excludedthose withPearson’scorrelation≥

0.5

,toavoidcollinearity.Wekept percentageofnaturalvegetationremnants(forestsandsavanna), representinghabitatamount,andformatrixweusedmatrixtype

(4)

172 R.G.Collevattietal./PerspectivesinEcologyandConservation18(2020)169–177

Fig.2. BayesianclusteringformicrosatellitelociandCYBof18GlossophagasoricinapopulationsinBrazilianCerrado.Theblackfulllinesindicatepossiblegeneticdiscontinuity betweenlocalitiesbasedonDelaunay’striangulationformicrosatellitelociandgreenforCYB.Differentcolorswereassignedforeachclusteraccordingtothefigurelegend.

Thecirclesectionsrepresenttheclusterfrequencyineachsampledpopulation.SeeTableS1forpopulationcodeandlocality.LandusemapwasobtainedfromtheMMA (BrazilianMinistryofEnvironment)databasehttp://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm.

(pasture,agriculture,urbanarea,waterbody,miningandoutcrops andmixeduse).

WeusedGeneralizedLinearMixedModel(GLMM)toanalyze theeffectsoflandscapestructureandpaleodistributionongenetic parameters.Weusedasexplanatoryvariablesmatrixtypeandper- centageofnaturalvegetationremnants,suitabilityatpresentday derivedfromENMandclimaticstability.Wealsousedhistorical (basedoncoalescence)andcontemporary(basedoncoancestry) Neineachlocalityasexplanatoryvariables.

We built several models with combinations of explanatory variablesandanull model.Analyseswerecarriedoutusingthe MCMCglmmpackage(Haldfield,2019)implementedinR3.6.1.(R Coreteam,2019).Toselectwhichmodelbestexplainstheobserved variationingeneticparametersamonglandscapeswecalculated AICcorrectedfor small samples(AICc)and AICci, i.e.the dif- ferencebetweeneach model(i)andthebestmodels(Burnham andAnderson,2002).DetailsareprovidedinSupplementaryFile S1.

Landscapeandclimaticeffectsongeneticdifferentiation

Toperformtheanalysisatthelinklevel(WagnerandFortin, 2013), weused ResistanceGApackage(Peterman,2018), imple- mented in R 3.6.1. to optimize multiple resistance surfaces simultaneously.Forgeneticdistancematrixweusedthegenetic differentiation among all pairs of populations (Tables S6–S9):

FST (forboth microsatellites and CYB), and GST’ and Jost’ D for microsatellites.Forresistancematrixweextractedthelandcover between all pairs of populations and converted land use in resistancesurface.We alsousedtheconsensusmap of ENMat present-dayfor resistancedue toclimate, and thegeographical distancematrixtoaccountforisolation-by-distance.Optimization wasperformedwiththefunctiongdistance/commuteDistance.To selectthemostlikelymodel,weusedAICci.

We also analyzed genetic discontinuity among populations usingtheDelaunaynetwork(LegendreandLegendre,1998)imple-

mented inthe softwareSAM v.4(Rangelet al.,2010), for both microsatellitesandCYB.DetailsareprovidedinSupplementaryFile S1.

Results

Geneticdiversityandpopulationdifferentiation

Populationshad similarlevelsof geneticdiversityand poly- morphism(TableS10)despitethedifferencesinsamplesize.The inbreedingcoefficientsweresignificantlydifferentfromzerofor mostpopulations(TableS10).Mostpairsofpopulationshadlow valuesofpairwiseFST(TableS6),pairwiseJost’sDandpairwiseG’ST (TablesS7andS9);theonlyexceptionwaspopulation18,which showedhighandsignificantvaluesforallcomparisons.Detailsof resultsareprovidedinSupplementaryFileS1.

Bayesianclusteringbasedonmicrosatelliteloci showedthat threeclusters(K=3,Fig.S2,TableS11)weremostlikely.Clus- ter1(green,Fig.2)comprisedmostpopulations.Cluster2(yellow, Fig.2)comprisedmainlypopulation18.PopulationsfromSouth- eastBrazil(14and15,Fig.2)wereequallyassignedtoclusters1 and3.

Wefound171differentCYBhaplotypesforthe229individuals ofG.soricina(TableS12).Allpopulationsshowedhighhaplotype andnucleotidediversitiesandmosthaplotypeswereexclusiveto onepopulation(TablesS101,S12,Fig.S3).Haplotypesfrompop- ulation18(H158,Fig.S3),1(H01)and14(H117)werethemost differentiated and wereexclusive tothesepopulations (Fig. S3, TableS12).

PopulationsshowedhighpairwiseFST(TableS9).Bayesianclus- teringshowedanoptimalpartitionofK=3clusters(Fig.2,Table S13),butwithnocleargeographicalpattern.

Contemporaryand historical effective populationsizeswere lowforallpopulations(TableS10).Overall,thenumberofmigrants pergenerationwashigh(Nem>1.0)betweenallpairsofpopula- tions(TableS14)forbothmicrosatellitesandCYB.

(5)

Fig.3. Mapsofconsensusofthe75modelsofthepotentialdistributionofGlossophagasoricina,basedonecologicalnichemodellingduringtheLGM(21ka),mid-Holocene (6ka),present-dayandthehistoricalclimaticrefugiumthroughtime(fromtheLGMtopresent-day).Reddotsarethe18populationssampled.

Ecologicalnichemodeling

Glossophagasoricinashowedaclearpreferenceforhotclimate acrosstheNeotropics(Fig.3)withhighfrequencyofoccurrencein savannas,seasonallydryandrainforestsoftheNeotropics.Such climatespacewasequallyavailableattheLGM,mid-Holoceneand presentday(Fig.3,Figs.S4,S5,TableS15),andthusENMspre- dictedonlyaslightdifferenceinG.soricinapotentialdistribution throughtime,withaslightlylargerrangesizeattheLGM(Fig.3, Fig.S5)comparedtoboththemid-Holoceneandpresent-day.In addition,awideregionacrosseastern,northeasternBrazil,towards central-westAmazoniaandnorthernSouthAmericaandwestern MesoAmericaprobablyactedashistoricalrefugiamaintainingpop- ulationsofG.soricinaduringtheclimatechangesthroughoutthe lastglaciationcycle (Fig.3).ENMsalsoshoweda rangeshiftin geographicaldistributiontowardsthesoutheastBrazil,especially fromtheLGMtothemid-Holocene(Fig.3,Fig.S5).Fromthemid-

Holocenetopresent-day,ENMshowedquasi-stabilityinG.soricina geographicalrange(Fig.3,Fig.S5).SeedetailsinSupplementary FileS1.

Landscapeandclimaticeffectsongeneticdiversity

Overall,modelsincludingmatrixtypeexplainedbetterthevari- ationingeneticparametersformicrosatelliteloci(Figs.4A,S6A, TableS16)andCYB(Fig.4B,Fig.S6B,TableS16)atbothspatialscales.

Althoughmodelswitheffectivepopulationsize(Ne)andmatrix typehadsignificantcoefficientsforkandh(TableS16),theywere lesslikelythanmodelscomprisingonlymatrixtype(Figs.4and S6).Modelsincludingclimaticsuitabilityorpercentageofnatural vegetationremnantswerelesslikelythanmodelswithmatrixtype (TableS16).

(6)

174 R.G.Collevattietal./PerspectivesinEcologyandConservation18(2020)169–177

Fig.4.ModelaveragingresultsforeachgeneticparameterbasedonthegenotypingofmicrosatellitelociandsequencingofCYBfor18GlossophagasoricinainBrazilian Cerradofor2kmspatialscale.PanelsshowtherelativeimportanceofeachvariablebasedonwAICc(Akaike’sweightofevidence)andthemodelcoefficients(␤)for(A) microsatelliteloci,(B)CYB.Errorbarrepresentsstandarderror(seeTableS16forpvalues).SeeFig.S6for5kmspatialscale.He,geneticdiversity;f,inbreedingcoefficient;

AR,allelicrichness;k,numberofhaplotypes;h,haplotypediversity;␲,nucleotidediversity.

Landscapeandclimaticeffectsongeneticdifferentiation

Geneticdifferentiationamongpopulationswasnotexplainedby landscapeorclimaticresistancetoG.soricinadispersal(TableS17, Figs.S7–S10).ThenullmodelwasthebestmodelforbothCYBand microsatellites,howevergeographicdistancecouldnotberejected asafactorexplainingthevariationingeneticdifferentiationamong populationsformicrosatellites(TableS17).

We found discontinuity between pairs of populations, i.e.

higherFSTthanexpectedbythespatialdistancebetweenpairsof populations.Formicrosatellitelocipopulation18wasthemostdif- ferentiated.Wefoundevidencefordiscontinuitybetweenfivepairs ofpopulations:4–7,2–18,3–18,7–18,and9–18(Fig.2,TableS17).

ForCYB,population17wasthemostdivergent.Wefounddiscon- tinuitybetween4–6,5–17,6–17,7–17,12–17and16–17(Fig.2, TableS18).

Discussion

Contemporarychangesinlandscapeandgeneticdiversity

Our findings show that contemporary changes in landscape affectsgeneticdiversityinpopulationsofGlossophagasoricinafrom theCerrradobiome.Thereplacementofnaturalvegetation,suchas forestsandsavannas,toagriculture,pasturesorurbanareasmay decreasegeneticdiversityandincreaseinbreeding.Theinfluence occursatbothspatialscalesanalyzedhere(2and5kmbuffers).

The effects of scale on therelationships betweenlandscape structureandbatoccurrence,abundanceandpopulationgenetic structurehavebeenreportedpreviously(e.g.Gorresenetal.,2005;

Razgouretal.,2014).Thelackofscaleeffectinourstudymaybedue toG.soricina’sdispersalabilityanditsforagingandmatingbehav- ior.Thehomerangeofthespeciesislargerthan2km,andthe maximumflightdistancetrackedsofarwas3.8km(Aguiaretal., 2014).However,G.soricinamakescoloniesandharemsdefended byadultmales,whichmayconstraintdispersalandcausethehigh inbreedingobserved.In addition,thedispersalconstraindueto matingbehaviormayalsoisolatecoloniesofG.soricina,explain- ingtheeffectofmatrixtypeoninbreeding.Smallerbats,suchas G.soricina,maybemoreaffectedbylandscapechangesindepen- dentofthegeographicaldistribution.Forinstance,geneticdiversity andgeneflowinCarolliacastanea,asmallwidelydistributedbat species,arenegativelyaffectedbylossofhabitat(forests)whereas thelargerArtibeusjamaicencisisnotaffectedbypercentageofforest andmatrix(Clearyetal.,2017).Likewise,Carolliaperspicillatashow lossofgeneticdiversityduetohabitatfragmentation,contrasting toUrodermabilobatum,alargermorevagilespecies(Meyeretal., 2009).

Matingbehaviorandphilopatrymayaffectpopulationstructure inbatsandincreaserelatednesswithinpopulationsandinbreeding (Biollazetal.,2010;Rippergeretal.,2013;Flandersetal.,2016).

Our findings show higher geneticdifferentiation for mitochon- drialCYBthanfornuclearmicrosatellites,whichmaybeevidence of female philopatry, i.e., malesdisperse more frequently than

(7)

females.However,itisimportanttonotethatthemitochondrial genome(mtDNA)ismaternallyinheritedwithoutrecombination andtheeffectivepopulationsizeofmtDNAissmallerthanthatof thenucleargenome,therebyleadingtoahigherrateofallelefixa- tionbygeneticdriftformtDNAthanfornuclearDNA(Birkyetal., 1983).Effectivepopulationsizemaybeoneofthemostimpor- tantfactorsinfluencingratesofmolecularevolution(Lanfearetal., 2014).Thus,differencesbetweenmicrosatellitelociandCYBmay beduetodifferencesindispersalbehaviorbutalsoinevolution- aryrates.Moreover,geneticdifferentiationatmicrosatelliteloci andCYBshoweddifferentresponsestogeographicaldistance.CYB showednoeffectofspatialdistancelikelybecausemalesdisperse morefrequentlythanfemales.

Herewefoundnoeffectoflandcoveringeneticdifferentiation atboth CYBand microsatelliteloci. However,wefounddiscon- tinuityin severalpairsofpopulations,meaningthatsomepairs ofpopulationshavehigherFST thanexpectedbytheirgeograph- icaldistance.Thegeneticdiscontinuitymaybeduetotherecent fragmentationandanthropogenicdisturbancebecausepopulations showinggeneticdiscontinuityformicrosatellitelociareimbedded inurbanareas,agricultureorpasturethatmayaffectthedispersal ofG.soricinaamonglocalities,restrictinggeneflowandincreasing inbreeding.Forinstance,population18iswithinaconservation unit,whichhaspristinevegetationandawidevariation infood resources,surroundedbyextensiveagricultureareas(mainlysoy- beanandcorn).Theregionpresentshighnumberofwell-preserved caves,whichareusedasroostsbythespecies.Allthesecharacteris- ticsmayfavorbatsstayingwithintheconservationunit,decreasing theconnectivityofthispopulation(18)evenwithpopulationsat closedistance,suchaspopulations2,3and9(seeFig.2),leadingto ageneticboundary.Infact,largerandmorestablecavesandsur- roundedbynaturalvegetationcanhavemorebatspeciesandlarger populations(e.g.Barrosetal.,2020).Population9isalsowithina conservationunit,however,withextensiveareasofsavannaand nocaves,whichmayfavorG.soricinadispersal,decreasingdiscon- tinuity.Population17issurroundedbycropsandminingindustry, whichmayisolatetheG.soricinapopulation.

Inaddition,CYBshoweddifferentpatternsofdiscontinuityand Bayesianclusteringcomparedtomicrosatelliteloci.Forinstance, population18showedhighconnectivitywithotherpopulations andnogeneticdiscontinuityforCYB.Ontheotherhand,popula- tion17hadhighdifferentiationanddiscontinuityforCYB,butnot formicrosatellites.Thisresultmaybeduetodifferentdispersal patternbetweenmalesandfemalesorduetodifferencesinevolu- tionaryrates.Microsatellitesmayshowsignalsofcurrentlandscape changeswhileCYBmayshowtheeffectsofhistoricalconnectivity andpaleodistribution(seebelow).Indeed,batsmayshowmale- biaseddispersalthatcanbehighlyaffectedbylandscapechanges andhabitatloss,leadingtolossofgeneticdiversity(Halczoketal., 2018).

Despite the high level of fragmentation and anthropogenic disturbances in the Brazilian Cerrado, the studied populations ofG.soricinapresented relativelyhighgeneticdiversity atboth microsatellitelociandCYB,similartothelevelsofotherPhyllosto- midaebatssuchasLophostomasilviculum(He=0.490;Dechmann etal.,2002),Carolliabrevicauda(Herangingfrom0.430to0.940;

Bardelebenetal.,2007)andDermanurawatsoni(hrangingfrom 0.902to0.991,andnumberofhaplotypesrangingfrom11to21;

Rippergeretal.,2013).Ourresultsalsoshowlowbutsignificantdif- ferentiationformicrosatelliteloci(FST =0.056,P<0.0001)among populationsofG.soricinaintheBrazilianCerrado,similartoother bat species,such asPlecotus auritus(FST ranging from0.011to 0.026;BurlandandWilmer,2001)andNyctalusazoreum(FSTrang- ingfrom0.009to0.036;Salgueiroetal.,2008;).Thelowgenetic differentiationamongpopulationsmaybetheoutcomeofhistorical long-distancedispersal.Infact,Bayesianclusteringshowedthree

geneticgroupsindicatingweakgeneticstructureamongsiteswith highlevelsofgeneflow.Theonlyexceptionwaspopulation18, whichshowedhighandsignificantvaluesofpairwiseFST forall comparisons.

Paleodistributiondynamicsaffectedgeneticboundariesbetween populations

Wefoundnoevidencethatpaleodistributionchangesduring theQuaternarysignificantlyaffectedthegeneticparametersana- lyzed.Thelackofsignificanteffectmaybeduetothequasistability ofG.soricina’sgeographicalrangesincetheLGM.Infact,ourfind- ingsshowaslightlylargergeographicalrangeduringtheLGMthan atthemid-Holoceneorpresent-day,showingthatG.soricinamay haveexpanded itsdistributionduringtheglacialperiodsof the Quaternary,whenseasonally dryforestsandopenedvegetation expandedtheirdistributions(Penningtonetal.,2000).

Nevertheless, thelarge areasof high suitabilitythrough the Quaternarymayhave beenhistoricalclimaticrefugia,maintain- ing populationsthroughtime. The historical refugiaprovided a sourceofmigrantstocolonizenewsuitableareaswhilethespecies wastrackingclimaticniche.ENMshowedthatseveralpopulations ofG.soricina inCentral Brazilwereoutside theclimaticrefugia (seeFig.3)fromtheLGMtopresent-day,explainingthegenetic discontinuityat CYB betweensome populations,suchas popu- lation17.Ontheotherhand,somepopulationswereconnected inthepast,suchaspopulation18,andcontemporarylandscape changes mayhave isolated populations leadingto low connec- tivity and genetic discontinuityat microsatelliteloci. Thus, the geneticboundariesamongpopulationsmaybedue toboth, the paleodistributiondynamicsintheQuaternary,andthecontempo- rarylandscapechanges.

Concludingremarks

Our findingsshowlossofgeneticdiversityinpopulationsof G.soricinaintheBrazilianCerradoduetocontemporarychanges in landscape,despitethehighdispersal ability.Our resultsalso showisolationofpopulationssurroundedbypasture,agriculture orurbanarea, increasinginbreeding.Lessdistanceamongnatu- ralvegetationremnantsmayalsoincreasepopulationconnectivity, decreasinggeneticdifferentiation.Althoughpaleodistributiondid notexplainvariationingeneticdiversityanddifferentiationamong populations,historicalrefugiamayexplainthepatternsofgenetic boundariesbetweenpairsofpopulations.

Ourfindingshighlighttheeffectsofhabitatlossandspatialdis- tanceamongremnantsingeneticdiversityanddifferentiationof highlymobileandwidelydistributedspecies,suchasthePallas’

long-tonguedbat,highlightingtheharmfuleffectsofhabitatlossfor batspeciesandgeneticdiversity(e.g.Meyeretal.,2009;Muylaert etal.,2016;Clearyetal.,2017)Ecologicalinteractionsmayalsobe affectedinthewayfragmentationaffectsG.soricinasinceecolog- icalprocesses,suchaspollinationandseeddispersalmayalsobe affected,modifyingecosystemdynamicsandregeneration.

Moreover,ourresultssuggestthat conservationplanningfor G.soricinamaybebasedonthelocalpatternoflandscapestruc- ture,protectingnaturalvegetationremnantstoincreasepopulation geneticdiversityandconnectivity.

Authorcontributions

RGCandMOconceivedthework.RGCandMPCTfunded the work.MOobtainedthedata.RGC,LCVandTBVcarriedoutanaly- ses.RGCwrotetheoriginaldraftandallauthorsapprovedthefinal version.

(8)

176 R.G.Collevattietal./PerspectivesinEcologyandConservation18(2020)169–177 DNAsequences

CYBsequencedataareavailableatGenBank(https://www.ncbi.

nlm.nih.gov/),accessnumberfromMN719187toMN719369.

Conflictofintereststatement

Theauthorsdeclare thatthe researchwasconductedin the absenceofanycommercialorfinancialrelationshipsthatcouldbe construedasapotentialconflictofinterest.

Acknowledgments

ThisworkwassupportedbytheprojectCNPq/FAPEG/AUXPESQ CH007/2009andCAPES/PROCAD(projectno.88881.068425/2014- 01).M.Oprea receivedaCAPESfellowship.WethankACPavan, LSalles,LGeise,LAguiar,MCNascimento,KCFaria,WUieda,A Pedrozo,TBVieiraandPMendesfortissuesamples,andMatheus SLima-Ribeiroforhelpingwithecologicalnichemodelling.RGC andMPCThavebeencontinuouslysupportedbyCNPqandCAPES grants and fellowships,which we gratefully acknowledge. The authorizationfor sampling was granted by the Brazilian Insti- tute for Environment (ICMBio/MMA number 20982-1). Current researchisfundedbytheNationalInstituteforScienceandTech- nology(INCT)inEcology,EvolutionandBiodiversityConservation (MCTIC/CNPq/FAPEGprojectno.465610/2014-5).

AppendixA. Supplementarydata

Supplementarymaterialrelated tothis article canbefound, in the online version, at doi:https://doi.org/10.1016/j.pecon.

2020.06.006.

References

Aguiar,L.M.S.,Bernard,E.,Machado,R.B.,2014.Habitatuseandmovementsof GlossophagasoricinaandLonchophylladekeyseri(Chiroptera:Phyllostomidae) inaNeotropicalsavannah.Zoologia31,223–229.

Albrecht,L.,Meyer,C.F.J.,Kalko,E.K.V.,2007.Differentialmobilityintwosmall phyllostomidbats,ArtibeuswatsoniandMicronycterismicrotis,inafragmented neotropicallandscape.ActaTheriol.52,141–149.

Arruda,M.P.,Costa,W.P.,Recco-Pimentel,S.M.,2017.GeneticdiversityofMorato’s diggertoad,Proceratophrysmoratoi:spatialstructure,geneflow,effectivesize andtheneedfordifferentialmanagementstrategiesofpopulations.Genet.

Mol.Biol.40,502–514.

Balkenhol,N.,Pardini,R.,Cornelius,C.,Fernandes,F.,Sommer,S.,2013.

Landscape-levelcomparisonofgeneticdiversityanddifferentiationinasmall mammalinhabitingdifferentfragmentedlandscapesoftheBrazilianAtlantic Forest.Conserv.Genet.14,355–367.

Bardeleben,C.,Campbell,P.,Lara,M.,Moore,R.L.,2007.Isolationofpolymorphic tetranucleotidemicrosatellitemarkersforthesilkyshort-tailedbatCarollia brevicauda.Mol.Ecol.Resour.7,63–65.

Barros,J.S.,Bernard,E.,Ferreira,R.L.,2020.EcologicalpreferencesofNeotropical cavebatsinroostsiteselectionandtheirimplicationsforconservation.Basic Appl.Ecol.45,31–41.

Biollaz,F.,Bruyndonckx,N.,Beuneux,G.,Mucedda,M.,Goudet,J.,Christe,P.,2010.

GeneticisolationofinsularpopulationsoftheMaghrebianbat,Myotispunicus, intheMediterraneanbasin.J.Biogeogr.37,1557–1569.

Birky,C.W.,Maruyama,T.,Fuerst,P.,1983.Anapproachtopopulationand evolutionarygenetictheoryforgenesinmitochondriaandchloroplasts,and someresults.Genetics103,513–527.

Boscolo,D.,Metzger,J.P.,2011.Isolationdeterminespatternsofspeciespresence inhighlyfragmentedlandscapes.Ecography34,1–12.

Burland,T.M.,Wilmer,J.W.,2001.Seeinginthedark:molecularapproachesto studyofbatpopulations.BiologicalReview76,389–409.

Burnham,K.P.,Anderson,D.R.,2002.ModelSelectionandMultimodelInference:A PracticalInformation-theoreticApproach,2ndedn.Springer,NewYork.

Centeno-Cuadros,A.,Hulva,P.,Romportl,D.,Santoro,S.,Stríbná,T.,Shohami,D., Evin,A.,Tsoar,A.,Benda,P.,Horácek,I.,Nathan,R.,2017.Habitatuse,butnot geneflow,isinfluencedbyhumanactivitiesintwoecotypesofEgyptianfruit bat(Rousettusaegyptiacus).Mol.Ecol.26,6224–6237.

Cleary,K.,Waits,L.P.,Finegan,B.,2017.Comparativelandscapegeneticsoftwo frugivorousbatsinabiologicalcorridorundergoingagricultural

intensification.Mol.Ecol.26,4603–4617.

Corander,J.,Marttinen,P.,Sirén,J.,Tang,J.,2008.EnhancedBayesianmodelingin BAPSsoftwareforlearninggeneticstructuresofpopulations.BMC Bioinformatics9,1–14.

Dechmann,D.K.N.,Garbely,E.,Kerth,G.,Garner,T.W.J.,2002.Highlypolymorphic microsatellitesforthestudyoftheround-earedbat,Tonatiasilvicola (d’Orbigny).Conserv.Genet.3,455–458.

Delaney,K.S.,Riley,S.P.D.,Fisher,R.N.,2010.Arapid,strong,andconvergent geneticresponsetourbanhabitatfragmentationinfourdivergentand widespreadvertebrates.PLoSOne5,e12767.

Diniz-Filho,J.A.F.,Bini,L.M.,Rangel,T.F.,Loyola,R.D.,Hof,C.,Nogues-Bravo,D., Araujo,M.B.,2009.Partitioningandmappinguncertaintiesinensemblesof forecastsofspeciesturnoverunderclimatechange.Ecography32,897–906.

Dixo,M.,Metzger,J.P.,Morgante,J.S.,Zamudio,K.R.,2009.Habitatfragmentation reducesgeneticdiversityandconnectivityamongtoadpopulationsinthe BrazilianAtlanticCoastalForest.Biolog.Conserv.142,1560–1569.

Do,C.,Waples,R.S.,Peel,D.,Macbeth,G.M.,Tillett,B.J.,Ovenden,J.R.,2014.

NeEstimatorV2:re-implementationofsoftwarefortheestimationof contemporaryeffectivepopulationsize(Ne)fromgeneticdata.Mol.Ecol.

Resour.14,209–214.

Excoffier,L.,Laval,G.,Schneider,S.,2005.Arlequinver.3.0:anintegratedsoftware packageforpopulationgeneticsdataanalysis.Evol.Bioinform.Online1,47–50.

Flanders,J.,Inoue-Murayama,M.,Rossiter,S.J.,Hill,D.A.,2016.Femalephilopatry andlimitedmale-biaseddispersalintheUssuritube-nosedbat,Murina ussuriensis.J.Mammal.97,545–553.

Forster,P.,Bandelt,H.J.,Rohl,A.,etal.,Softwareavailablefreeat2004.Network 4.2.0.1.FluxusTechnologyLtdawww.fluxus-engineering.com.

Gorresen,P.M.,Willig,M.R.,2004.Landscaperesponsesofbatstohabitat fragmentationinAtlanticForestofParaguay.J.Mammal.85,688–697.

Gorresen,P.M.,Willig,M.R.,Strauss,R.E.,2005.Multivariateanalysisof scale-dependentassociationsbetweenbatsandlandscapestructure.Ecol.

Appl.15,2126–2136.

Gruber,B.,Adamack,A.,Freeavailableat2019.Package‘PopGenReport’.

http://www.popgenreport.org/.

Halczok,T.K.,Brändel,S.D.,Flores,V.,Puechmaille,S.J.,Tschanpka,M.,Page,R.A., Kerth,G.,2018.Male-biaseddispersalandthepotentialimpactof human-inducedhabitatmodificationsontheNeotropicalbatTrachops cirrhosus.Ecol.Evol.8,6065–6080.

Haldfield,J.,Freeavailableat2019.PackageMSMCglmm:MCMCGeneralised LinearMixedModels.

https://cran.rproject.org/web/packages/MCMCglmm/index.html.

Hedrick,P.W.,2005.Astandardizedgeneticdifferentiationmeasure.Evolution59, 1633–1638.

Henry,M.,Pons,J.M.,Cosson,J.F.,2007.Foragingbehaviourofafrugivorousbat helpsbridgelandscapeconnectivityandecologicalprocessesinafragmented rainforest.J.Anim.Ecol.3,801–813.

Hewitt,G.,2000.ThegeneticlegacyoftheQuaternaryiceages.Nature405, 907–913.

Irwin,D.M.,Kocher,T.D.,Wilson,A.C.,1991.Evolutionofthecytochromebgeneof mammals.J.Mol.Evol.32,128–144.

Jackson,N.D.,Fahrig,L.,2016.Habitatamount,nothabitatconfiguration,best predictspopulationgeneticstructureinfragmentedlandscapes.Landsc.Ecol.

31,951–968.

Johansson,M.,Primmer,C.R.,Merilä,J.,2007.Doeshabitatfragmentationreduce fitnessandadaptability?Acasestudyofthecommonfrog(Ranatemporaria).

Mol.Ecol.16,2693–2700.

Jost,L.,2008.GSTanditsrelativesdonotmeasuredifferentiation.Mol.Ecol.17, 4015–4026.

Kerth,G.,Petit,E.,2005.Colonizationanddispersalinasocialspecies,the Bechstein’sbat(Myotisbechsteinii).Mol.Ecol.14,3943–3950.

Kuhner,M.K.,2006.Lamarc2.0:maximumlikelihoodandBayesianestimationof populationparameters.Bioinformatics22,768–770.

Lanfear,R.,Kokko,H.,Eyre-Walker,A.,2014.Populationsizeandtherateof evolution.TrendsEcol.Evol.(Amst.)29,33–41.

Legendre,P.,Legendre,L.,1998.NumericalEcology.Elsevier,Oxford.

Levy,E.,Byrne,M.,Huey,J.A.,Firman,R.C.,Ottewell,K.M.,2019.Limitedinfluence oflandscapeonthegeneticstructureofthreesmallmammalsina

heterogeneousaridenvironment.J.Biogeogr.46,539–551.

Lima-Ribeiro,M.S.,Varela,S.,González-Hernández,J.,Oliveira,G.,Diniz-Filho, J.A.F.,Terribile,L.C.,2015.EcoClimate:adatabaseofclimatedatafrommultiple modelsforpast,present,andfutureformacroecologistsandbiogeographers.

Biodivers.Inform.10,1–21.

McCracken,G.F.,Wilkinson,G.S.,2000.Batmatingsystems.In:Crichton,E.G., Krutzsch,P.H.(Eds.),ReproductiveBiologyofBats.AcademicPress,NewYork, pp.321–362.

Meyer,C.F.J.,Kalko,E.K.V.,Kerth,G.,2009.Small-scalefragmentationeffectson localgeneticdiversityintwophyllostomidbatswithdifferentdispersal abilitiesinPanama.Biotropica41,95–102.

Miranda,N.E.O.,Maciel,N.M.,Lima-Ribeiro,M.S.,Colli,G.R.,Haddad,C.F.B., Collevatti,R.G.,2019.DiversificationofthewidespreadNeotropicalfrog PhysalaemuscuvieriinresponsetoNeogene-Quaternarygeologicaleventsand climatedynamics.Mol.Phylogenet.Evol.132,67–80.

Muylaert,R.L.,Stevens,R.D.,Ribeiro,M.C.,2016.Thresholdeffectofhabitatlosson batrichnessincerrado-forestlandscapes.Ecol.Appl.26,1854–1867.

Nomura,T.,2008.Estimationofeffectivenumberofbreedersfrommolecular coancestryofsinglecohortsample.Evol.Appl.1,462–474.

(9)

Oprea,M.,Peixoto,F.P.,Resende,L.V.,Collevatti,R.G.,Telles,M.P.C.,2012.Isolation andcharacterizationof10microsatellitelociforPallas’long-tonguedbat Glossophagasoricina(Phyllostomidae).Genet.Mol.Resour.11,3518–3521.

Pennington,R.T.,Prado,D.E.,Pendry,C.A.,2000.Neotropicalseasonallydryforests andQuaternaryvegetationchanges.J.Biogeogr.27,261–273.

Peterman,W.E.,2018.ResistanceGA:anRpackagefortheoptimizationof resistancesurfacesusinggeneticalgorithms.MethodsEcol.Evol.9,1638–1647.

Pink,B.,1996.ReproductiveandSocialBehavioroftheBatGlossophagasoricina (Phyllostomidae;Glossophaginae).UnpublishedPhil.Thesis.Universityof Erlangen-Nuremberg.

Pritchard,J.K.,Stephens,M.,Donnelly,P.,2000.Inferenceofpopulationstructure usingmultilocusgenotypedata.Genetics155,945–959.

Puttker,T.,Bueno,A.A.,Barros,C.S.,Sommer,S.,Pardini,R.,2011.Immigration ratesinfragmentedlandscapes—empiricalevidencefortheimportanceof habitatamountforspeciespersistence.PLoSOne6,e27963.

RCoreTeam,Availableat2019.R:ALanguageandEnvironmentforStatistical Computing.RFoundationforStatisticalComputing,Vienna,Austria http://www.R-project.org.

Rangel,T.F.,Diniz-Filho,J.A.F.,Bini,L.M.,2010.SAM:acomprehensiveapplication forspatialanalysisinmacroecology.Ecography33,46–50.

Razgour,O.,Rebelo,H.,Puechmaille,S.J.,Juste,J.,Ibá ˜nez,C.,Kiefer,A.,Burke,T., Dawson,D.A.,Jones,G.,2014.Scale-dependenteffectsoflandscapevariables ongeneflowandpopulationstructureinbats.Divers.Distrib.20,1173–1185.

Reis,N.R.,Peracchi,A.L.,Pedro,W.A.,Lima,I.P.,2005.MorcegosdoBrasil.

UniversidadeEstadualdeLondrina,Londrina.

Ripperger,S.P.,Tschapka,M.,Kalko,E.K.V.,Rodriguez-Herrera,B.,Mayer,F.,2013.

Lifeinamosaiclandscape:anthropogenichabitatfragmentationaffectsgenetic populationstructureinafrugivorousbatspecies.Conserv.Genet.14,925–934.

Rossiter,S.J.,Jones,G.,Ransome,R.D.,Barratt,E.M.,2000.Parentage,reproductive successandbreedingbehaviourinthegreaterhorseshoebat(Rhinolophus ferrumequinum).Proc.R.Soc.B267,545–551.

Russell,A.L.,Medellín,R.A.,McCracken,G.F.,2005.Geneticvariationandmigration intheMexicanfree-tailedbat(Tadaridabrasiliensismexicana).Mol.Ecol.14, 2207–2222.

Salgueiro,P.,Palmeirim,J.M.,Ruedi,M.,Coelho,M.M.,2008.Geneflowand populationstructureoftheendemicAzoreanbat(Nyctalusazoreum)basedon microsatellites:implicationsforconservation.Conserv.Genet.9,1163–1171.

Silva,J.F.,Farinas,M.R.,Felfili,J.M.,Klink,C.A.,2006.Spatialheterogeneity,landuse andconservationinthecerradoregionofBrazil.J.Biogeogr.33,536–548.

Umetsu,F.,Metzger,J.P.,Pardini,R.,2008.Importanceofestimatingmatrixquality formodelingspeciesdistributionincomplextropicallandscapes:atestwith Atlanticforestsmallmammals.Ecography31,359–370.

Wagner,H.,Fortin,M.J.,2013.Aconceptualframeworkforthespatialanalysisof landscapegeneticdata.Conserv.Genet.14,253–261.

Willig,M.R.,Camilo,G.R.,Nobile,S.J.,1993.Dietaryoverlapinfrugivorousand insectivorousbatsfromedaphiccerradohabitatsofBrazil.J.Mammal.74, 117–128.

Wilmer,J.W.,Hall,L.,Barratt,E.,Moritz,C.,1999.Geneticstructureand male-mediatedgeneflowintheghostbat(Macrodermagigas).Evolution53, 1582–1591.

Wright,S.,1951.Thegeneticstructureofpopulations.Ann.Eugen.15,323–354.

Zurcher,A.A.,Sparks,D.W.,Bennett,V.J.,2010.Whythebatdidnotcrosstheroad?

ActaChiroptera12,337–340.

Referências

Documentos relacionados

A “Casa do Fundo da Rua” pertencente à família Serpa Pinto é um edifício de habitação nobre e o único exemplar de arqui- tectura barroca na aldeia de BoassasD. Este é a peça

Em 1988, no âmbito da exposição “Os Construtores do Oriente Português” 29 , realizada no Edifício da Alfândega do Porto em estreita colaboração entre a Câmara

Tesla, despite all investments and expectations, was unable to scale their production capacity as much as intended and are just able to grow at 80% of the overall market’s rate,

Aiming to assess the genetic diversity and genetic structure of three wild American Oryza species with isozyme markers, 14 populations of the diploid O.. grandiglumis (CCDD)

AFLP markers have been used to study gene flow, population structure, genetic mapping, ploidy level and genetic diversity in several weed species (Slotta, 2008).. As examples of

Genetic parameters and response to selection for live weight in the GIFT strain of Nile tilapia ( Oreochromis niloticus ). Inbreeding and effective population size

49 Figura 12 – Principais métodos de produção de laminados (ou folheados) de madeira: a) torneamento (ou desenrolamento) e b) faqueamento.. Figura 16 – Laminados

Neste estudo será apresentada uma análise comparativa entre pallets de madeira e de plástico e um estudo de caso fundamentado em uma pesquisa com coletas de dados através