• Nenhum resultado encontrado

O desenvolvimento deste trabalho permitiu promover a síntese de nanopartículas de prata e de sílica, bem como uma rota adequada para a síntese do copolímero modificador de superfície PS-b-PVP. Além disto, a abordagem realizada para a obtenção dos nanocompósitos mostrou-se promissora. Assim, como proposta para continuidade deste trabalho, sugere-se:

 Sintetizar nanopartículas de sílica com diâmetro da ordem de 10 nm, utilizando- se uma variação do método de Stöber;

Obter o copolímero PS-b-PVP com maior massa molar utilizando a mesma rota sintética, mas variando a razão hidrofílico/hidrofóbica, e investigar suas características estruturais e morfológicas;

 Aprimorar a dispersão das nanopartículas nos domínios de SBS;

 Produzir filmes finos de SBS para realizar estudos de transições morfológicas com a incorporação de nanopartículas modificadas.

127

Referências

[1] Kim H-C, Park S-M, Hinsberg WD. Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem Rev 2010;110:146–77.

[2] Hamley IW. The physics of block copolymers. Oxford: Oxford University Press; 1998.

[3] Simon PFW, Ulrich R, Spiess HW, Wiesner U. Block copolymer−ceramic hybrid materials from organically modified ceramic precursors. Chem Mater 2001;13:3464–86.

[4] Ho R-M, Chiang Y-W, Lin S-C, Chen C-K. Helical architectures from self-assembly of chiral polymers and block copolymers. Prog Polym Sci 2011;36:376–453.

[5] Smart T, Lomas H, Massignani M, Flores-Merino M V, Perez LR, Battaglia G. Block copolymer nanostructures. Nano Today 2008;3:38–46.

[6] Bockstaller MR, Mickiewicz RA, Thomas EL. Block copolymer nanocomposites: Perspectives for tailored functional materials. Adv Mater 2005;17:1331–49.

[7] Ramanathan M, Strzalka J, Wang J, Darling SB. Asymmetric morphology from an organic/organometallic block copolymer. Polymer (Guildf) 2010;51:4663–6.

[8] Bates FS, Fredrickson GH. Block copolymer thermodynamics: Theory and experiment. Annu Rev Phys Chem 1990;41:525–57.

[9] Walther A, Göldel A, Müller AHE. Controlled crosslinking of polybutadiene containing block terpolymer bulk structures: A facile way towards complex and functional nanostructures. Polymer (Guildf) 2008;49:3217–27.

[10] Meier DJ. Theory of block copolymers. I. Domain formation in A-B block copolymers. J Polym Sci Part C Polym Symp 1969;26:81–98.

[11] Helfand E. Block copolymer theory. III. Statistical mechanics of the microdomain structure. Macromolecules 1975;8:552–6.

[12] Helfand E, Wasserman ZR. Block copolymer theory. 4. Narrow interphase approximation. Macromolecules 1976;9:879–88.

[13] Matsen MW, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 1994;72:2660–3.

[14] Matsen MW, Bates FS. Block copolymer microstructures in the intermediate-segregation regime. J Chem Phys 1997;106:2436–48.

[15] Khandpur AK, Forster S, Bates FS, Hamley IW, Ryan AJ, Bras W, et al. Polyisoprene- polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 1995;28:8796–806.

128

[16] Peponi L, Tercjak A, Torre L, Mondragon I, Kenny JM. Nanostructured physical gel of SBS block copolymer and Ag/DT/SBS nanocomposites. J Mater Sci 2009;44:1287–93.

[17] Costa FR, Dutta NK, Choudhury NR, Bhowmick AK. Current topics in elastomers research. In: Bhowmick AK., editor. Thermoplast. Elastomers, vol. 116, New York: Taylor & Francis Group; 2008, p. 101–64.

[18] Lo C-T, Chang Y-C, Wu S-C, Lee C-L. Effect of particle size on the phase behavior of block copolymer/nanoparticle composites. Colloids Surfaces A Physicochem Eng Asp 2010;368:6–12.

[19] Puskas JE, Kaszas G. Polyisobutylene-based thermoplastic elastomers: A review. Rubber Chem Technol 1996;69:462–75.

[20] Biron M. Detailed accounts of thermoplastic resins. Thermoplast. Thermoplast. Compos., Elsevier; 2007, p. 217–714.

[21] Liu C-L, Lin C-H, Kuo C-C, Lin S-T, Chen W-C. Conjugated rod–coil block copolymers: Synthesis, morphology, photophysical properties, and stimuli-responsive applications. Prog Polym Sci 2011;36:603–37.

[22] Wang T, Huang F. Preparation and characterization of novel thermoplastic elastomers by step/chain transformation polymerization. Polymer (Guildf) 2000;41:5219–28.

[23] Ban HT, Kase T, Kawabe M, Miyazawa A, Ishihara T, Hagihara H, et al. A new approach to styrenic thermoplastic elastomers: Synthesis and characterization of crystalline styrene−butadiene−styrene triblock copolymers. Macromolecules 2006;39:171–6.

[24] Kim JH, Lee DH, Won J, Jinnai H, Kang YS. The structural transitions of π-complexes of poly(styrene-b-butadiene-b-styrene) block copolymers with silver salts and their relation to facilitated olefin transport. J Memb Sci 2006;281:369–76.

[25] Lee DH, Kang YS, Kim JH, Kang SW. Selective coordination of silver ions to poly(styrene-b- (ethylene-co-butylene )-b-styrene) and its influence on morphology and facilitated olefin transport. Macromol Res 2008;16:676–81.

[26] Wang Z, Zhang Q, Zhan X, Chen F, Rao G, Xiong J. Preparation, kinetics and microstructures of well-defined PS-b-PS/Bd diblock copolymers via RAFT miniemulsion polymerization. J Polym Res 2013;20:288.

[27] Li GH, Yang PP, Gao ZS, Zhu YQ. Synthesis and micellar behavior of poly(acrylic acid-b- styrene) block copolymers. Colloid Polym Sci 2012;290:1825–31.

[28] Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M. In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: Grafting through hydroxyl groups. J Polym Res 2014;21:333.

[29] Chavda S, Yusa S, Inoue M, Abezgauz L, Kesselman E, Danino D, et al. Synthesis of stimuli responsive PEG47–b-PAA126–b-PSt32 triblock copolymer and its self-assembly in aqueous solutions. Eur Polym J 2013;49:209–16.

129

[30] Wang J-S, Matyjaszewski K. Controlled/―living‖ radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 1995;117:5614–5.

[31] Matyjaszewski K, Patten TE, Xia J. Controlled /―living ‖ radical polymerization . Kinetics of the homogeneous atom transfer radical polymerization of styrene. J Am Chem Soc 1997;119:674–80.

[32] Aitchison TJ, Ginic-Markovic M, Clarke S, Valiyaveettil S. Initiation issues with block copolymer formation using ARGET ATRP. Macromol Chem Phys 2012;213:79–86.

[33] Lowe AB, Mccormick CL. Reversible addition – fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Polymer (Guildf) 2007;32:283–351.

[34] Liu X, Wu Z, Zhou F, Li D, Chen H. Poly(vinylpyrrolidone-b-styrene) block copolymers tethered surfaces for protein adsorption and cell adhesion regulation. Colloids Surfaces B Biointerfaces 2010;79:452–9.

[35] Kumar S, Changez M, Murthy CN, Yamago S, Lee J-S. Synthesis of well-defined amphiphilic block copolymers by organotellurium-mediated living radical polymerization (TERP). Macromol Rapid Commun 2011;32:1576–82.

[36] Zhang Z, Zhao B, Hu L. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 1996;121:105–10.

[37] Desai MD, Reddy BSR, Arshady R, George MH. Copolymerization of 2-carboxyphenyl acrylate with styrene and N-vinyl-2- pyrrolidone: reactivity ratios, molecular weights and 13C n.m.r. spectra. Polymer (Guildf) 1986;27:96–100.

[38] Huglin MB, Khairou KS. Copolymerisations of N-vinyl pyrrolidone with styrene and n-butyl acrylate. Eur Polym J 1988;24:239–43.

[39] Shamenkova OA, Mokeeva LK, Kopylova NA, Semchikov YD. Synthesis of amphiphilic block copolymers polystyrene-block-polyvinylpyrrolidone from active polystyrene. Russ J Appl Chem 2006;79:448–52.

[40] Park JT, Koh JH, Lee KJ, Seo JA, Min BR, Kim JH. Formation of silver nanoparticles created in situ in an amphiphilic block copolymer film. J Appl Polym Sci 2008;110:2352–7.

[41] Hussain H, Tan BH, Gudipati CS, Liu Y, He CB, Davis TP. Synthesis and self-assembly of poly(styrene)-b-poly(N-vinylpyrrolidone) amphiphilic diblock copolymers made via a combined ATRP and MADIX approach. J Polym Sci Part A Polym Chem 2008;46:5604–15. [42] Hu D, Zheng S. Reaction-induced microphase separation in polybenzoxazine thermosets

containing poly(N-vinyl pyrrolidone)-block-polystyrene diblock copolymer. Polymer (Guildf) 2010;51:6346–54.

130

[43] Huang C-F, Nicola R, Kwak Y, Chang F-C, Matyjaszewski K. Homopolymerization and block copolymerization of N-vinylpyrrolidone by ATRP and RAFT with haloxanthate inifers. Macromolecules 2009;42:8198–210.

[44] Bilalis P, Pitsikalis M, Hadjichristidis N. Controlled nitroxide-mediated and reversible addition-fragmentation chain transfer polymerization of N-vinylpyrrolidone: Synthesis of block copolymers with styrene and 2-vinylpyridine. J Polym Sci Part A Polym Chem 2006;44:659–65.

[45] Arsalani N, Fattahi H, Entezami AA. Synthesis of amphiphilic diblock and random copolymers of styrene and N-vinylpyrrolidone using nitroxide-mediated living free radical polymerization. Iran Polym J 2006;15:997–1005.

[46] Ray B, Kotani M, Yamago S. Highly controlled synthesis of poly(N-vinylpyrrolidone) and its block copolymers by organostibine-mediated living radical polymerization. Macromolecules 2006;39:5259–65.

[47] Zakharova OG, Golyagina Y V., Semchikov YD. Synthesis and surface properties of amphiphilic block copolymers polyvinylpyrrolidone-block-polystyrene. Russ J Appl Chem 2009;82:644–9.

[48] Wang J-S, Matyjaszewski K. Controlled/―living‖ radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 1995;28:7901–10.

[49] Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev 2001;101:2921–90. [50] Perrier S, Takolpuckdee P. Macromolecular design via reversible addition-fragmentation

chain transfer (RAFT)/xanthates (MADIX) polymerization. J Polym Sci Part A Polym Chem 2005;43:5347–93.

[51] Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 2007;32:93–146.

[52] Matyjaszewski K. Overview: Fundamentals of controlled/living radical polymerization. In: Matyjaszewski K, editor. Control. Radic. Polym., vol. 685, Washington, DC: American Chemical Society; 1998, p. 2–30.

[53] Szwarc M. ―Living‖ polymers. Nature 1956;178:1168–9.

[54] Patten TE, Matyjaszewski K. Copper (I)-catalyzed atom transfer radical polymerization. Acc Chem Res 1999;32:895–903.

[55] Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Aust J Chem 2005;58:379–410.

[56] Jakubowski W, Kirci-Denizli B, Gil RR, Matyjaszewski K. Polystyrene with improved chain- end functionality and higher molecular weight by ARGET ATRP. Macromol Chem Phys 2008;209:32–9.

131

[57] Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules 1995;28:1721–3.

[58] Hayes W, Rannard S. Controlled/―living‖ polymerization methods. In: Daves FJ, editor. Polym. Synth. – A Pract. Approach, vol. 30, Oxford University Press; 2004, p. 99–125. [59] Durán N, Marcato PD, Conti R De, Alves OL, Costa FTM, Brocchi M. Potential use of silver

nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Brazilian Chem Soc 2010;21:949–59.

[60] Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009;145:83–96.

[61] Oriakhi CO. Polymer nanocomposition approach to advanced materials. J Chem Educ 2000;77:1138–46.

[62] He B, Tan JJ, Liew KY, Liu H. Synthesis of size controlled Ag nanoparticles. J Mol Catal A Chem 2004;221:121–6.

[63] Nagy A, Mestl G. High temperature partial oxidation reactions over silver catalysts. Appl Catal A Gen 1999;188:337–53.

[64] Wang H, Qiao X, Chen J, Wang X, Ding S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 2005;94:449–53.

[65] Wang H, Qiao X, Chen J, Ding S. Preparation of silver nanoparticles by chemical reduction method. Colloids Surfaces A Physicochem Eng Asp 2005;256:111–5.

[66] Wiley B, Sun Y, Mayers B, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem - A Eur J 2005;11:454–63.

[67] Bonet F, Tekaia-Elhsissen K, Sarathy KV. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process. Bull Mater Sci 2000;23:165–8.

[68] Fiévet F, Lagier JP, Blin B, Beaudoin B, Figlarz M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 1989;32/33:198–205.

[69] Toneguzzo P, Viau G, Acher O, Fiévet-Vincent F, Fiévet F. Monodisperse ferromagnetic particles for microwave applications. Adv Mater 1998;10:1032–5.

[70] Wang S, Shi G. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Mater Chem Phys 2007;102:255–9.

[71] Oh S-D, Lee S, Choi S-H, Lee I-S, Lee Y-M, Chun J-H, et al. Synthesis of Ag and Ag–SiO2 nanoparticles by γ-irradiation and their antibacterial and antifungal efficiency against

132

Salmonella enterica serovar Typhimurium and Botrytis cinerea. Colloids Surfaces A Physicochem Eng Asp 2006;275:228–33.

[72] Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 2004;104:3893–946.

[73] Tromp RM, Hannon JB. Thermodynamics of nucleation and growth. Surf Rev Lett 2002;09:1565–93.

[74] Macosko CW. Rheology: Principles, measurements and applications. Wiley-VCH; 1994. [75] Faraudo J, Andreu JS, Camacho J. Understanding diluted dispersions of superparamagnetic

particles under strong magnetic fields: A review of concepts, theory and simulations. Soft Matter 2013;9:6654.

[76] Goodwin JW, Hughes RW. Rheology for chemists: An introduction. Cambridge: Royal Society of Chemistry; 2000.

[77] Park SC, Kim BJ, Hawker CJ, Kramer EJ, Bang J, Ha JS. Controlled ordering of block copolymer thin films by the addition of hydrophilic nanoparticles. Macromolecules 2007;40:8119–24.

[78] Yu D, Yam VW-W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J Phys Chem B 2005;109:5497–503.

[79] Sun Y, Gates B, Mayers B, Xia Y. Crystalline silver nanowires by soft solution processing. Nano Lett 2002;2:165–8.

[80] Wiley B, Herricks T, Sun Y, Xia Y. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 2004;4:1733–9.

[81] Sun Y, Xia Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 2004;126:3892–901.

[82] Im SH, Lee YT, Wiley B, Xia Y. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed Engl 2005;44:2154–7. [83] Pastoriza-Santos I, Liz-Marzán LM. Formation of PVP-protected metal nanoparticles in

DMF. Langmuir 2002;18:2888–94.

[84] Wiley BJ, Im SH, Li Z-Y, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 2006;110:15666–75.

[85] Métraux GS, Mirkin CA. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 2005;17:412–5.

133

[86] Korgel BA, Fitzmaurice D. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv Mater 1998;10:661–5.

[87] Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003;425:487–90.

[88] Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 2003;3:675–9.

[89] Faraday M. The bakerian lecture: Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 1857;147:145–81.

[90] Noguez C. Optical properties of isolated and supported metal nanoparticles. Opt Mater (Amst) 2005;27:1204–11.

[91] Noguez C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J Phys Chem C 2007;111:3806–19.

[92] Pastoriza-Santos I, Liz-Marzán LM. Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir 1999;15:948–51.

[93] Pastoriza-santos I, Liz-marzán LM. Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure Appl Chem 2000;72:83–90.

[94] Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M. Silica-metal core-shell nanostructures. Adv Colloid Interface Sci 2011;170:28–47.

[95] Putzien S, Nuyken O, Kühn FE. Functionalized polysilalkylene siloxanes (polycarbosiloxanes) by hydrosilylation—Catalysis and synthesis. Prog Polym Sci 2010;35:687–713.

[96] Kalaycı ÖA, Cömert FB, Hazer B, Atalay T, Cavicchi KA, Cakmak M. Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers. Polym Bull 2010;65:215–26.

[97] Indumathy R. Bifunctional role of thiosalicylic acid in the synthesis of silver nanoparticles. Mater Sci Appl 2010;1:272–8.

[98] Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, et al. Nanostructured plasmonic sensors. Chem Rev 2008;108:494–521.

[99] Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006;22:32–41.

[100] Ibrahim IAM, Zikry AAF, Sharaf MA. Preparation of spherical silica nanoparticles : Stober silica. J Am Sci 2010;6:985–9.

[101] Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968;26:62–9.

134

[102] Freris I, Cristofori D, Riello P, Benedetti A. Encapsulation of submicrometer-sized silica particles by a thin shell of poly(methyl methacrylate). J Colloid Interface Sci 2009;331:351–5. [103] Costa CAR, Valadares LF, Galembeck F. Stöber silica particle size effect on the hardness and brittleness of silica monoliths. Colloids Surfaces A Physicochem Eng Asp 2007;302:371–6.

[104] Costa CAR, Leite CAP, Galembeck F. Size dependence of Stöber silica nanoparticle microchemistry. J Phys Chem B 2003;107:4747–55.

[105] Bourgeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media. 1. Silica nanoparticles encapsuled by polystyrene. J Colloid Interface Sci 1999;210:281–9.

[106] Pabisch S, Feichtenschlager B, Kickelbick G, Peterlik H. Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS , DLS , BET , XRD and TEM. Chem Phys Lett 2012;521:91–7.

[107] Saegusa T. Organic-inorganic polymers hybrids. Pure Appl Chem 1995;67:1965–70.

[108] Corriu R, Anh NT. Molecular chemistry of sol-gel derived nanomaterials. John Wiley & Sons, Ltd.; 2009.

[109] Brinker CJ, Scherer GW. Sol-gel science: The physics and chemistry of solgel processing. San Diego: Academic Press, Inc.; 1990.

[110] Hench LL, West JK. The sol-gel process. Chem Rev 1990;90:33–72.

[111] José NM, Prado LASA. Materiais híbridos orgânico-inorgânicos: Preparação e algumas aplicações. Quim Nova 2005;28:281–8.

[112] Riess G. Micellization of block copolymers. Prog Polym Sci 2003;28:1107–70.

[113] Farias MA, Coelho LAF, Pezzin SH. Epoxy/silsesquioxane organic – inorganic hybrids: Sol– gel synthesis of inorganic precursors containing amino and phenyl groups. Polym Eng Sci 2012;52:52–61.

[114] Zhang D, Qi L, Ma J, Cheng H. Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem Mater 2001;13:2753–5.

[115] Malynych S, Luzinov I, Chumanov G. Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles. J Phys Chem B 2002;106:1280–5.

[116] Cheng Q, Li C, Pavlinek V, Saha P, Wang H. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl Surf Sci 2006;252:4154–60.

[117] Park MJ, Park J, Hyeon T, Char K. Effect of interacting nanoparticles on the ordered morphology of block copolymer / nanoparticle mixtures. J Polym Sci Part B Polym Phys 2006;44:3571–9.

135

[118] Bahadur NM, Furusawa T, Sato M, Kurayama F, Siddiquey IA, Suzuki N. Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation. J Colloid Interface Sci 2011;355:312–20.

[119] Nič M, Jirát J, Košata B, Jenkins A, McNaught A, editors. IUPAC Compendium of chemical terminology. Research Triagle Park, NC: IUPAC; 2012.

[120] Fischer S, Salcher A, Kornowski A, Weller H, Förster S. Completely miscible nanocomposites. Angew Chemie Int Ed 2011;50:7811–4.

[121] Christiani BR, Maxfield M, Sastri VR. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates, and organo zirconates dispersed therein and process of preparing same. U. S. Patent 5514734, 1995. [122] Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer (Guildf)

2008;49:3187–204.

[123] Peponi L, Tercjak A, Gutierrez J, Stadler H, Torre L, Kenny JM, et al. Self-assembling of SBS block copolymers as templates for conductive silver nanocomposites. Macromol Mater Eng 2008;293:568–73.

[124] Wager CM, Haddleton DM, Bon SA. A simple method to convert atom transfer radical polymerization (ATRP) initiators into reversible addition fragmentation chain-transfer (RAFT) mediators. Eur Polym J 2004;40:641–5.

[125] Cohen Stuart M., Fleer G., Bijsterbosch B. The adsorption of poly(vinyl pyrrolidone) onto silica. I. Adsorbed amount. J Colloid Interface Sci 1982;90:310–20.

[126] Schubert US, Hochwimmer G, Spindler CE, Nuyken O. Controlled polymerization of methylmethacrylate and ethylacrylate using tris(4,4’-dimethyl-2,2'-bipyridine) copper(II) hexafluorophosphate complexes and aluminium isopropoxide. Polym Bull 1999;43:319–26. [127] Pintauer T, Qiu J, Kickelbick G, Matyjaszewski K. Synthesis, characterization, and bromine

substitution by 4,4′-di(5-nonyl)-2,2′-bipyridine in CuII(4,4′-di(5-nonyl)-2,2′-bipyridine)Br2. Inorg Chem 2001;40:2818–24.

[128] Ohno K, Goto A, Fukuda T, Xia J, Matyjaszewski K. Kinetic study on the activation process in an atom transfer radical polymerization. Macromolecules 1998;31:2699–701.

[129] Williams D, Fleming I. Spectroscopic methods in organic chemistry. 6th ed. McGraw-Hill Higher Education; 2007.

[130] Mark JE. Polymer data handbook. 1st ed. New York: Oxford University Press; 1999.

[131] Devasia R, Bindu RL, Borsali R, Mougin N, Gnanou Y. Controlled radical polymerization of N-vinylpyrrolidone by reversible addition-fragmentation chain transfer process. Macromol Symp 2005;229:8–17.

136

[132] Saldías C, Leiva A, Quezada C, Jaque P, Gargallo L, Radic D. Structural effects of amphiphilic block copolymers on the gold nanoplates synthesis. Experimental and theoretical study. Eur Polym J 2011;47:1866–76.

[133] Wan D, Satoh K, Kamigaito M, Okamoto Y. Xanthate-mediated radical polymerization of N- vinylpyrrolidone in fluoroalcohols for simultaneous control of molecular weight and tacticity. Macromolecules 2005;38:10397–405.

[134] Kahveci MU, Acik G, Yagci Y. Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light-induced free radical promoted cationic polymerization. Macromol Rapid Commun 2012;33:309–13.

[135] Pastoriza-Santos I, Liz-Marzán LM. Synthesis of silver nanoprisms in DMF. Nano Lett 2002;2:903–5.

[136] Lee J-M, Jun Y-D, Kim D-W, Lee Y-H, Oh S-G. Effects of PVP on the formation of silver– polystyrene heterogeneous nanocomposite particles in novel preparation route involving polyol process: Molecular weight and concentration of PVP. Mater Chem Phys 2009;114:549–55.

[137] Chou K-S, Lai Y-S. Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Mater Chem Phys 2004;83:82–8.

[138] Deivaraj TC, Lala NL, Lee JY. Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J Colloid Interface Sci 2005;289:402–9.

[139] Huheey JE, Keiter EA, Keiter RL. Inorganic chemistry: principles of structure and reactivity. 4 ed. New York: Harper Collins College; 1993.

[140] Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006;110:16248–53.

[141] Solomons TWG, Fryhle C. Organic chemistry. 8 ed. New York: John Wiley; 2004.

[142] Jiang X, Xie Y, Lu J, Zhu L, He W, Qian Y. Preparation, characterization and catalytic effect of CS2-stabilized silver nanoparticles in aqueous solution. Langmuir 2001;17:3795–9.

[143] Liu X, Atwater M, Wang J, Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 2007;58:3–7.

[144] Medina-Ramirez I, Bashir S, Luo Z, Liu JL. Green synthesis and characterization of polymer- stabilized silver nanoparticles. Colloids Surf B Biointerfaces 2009;73:185–91.

[145] Pastoriza-Santos I, Serra-Rodríguez C, Liz-Marzán LM. Self-assembly of silver particle monolayers on glass from Ag(+) solutions in DMF. J Colloid Interface Sci 2000;221:236–41.

137

[146] Shaw DJ. Introduction to colloid & surface chemistry. 4th ed. Oxford: Butterworth- Heinemann; 1992.

[147] Costa CAR, Leite CAP, Galembeck F. ESI-TEM imaging of surfactants and ions sorbed in Stöber silica nanoparticles. Langmuir 2006;22:7159–66.

[148] Collins KE, Gonçalves MC, Romero RB, Conz RF, de Camargo VR, Collins CH. Low temperature ageing of silicas Gasil-I and TK800. Appl Surf Sci 2008;254:4029–35.

[149] Robinson S, Williams PA. Inhibition of protein adsorption onto silica by polyvinylpyrrolidone. Langmuir 2002;18:8743–8.

[150] Van Helden AK, Jansen JW, Vrij A. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J Colloid Interface Sci 1981;81:354–68.

[151] Drazkowski DB, Lee A, Haddad TS, Cookson DJ. Chemical substituent effects on morphological transitions in styrene−butadiene−styrene triblock copolymer grafted with polyhedral oligomeric silsesquioxanes. Macromolecules 2006;39:1854–63.

[152] Canto LB, Torriani IL, Plivelic TS, Hage Jr E, Pessan LA. Domain structure and miscibility studies of blends of styrene – butadiene – styrene block copolymers ( SBS ) and styrene – glycidyl methacrylate statistical copolymers ( PS-GMA ) using SAXS and DMTA. Polym Int 2007;56:308–16.

[153] Silverstein RM, Webster FX, Kiemle DJ. Spectrometric Identification of Organic Compounds. 7th ed. Hoboken: John Wiley & Sons, Inc; 2005.

[154] Bellamy LJ. The infra-red spectra of complex molecules. 2nd ed. New York: John Wiley & Sons, Inc; 1957.

[155] Drazkowski DB, Lee A, Haddad TS. Morphology and phase transitions in styrene−butadiene−styrene triblock copolymer grafted with isobutyl-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 2007;40:2798–805.

[156] Fu BX, Lee A, Haddad TS. Styrene−butadiene−styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 2004;37:5211–8.

[157] Kim JK, Lee HH, Gu Q-J, Chang T, Jeong YH. Determination of order−order and order−disorder transition temperatures of SIS block copolymers by differential scanning calorimetry and rheology. Macromolecules 1998;31:4045–8.