• Nenhum resultado encontrado

Essays on competition and returns of inside money

N/A
N/A
Protected

Academic year: 2017

Share "Essays on competition and returns of inside money"

Copied!
79
0
0

Texto

(1)

!

"

#

$

%

& '

"

$ (

)

&

) *

*

(2)

!

"

#

$

%

& '

"

$ (

/

0

&

) *

*

1)

2

3

4

%

%

5 1

3

4

%

0

1 /

3 +4

% *

% 65 +6

1 /

3 +4

7

1

3

4

(3)

!

"

(4)

# ! $ % && ! γ . S ' ! ! , &

β∈ . , . B∈ . , .

# ! $ % && ! γ . S ' ! ! , &

β∈ . , . B∈ . , .

# ! ( $ % && !

"

# ! $ % r γ . S ' ! ! , &

β∈ . , . B∈ . , .

)

# ! $ # && ! γ . 'γ . S ' ! ! , &

β∈ . , . B∈ . , .

# ! $ # && !

# ! * $ # r γ . ' γ . S ' ! ! ,

& β ∈ . , . B∈ . , . ' + &

# ! $ # r γ . ' γ . S ' ! ! ,

& β ∈ . , . B∈ . , . ' + &

# ! " $ # ,j g y n n

(

# ! ) $ # -j g y n n

(

# ! $ . & /01 B . 'β . 'γ . 'γ .

S # + n 'n π . ' ψ∈ { . , . , . , . , . }

(*

# ! $ . & /01 B . 'β . 'γ . 'γ .

S # + n 'n ψ . ' π ∈ { . , . , . , . , . }

(5)

# ! ( $ . & & B . ' β . ' γ . ' γ .

S # + n n + &

("

# ! $ . & & B . ' β . ' γ . ' γ .

S # + n n + &

("

# ! $ . & & 2 B . ' β . ' γ . ' γ .

S # + n n + &

)

# ! $ . & & 2 B . ' β . ' γ . ' γ .

S # + n n + &

)

# ! * $ . & ! & 3 RA B . '

β . ' ∗∗ . S B ∈ , .

*

# ! $ . & B . ' β . '

∗ . S B ∈ , .

# ! " $ . & ! & 3 RA B . '

β . ' ∗∗ . S B ∈ , .

# ! ) $ . & B . ' β . '

∗ . S B ∈ , .

"

# ! $ . & B ∈ , B β . '

∗ . S

"

# ! $ . & w B ∈ , B −B + B 42 β . '

∗ . S

# ! ( $ . & w B ∈ , B −B + B 42 β . '

∗ . S

(6)

$ & B β + γ . S %

"

$ & B β + γ .

S %

)

( $ & B β + γ . '

γ . S #

$ & B . ' β . ' γ . ' γ .

S # + n n

((

$ /01 B . 'β . 'γ . 'γ . S

# + n n

((

$ & B . ' β . ' γ . ' γ .

S # + n n

(

* $ /01 B . 'β . 'γ . 'γ . S

# + n n

(

$ & B . ' β . ' γ . ' γ .

S # + n 'n π . .5 & +

(7)

5

&

78

9 # 2 #

'

4

!

# 2 #

8

' &

&

6

5

:

&

!

; !

;

6

5 < .<$#.= &

>

6

5 ?

?

'

@;

>

A

' >

B

!

C $.

@; 4

6

5

!

,

6

5 7D

&

@;

< .<$#.= &

>

&

&

6

5 E

C

7

&

@;

84

/E7

1 &

&

& F

6

5

?

<2

' >

&

@

A

(8)

!" # $ % & '

'!(((" # % & ) %

# *

$ % $ # % # & ) '

# + $ # % * ,# + % $

# ) $ # *

# $# $# # ) '

* ,# % $ & ) # # & ) #

& $ $ - & ) % * # . & & &

# . & *

/ 0!1 2 1 3 4 *

56 7 68 9 ) 9 * ' / # : % *& *

(9)

; # # % & #

& * < # & $#

& + % ) & & # # *

# # # & # $ & *

< & # # & ) # =

# * ,# ) # & % $ $ *

$ # & % %# # *

,# = # & % $# #

. # * ,# ) # & &

& & # & + $ # ) % # &

* 9 # # % # . & + *

$ # * ,# ) $ . > ) %#

!(2(" $# . # % * ? % % # $ ) #

* < & & & & # % % )

& & % *

= & & $ # * $

& % # ) # ) ' # "*

' @ - # > ) ' %# @ # $

* ,# ' # % $# # & ) &

') % # % $# # & ) & &

# % # * # & # = &

# A

!" # $ % & # % & )

% # *

< & # #

(10)

)* $ % # & )

& $ # # %% % *

$ % # ' " $ # %

# & ) # + $ # % *

,# + % @ # # $

# ) $ # *

' # % & ) % $ # % & &

$ * ; & # # # # # &

# % # # # & ) *

? % # % $ # # %

& ) $# # & # &

# ) * $ ) $ # & ) &

* * - # * $ $ ) $

# $ & ) # ) $ # - * $ # )

& ) # *

' % & ) % # & % # @

& ) * ,# % # & )

& & # # & & ) *

% % # & ) & # +

&B $# & ) % # # %#

& ) *

< & # % # ) % # . %

* ,# # % $ & ) # # & )

# & $ $ - & ) % $# # - *

" # % # % - & # %

) # ' # % *

,# # # $# & + '& * ,# C

(11)

# # & $ # $*

,# # # % $ * # $ #

& $ $ $ ) $ #

& * # D $ $ #

* $# # # ) * ,# %

# 3 $# # $ & # * # 3 $

. # % # # . & *

# 4 $ % & ) %

(12)

# # $ % # ' @ " % !

# & ) # + $ # % * ,#

% $ # ) $ #

*

, # # + * ,# S & # & %

# # # S $# S > 2

& ' % / $# s % s

% s+ 1 S" s= 1,2, ..., S* S = 3* # . .

$ # β(0,1)*

? % % & u(yc) $# yc # * ? %

% & −yp $# yp # *

,# u(yc) + [0,∞) % $ - & +

u(0) = 0* # . y >˜ 0 # # u(˜y) = ˜y*

,# $ $ # %# $# # - *

' '& + D * * & ' )' /

uj(yc) = 1−e−A y

$# Aj=eγ j∈ {l $", h # %#"}*

& + # + '& j yj∗ # . uj(yc)−yp

log(A)

A *

! !(((" # $ # # & %

& # % *

E # # * # . # $ & # $ . # *

D !"*

(13)

γl = 3.00 γh = 2.503* # # # # %

*

# # * ,# $ ) % / % '

% # & $ s # " s+ 1 # " s1

' % # $# # # $# # # *

# # # $# # % $ %

*

,# & ) & # B # $#

B [0,1]* ,# & * < $ $ $# # ) $

& ) & $ # % # % % & . # % & # &

$ # # ) 1 $# # ) $

& ) # % % & *

# & ) # % # # & &

&B # & * ;

$# * ,# # $# B = 0 & #

4 # $# B (0,1]*

, # $ # # # .

*

< & ) $ & % % #

# & )* < $ # % &

$ $# # ) ) *

# % ) $ # # @ # %

# & ) & ) *

$ $ # # ) nl

nh & & $ # %# *

3 # & y

low< y∗high ≤γhigh< γlow*

(14)

, & + + P # .

P

(n+n ).(n+n )=

   

Π1 Π2

Ψ2 Ψ1

    $# Π1 (n.n)

=                    

0 π 0 0 0

0 0 π 0 0 **

* *** *** * ** *** ***

0 0 0 *** ***

0 0 0 0 π

0 0 0 0 π

                    Π2 (n.n )

=                    

1−π 0 0 0 0

1−π 0 0 0 0 **

* *** *** * ** *** ***

1−π 0 0 *** ***

1−π 0 0 0 0

1−π 0 0 0 0

                    Ψ1 (n .n )

=                    

0 ψ 0 0 0

0 0 ψ 0 0 **

* *** *** * ** *** ***

0 0 0 *** ***

0 0 0 0 ψ

0 0 0 0 ψ

                    Ψ2 (n .n)

=                    

1−ψ 0 0 0 0

1−ψ 0 0 0 0 **

* *** *** * ** *** ***

1−ψ 0 0 *** ***

1−ψ 0 0 0 0

1−ψ 0 0 0 0

                    *

# # l # & & # % % + & h (1−π) #

& & % # # % % . & l π* # $ $ ψ #

h*

< & $# # - ) % * $ + #

* ,# & & # *

; $ * < # # & & )

*

* < # & % # #

(15)

# * ,# & ) # % & # {0,1}* G

& ) # ) $ # $ # & ) $ & 0*

!" $ & / & ) 1$ &

& ) 0$ * # # & & )

% & ) $ &

*

# # & & ) # & )

# *

,# & & ) % $#

# % ' % * $ $# # #

& ) & ) " 0 1" # & ) F* ,# $

% ' % & ykm

ij<p>∈ ℜ+$# #

' k m ∈ {b & ) " n & ) "} $# k # + # #

l # # # ' # & & ) '

i, j ∈ {0,1}$# i # + & # # j # # # '

< p > p∈ {l1, ..., ln, h1, ..., hn }*

& # & & ) # & & ) *

xk

i $ #k∈ {b, n} i∈ {0,1} # # '

$# # k & ) $# i* G # /

xb=B xn0+xn1 = (1−B) !"

< (xki, yij<p>km ) i∈ {0,1} k, m∈ {b, n} #

+ $ * ,# + $ & ) % # # # #

$ # - * ,# % & $ & ) & ) $ #

-0< # & %# H # & ) $ & &

# & ) $ % & # & ) & # $ # $

$# # & & & *H

FE # % & & ) & & ) & ) $ $

(16)

# # *

E # # # $# & ) * ; # %

# % *

$ $ $ %

& $ / % ' % & $ & ) #

. # % # $ # # % #

% # & # % * < & ) & )

# & ) # * < & ) & ) ' # & )

# # & ) ' # & )* # % # % # *

< # % $ & & + *

9 % $ $ # # # # & # )

%*

. . $ + +

vk

i<p> # . $ # k$# & % p i*

,# + & & )

−ybmj<l>+β πvb<l>+ (1−π)vb<h > ≥ 0 "

−ybmj<h>+β ψvb<h>+ (1−ψ)vb<l > ≥ 0, D"

l∈ {l1, ..., ln} h∈ {h1, ..., hn} l′ % # $ & l h′ % # # %# &

h (m, j)∈ {(b, ),(n,0),(n,1)}*

,# %# '# " D" & # # %# & # & )

% * ,# & # & ) & & *

$ & # & $ # * # % $ # & )

- & # # #

) $ % # + & # # # # # * #

(17)

& - & ) #

# # # *

# & ) # % % $# # * ,# .

# 2

ul(yikn1<l>) +β πv0n<l′>+ (1−π)v0n<h > ≥ β πvn1<l>+ (1−π)vn1<h > 3"

uh(ykni1<h>) +β ψv0n<h′>+ (1−ψ)vn0<l > ≥ β ψv1n<h>+ (1−ψ)v1n<l > 4"

ul(ybn0<l>) +β πv0n<l′>+ (1−π)v0n<h > ≥ β πvn0<l>+ (1−π)vn0<h > 0"

uh(ybn0<h>) +β ψv0n<h′>+ (1−ψ)vn0<l > ≥ β ψv0n<h>+ (1−ψ)v0n<l > F"

l∈ {l1, ..., ln} h∈ {h1, ..., hn} l′ % # $ & l h′ % # # %# &

h (k, i)∈ {(b, ),(n,0)}*

,# . # & ) # % % $# #

−y1nmj<l>+β πv1n<l>+ (1−π)v1n<h > ≥ β πv1n<l>+ (1−π)v1n<h > 2"

−y1nmj<h>+β ψv1n<h′>+ (1−ψ)v1n<l > ≥ β ψv1n<h>+ (1−ψ)vn1<l > ("

−y0nmj<l>+β πv1n<l>+ (1−π)v1n<h > ≥ β πv0n<l>+ (1−π)v0n<h > ! "

−y0nmj<h>+β ψv1n<h>+ (1−ψ)v1n<l > ≥ β ψv0n<h>+ (1−ψ)vn0<l > , !!"

l∈ {l1, ..., ln} h∈ {h1, ..., hn} l′ % # $ & l h′ % # # %# &

h (m, j)∈ {(b, ),(n,1)}*

$ # & ) * < &

2" (" & ) $# $ # %

*

,# # # = $ 1 # = $ 1

2 3" 4" & % $# 0" F" # ybn

<l> ybn<h>≥

(18)

# * * & $ # (/

xn0 xb+xn1 =xn1 xb+xn0 ! "

9 (1),

xn0 =xn1 =(1−B)

2 !D"

,# # $ $ $ /

vn0<l> = x

b .

Sul y

bn

0<l> +

xb .

S −y

nb

0<l> +

xn

1 S (−y

nn

01<l>) +

+β x

b+xn

1

S πv

n

1<l′>+ (1−π)vn1<h > + 1−

xb+xn

1

S πv

n

0<l′>+ (1−π)vn0<h > !3"

vn1<l> = x

b

Sul y

bn

1<l> +

xn0 S ul(y

nn

01<l>) +

+β x

b+xn

0

S πv

n

0<l′>+ (1−π)vn0<h > + 1−

xb+xn

0

S πv

n

1<l′>+ (1−π)vn1<h > !4"

vb<l> = x

b

Sul y

bb ..<l> +

xn

0 S ul y

nb

0<l> +

xb .

S −y

bb <l> +

xn

0

S −y

bn

0<l> +

+x

n

1

S −y

bn

1<l> +β πvb<l′>+ (1−π)vb<h > , !0"

l∈ {l1, ..., ln} l′ % # $ & l*

# $ # %# /

vn0<h> = x

b

Suh y

bn .0<h> +

xb

S −y

nb

0<h> +

xn1 S (−y

nn

01<h>) +

+β x

b+xn

1

S ψv

n

1<h′>+ (1−ψ)v1n<l > + 1−

xb+xn

1

S ψv

n

0<h′>+ (1−ψ)v0n<l > !F"

( # & ! " # & ) $# # %

$# # *

(19)

vn1<h> = x

b

Suh y

bn

1<h> +

xn

0 S uh(y

nn

01<h>) +

+β x

b+xn

0

S ψv

n

0<h′>+ (1−ψ)v0n<l > + 1−

xb+xn

0

S ψv

n

1<h′>+ (1−ψ)v1n<l > !2"

vb<h> = x

b

Suh y

bb <h> +

xn

0 S uh y

nb

0<h> +

xb

S −y

bb <h> +

xn

0

S −y

bn

0<h> +

+x

n

1

S −y

bn

1<h> +β ψvb<h′>+ (1−ψ)vb<l > !("

h∈ {h1, ..., hn } h′ % # $ & h*

E # % !3" !(" 3(nl+nh) .

* ,# # * < % # $ & # # &

% % *

E $ $ + # (5(nl+nh).1) y /

y=     yl yh   

 "

yl

(5n.1)

= ybb

<l >. . . ybb<l >ybn0<l >. . . ybn0<l >ybn1<l >. . . ybn1<l >y0nb<l >. . . ynb0<l >ynn01<l >. . . y01nn<l >

yh

(5n .1)

= ybb

<h >. . . ybb<h >ybn0<h >. . . ybn0<h >ybn1<h >. . . ybn1<h >y0nb<h >. . . ynb0<h >y01nn<h >. . . y01nn<h >

*

$ # v # (3(nl+nh).1) $# # # .

. . & & /

v(y) =

   

vl(y)

vh(y)

  

=M−1Ar(y) $# !"

vl(y)

(3n.1)

= vn

0<l >. . . v0n<l > v1n<l >. . . vn1<l > vb<l >. . . vb<l >

(20)

vh(y)

(3n .1)

= vn

0<h >. . . vn0<h > vn1<h >. . . v1n<h > vb<h >. . . vb<h >

*

# . M

(3(n+n )x3(n+n ))=I3(n+n )−T1−T2

$#

I3(n+n ) # (3(nl+nh).3(nl+nh)) .

T1

(3(n+n )x3(n+n ))

= βS

                   

−(xb+xn

1)Π1 (xb+xn1)Π1 0 −(xb+xn1)Π2 (xb+xn1)Π2 0

(xb+xn

0)Π1 −(xb+xn0)Π1 0 (xb+xn0)Π2 −(xb+xn0)Π2 0

0 0 0 0 0 0

−(xb+xn

1)Ψ1 (xb+xn1)Ψ1 0 −(xb+xn1)Ψ2 (xb+xn1)Ψ2 0

(xb+xn

0)Ψ1 −(xb+xn0)Ψ1 0 (xb+xn0)Ψ2 −(xb+xn0)Ψ2 0

0 0 0 0 0 0

                    T2

(3(n+n )x3(n+n ))

   

I3⊗Π1 I3⊗Π2

I3⊗Ψ2 I3⊗Ψ1

    # . A

(3(n+n )x10(n+n ))= 1 S    

Al 0

0 Ah

   , $# Al

(3n.10n)

=        

0 xbI

n 0 0 0 0 0 0 xbIn xn1In

0 0 xbI

n 0 xn0In 0 0 0 0 0

xbI

n 0 0 xn0In 0 xbIn xn0In xn1In 0 0

        Ah

(3n .10n )

=        

0 xbI

n 0 0 0 0 0 0 xbIn xn1In

0 0 xbI

n 0 xn0In 0 0 0 0 0

xbI

n 0 0 xn0In 0 xbIn xn0In xn1In 0 0

       

# (10(nl+nh).1) '

-r(y) =

   

rl(y)

rh(y)

   ,

$#

rl(y)

(10n.1)

=

   

ul(yl)

−yl

  

 rh(y)

(10n .1)

=

   

uh(yh)

−yh

   

$# ul uh yl yh '$ *

(21)

!

,# & . $ # &

* ,# ' %

w=

k,i,p

ϕ<p>xkivki<p> "

$# ϕ # & P (k, i)∈ {(b, ),(n,0),(n,1)} p∈ {l1, ..., ln, h1, ..., hn}*

$ "

w=ϑ′v(y) D"

$# # (1.3(nl+nh)) ϑ′ /

ϑ′ = xϕ

l x⊗ϕh

# # & & ) & ) x

(1I3)= x

n

0 xn1 xb

# ϕl

(1In)

= ϕ

<l > ϕ<l > ϕ<l >

# ϕh

(1.n )

= ϕ

<h > ϕ<h > ϕ<h > $# # $ ) # &

ϕ P*

< # $ $ # $ & !D" !3"' !("

w=

p

    

k,m,i,j

xk ixmj

S z y

km ij<p>

 χp

 

 3"

$# (k, m, i, j) ∈ {(b, b, , ),(b, n, ,0),(b, n, ,1),(n, b,0, ),(n, n,0,1)} p ∈ {l1, ..., ln, h1, ..., hn}

z ykm

ij<p> =u ymkji<p> −ykmij<p> χp % # β, π ψ #

= $ $# p $#

# # % + ! *

,# 3" + # & & % ' % # '

-! E #

p

(22)

# % # * w & # . #

*

, $# $ $ nl=nh= 1 # $ $ #

χl = (1−ψ) [(1−βψ) +β(1−π)]

(2−π−ψ) (1−βπ) (1−βψ)−β2(1−π) (1−ψ) 4"

χh = (1−π) [(1−βπ) +β(1−ψ)]

(2−πψ) (1−βπ) (1−βψ)−β2(1−π) (1−ψ) . 0"

# $ # %# $ * * π $ ψ= 1 # χl = 0 χh = 1−1β* ,#

# # # %# *

; # # # # $ $ $ * * ψ $ π= 1 # χl = 1−1β

χh = 0* ,# # # $ *

"

θ= (B, π, ψ, β)∈Θ = [0,1]3×[0,1)

" # < . <*

3" # y∗ # + '& y

l =

log(A)

A $# $

y∗h=log(AA ) $# # %#*

(23)

$

%

# # $ # ' @ # )

$ # π=ψ= 0 nl=nh= 1*

$# # # ) * * γlh=γ*

$ β % % 0.4 0.9 # $

# & # # % %# # & & )

* # % . # $# # $ & #

*

&

# $ %# # %

& ) % * $ & # $ & # %

# . *

& % # $ # nl=nh= 1 γl=γh=γ $

* ,# + $ & $ # $

*

# 3"' 0" # $ w # # /

S(1−β)w=xbxb u ybb −ybb +xbxn0 u y0nb +u ybn0 −ybn0 −y0nb +

+xbxn

1 u ybn1 −ybn1 +xn0x1n[u(y01nn)−ynn01]*

,# "' !!"/

g1=−ybb+βvb≥0

g2=−ybn0 +βvb≥0

g3=−ybn1 +βvb≥0

g4=−y0nb+β(v1n−v0n)≥0

g5=−y01nn+β(v1n−v0n)≥0

g6=ybn

(24)

!3" ' !(" /

S(1−β)vb=xb u ybb ybb +xn

0 u ynb0 −ybn0 +xn1 −ybn1

S(1−β) +β 1 +xb (vn

1−vn0) =xb u ybn1 −u ybn0 +y0nb +xn0[u(y01nn)] +xn1[y01nn]

,# $

∂v ∂y =

x [u′(y )−1]

S(1−β)

∂v ∂y =−

x S(1−β)

∂v ∂y =−

x S(1−β)

∂v ∂y =

x u′(y )

S(1−β)

∂v ∂y = 0 ∂(v −v )

∂y = 0 ∂(v −v )

∂y =−

x u′(y )

S(1−β)+β(1+x)

∂(v −v )

∂y =

x u′(y )

S(1−β)+β(1+x )

∂(v −v )

∂y =

x S(1−β)+β(1+x )

∂(v −v )

∂y =

x u′(y )+x

S(1−β)+β(1+x )

% !" % γ = 3.0 S = 3 % % 5,782 β [0.40,0.98]

B [0.01,0.98] +% " % γ = 2.5 S = 3 % % 4,998

β[0.48,0.98] B[0.01,0.98]*

(25)

% ! ' % γ= 3.0 S = 3 % % 5,782

β∈[0.40,0.98] B ∈[0.01,0.98]*

% ' % γ= 2.5 S = 3 % % 4,998

β[0.48,0.98] B[0.01,0.98]*

(26)

B

β B

I

A

R

C

D E

1

nonbank product ion

bank product ion f or nonbanks wit h money

bank product ion f or banks bank

product ion

bank product ion f or nonbanks wit hout money

nonbank product ion f or banks

nonbank product ion f or nonbanks

consumpt ion of t he nonbank wit hout money

0 1

% D ' % *

, & !" " # y∗ % #

*

%

< 9

B 0.50 0.02 0.02 0.50 0.50 0.50 0.02 0.10

β 0.79 0.57 0.54 0.60 0.48 0.45 0.50 0.50

ybb 100.0000 99.4516 91.3943 100.0000 100.0000 99.2092 78.9251 83.0263

ybn

0 100.0000 99.4516 91.3943 65.2353 43.9983 37.8337 78.9251 83.0263

ybn

1 100.0000 99.4516 91.3943 116.6436 111.4107 99.2092 78.9251 83.0263

ynb0 100.0000 100.1701 101.4593 65.9738 52.6100 49.9180 86.4856 76.2535

ynn

01 100.0000 100.0000 100.0139 65.9738 52.6100 49.9180 86.4856 76.2535

, & ! ' 5 B β$ #γ= 3.0 S= 3 *

(27)

%

< 9 !

B 0.50 0.02 0.02 0.50 0.50 0.50 0.02 0.02

β 0.92 0.69 0.65 0.79 0.60 0.50 0.60 0.48

ybb 100.0000 97.3767 87.5756 100.0000 100.0000 77.5280 72.3817 44.2102

ybn

0 100.0000 97.3767 87.5756 79.2592 45.2889 22.5670 72.3817 0.0000

ybn

1 100.0000 97.3767 87.5756 113.5901 113.2598 77.5280 72.3817 44.2102

ynb

0 100.0000 101.1487 102.5543 80.7831 56.9754 51.0179 83.2648 44.2102

ynn

01 100.0000 100.0000 100.0429 80.7831 56.9754 51.0179 83.2648 44.2102

, & ' 5 B β$ #γ= 2.5 S= 3 *

+ r≡yy −1 !"* % 3" #

r γ= 3.0 *

% 3 ' # r(%) γ= 3.0 S= 3 % %

5,782 β[0.40,0.98] B[0.01,0.98]*

% ) $ % . $ # + '& y∗

r= 0* $ $ # β $ $ # % < $ B %

(28)

% & ) g4 g5)& + $ #

y∗* # & ) & % #

& ) $ # * * % % # & ) # % !!* <

r >0 ynb

0 =ynn01* ,# & ) & & #

% *

,# & % $ ) %β* ,# - #

% & ) g3 & & ) #

% & ) g1 & & ) #

y∗ # & )*

% < * * $ B & ) g1g2 g3)& + & ) $

# y∗* # $ $ & ) & ) )

. & ) & % # # ! * < r < 0

ynb

0 =ynn01*

,# & % 9 $ ) %β* ,# - # % 9

& ) g4& & ) # #

& ) $ # & # & ) # & ) # % !D*

% & * % ! & ) % % & & )

$ # * * g6 & & %* #

!" J '% H % *

' (

# $ # ' @ # )

$ # π=ψ= 0 nl=nh = 1* ,# # )

* * γl> γh*

!!E # ∂ v −v ∂y

y y∗

∂ v −v ∂y

y y∗

< ∂ v −v

∂y

y y∗

> & )$ ) % & ) *

! E # ∂v

∂y y y∗

∂v ∂y

y y∗

> *

!DE # ∂ v −v

∂y

y y

> *

(29)

# 3"' 0" # $ w # # /

S(1−β)w= 12

p∈{l,h}

xbxb u

p ybb<p> −ybb<p> +

+xbxn

0 up y0nb<p> +up ybn0<p> −ybn0<p>−ynb0<p> +

+xbxn

1 up ybn1<p> −ybn1<p> +x0nxn1 up ynn01<p> −ynn01<p> *

,# "' !!"/

g1=−ybb<l>+βvb<h>≥0

g2=−ybn0<l>+βvb<h>≥0

g3=−ybn1<l>+βvb<h>≥0

g4=−y0nb<l>+β vn1<h>−vn0<h> ≥0

g5=−ynn01<l>+β v1n<h>−v0n<h> ≥0

g6=ybn0<l>≥0

g7=−ybb<h>+βvb<l>≥0

g8=−ybn0<h>+βvb<l>≥0

g9=−ybn1<h>+βvb<l>≥0

g10=−ynb0<h>+β vn1<l>−v0n<l> ≥0

g11=−y01nn<h>+β vn1<l>−vn0<l> ≥0

g12=ybn0<h>≥0

!3" ' !(" /

S(1−β2)vb

<p>=xb up ybb<p> −ybb<p> +xn0 up y0nb<p> −ybn0<p> +xn1 −ybn1<p> +

+β xb u

p′ ybb<p> −ybb<p> +xn0 up′ y0nb<p> −ybn0<p> +xn1 −ybn1<p>

S 1−λ2β2 vn

1<p>−v0n<p> =xb up ybn1<p> −up ybn0<p> +y0nb<p> +xn0 up y01nn<p> +xn1 ynn01<p> +

λβ xb u

p′ ybn1<p> −up′ ybn0<p> +y0nb<p> +xn0 up′ y01nn<p> +xn1 ynn01<p>

$# λ= 1−1+Sx p, p′∈ {l, h} p=p′*

(30)

∂v ∂y =

x [u′(y )−1]

S(1−β )

∂v

∂y =− x S(1−β )

∂v

∂y =− x S(1−β )

∂v ∂y =

x u′(y )

S(1−β )

∂v

∂y = 0 ∂v ′

∂y =β

x[u′(y )−1]

S(1−β )

∂v ′

∂y =−β x S(1−β )

∂v ′

∂y =−β x S(1−β )

∂v ′

∂y =β

x u′(y )

S(1−β )

∂v ′

∂y = 0

,# & )

(v −v )

∂y = 0

∂(v −v )

∂y =−

x u′(y )

S(1−λ β )

∂(v −v )

∂y =

x u′(y )

S(1−λ β )

∂(v −v )

∂y =

x S(1−λ β )

∂(v −v )

∂y =

x u′(y )+x

S(1−λ β )

(v ′ −v ′ )

∂y = 0

∂(v ′ −v ′ )

∂y =−λβ

x u′(y )

S(1−λ β )

∂(v ′ −v ′ )

∂y =λβ

x u′(y )

S(1−λ β )

∂(v ′ −v ′ )

∂y =λβ

x S(1−λ β )

∂(v ′ −v ′ )

∂y =λβ

x u′(y )+x

S(1−λ β )

% 4" % γl= 3.0 γh= 2.5 S= 3 % % 4,661 β[0.40,0.98]

B ∈[0.20,0.98]*

(31)

% 4 ' % γl= 3.0 γh= 2.5 S= 3 % %

4,661 β∈[0.40,0.98] B∈[0.20,0.98]*

+% 0" $ # $ # $# * ,# # # +%

# % # +% *

high low

B β

I

Ch

0 1

Cl1 Cl2

Dh

Eh

Dl

El

% 0 ' % *

, & D" # yl∗ y∗h %

(32)

%

B 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

β 0.95 0.87 0.82 0.70 0.58 0.53 0.50 0.45

ybb

<l> 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 88.9072

ybb

<h> 100.0000 100.0000 100.0000 100.0000 100.0000 94.9716 84.6871 69.8548

ybn

0<l> 100.0000 97.0189 93.9973 71.4410 50.6976 42.0257 36.7862 27.5739

ybn

0<h> 100.0000 98.4830 97.1475 75.1305 53.4247 42.1545 35.0419 23.2037

ybn

1<l> 100.0000 102.7363 105.0849 115.1518 118.6979 117.3722 109.4564 88.9072

ybn

1<h> 100.0000 101.4616 102.6626 115.2193 115.5372 94.9716 84.6871 69.8548

ynb0<l> 100.0000 102.9811 106.0027 84.1184 66.7842 60.9185 58.2567 54.9445

ynb

0<h> 100.0000 90.5658 82.1723 63.1603 50.4756 46.6139 44.6148 41.6981

ynn

01<l> 100.0000 105.7174 110.3580 84.1184 66.7842 60.9185 58.2567 54.9445

ynn

01<h> 100.0000 90.5658 82.1723 63.1603 50.4756 46.6139 44.6148 41.6981

, & D ' 5 B β$ #γl= 3.0 γh= 2.5 S = 3 *

$ + $ # %# r<l> ≡ yy −1

r<h>≡ yy −1* % F" 2" # r<l> r<h> #

% % 5,782 β∈[0.40,0.98] B∈[0.01,0.98]*

(33)

% F ' # rl (%) γl= 3.0 γh= 2.5 S= 3 % %

5,782 β∈[0.40,0.98] B∈[0.01,0.98] $ # *

% 2 ' # rh (%) γl= 3.0 γh= 2.5 S= 3 % %

5,782 β[0.40,0.98] B[0.01,0.98] $ # *

$ $ $ $# # # % # $# & )

& + *

% ) $ % . $ # + '& y∗

l y∗h

$ # %# * r<l>= y

y∗ −1 r<h>= y

y∗−1*

(34)

# %# (g10 g11) & + * # $ & )

& # !3 & ) # y

l $ !4* <

r<l>$ & r<h> *

,# $ & % $ ) %β* g5

& g4 g5& * # & )

& & # % *

% & ) & # $ % / g9 g7 g3

g1*

,# . $ & # % $# # $# $

& *

!3

E # ∂ v∂y −v

y y∗

∂ v −v

∂y

y y∗

∂ v −v

∂y

∂ v −v

∂y

<

∂ v −v

∂y

y y∗

∂ v −v

∂y

y y∗

> & )$ ) % & ) *

!4E # ∂ v −v ∂y

∂ v −v

∂y > $ ) % & ) *

(35)

"

)

"

# # $ # ' @ # )

$ # *

# . $ $ # % % # % # # .

& * # # $ $ % π ψ∈ {0.01,0.25,0.50,0.75,0.99}

# *

*

) . # % % + & .

L(y, )) =ϑ′v(y)−1 c)

J(g(y)) F"

$# # (5(nl+nh).1) y % & " # (3(nl+nh).1) .

& . . & & v(y) =M−1Ar(y)

$# # (1.6(nl+nh)) % % )′ j(g(y)) # .

/

j(g(y))

(6(n+n ).1)

=

           

e−cg (y)1

e−cg (y)1

** *

e−cg (y)1

           

# (6(nl+nh).1) g(y) =e(y) +βF v(y) $# # # J )H #

" D" 0" F" ! " !!" $#

e(y) =

   

el(y)

eh(y)

  

(36)

el(y)

(6n.1)

=                

−yl

− − −

ybn

0<l >

** *

ybn

0<l >

               

eh(y)

(6n .1)

=                

−yh

− − −

ybn

0<h >

** *

ybn

0<h >

               

# (6(nl+nh).3(nl+nh)) .F

F =     Fl Fh     / Fl

(6n.3(n+n ))

=                    

0 0 Π1 0 0 Π2

0 0 Π1 0 0 Π2

0 0 Π1 0 0 Π2

−Π1 Π1 0 −Π2 Π2 0

−Π1 Π1 0 −Π2 Π2 0

0 0 0 0 0 0

                    Fh

(6n .3(n+n ))

=                    

0 0 Ψ2 0 0 Ψ1

0 0 Ψ2 0 0 Ψ1

0 0 Ψ2 0 0 Ψ1

−Ψ2 Ψ2 0 −Ψ1 Ψ1 0

−Ψ2 Ψ2 0 −Ψ1 Ψ1 0

0 0 0 0 0 0

                    *

< c >0 & *

9 ) !0 # %

# %)' $ # . % & /

)(jm+1)=)(jm)e−˜cg 1≤j 6(nl+nh)

$# (m) m' # *

!09 )

(37)

5 # % % ) y & $ # # c ˜c

# & % !F E $ '& # # $ ) $ *

G & % 21" 27" $ % /

L(y, )) =ϑ′M−1Ar(y)−1 c)

j(g(y))

- % $ # y′ /

[L(y, ))]

(1I5(n+n ))

=ϑ′M−1A [r(y)]−1 c)

[j(g(y))] 2"

$# & # # !2/

[j(g(y))]

(6(n+n )I5(n+n ))

= [j(g)] [g(y)] /

[j(g)]

(6(n+n )I6(n+n ))

=−c

       

e−cg 0

**

* * ** ***

0 e−cg

       

[g(y)]

(6(n+n )I5(n+n ))

= [e(y)] +βF M−1A [r(y)]

8 % 2" - % % $ # y′ # L/

[L(y, ))]

(5(n+n )I5(n+n ))

= I5(n+n )⊗ϑ′M−1A [r(y)]−

1

c I5(n+n )⊗)

[j(g(y))]

$# & # # !(/

[j(g(y))]

(30(n+n )I5(n+n ))

= I6(n+n )⊗ [g(y)] [j(g)] [g(y)] +

+ [j(g)]⊗I5(n+n ) [g(y)]

[j(g)]

(36(n+n ) I6(n+n ))

=c2

       

e−cg

1 0

**

* * ** ***

0 e−cg .ε6(n+n )

       

$# εj #

!F,# & # # # π, ψ, n

l, nh, S, β B* 9

@ %c c c ym % * * $# E $ @ % *

!2 % E ) !(22 (!*

(38)

6(nl+nh) $# # # 1 # j # $#

[g(y)]

(30(n+n ) I5(n+n ))

=β(I5(n+n )⊗F M−1A) [r(y)]*

,# m # # # yopt & % # /

H L(y(m), )(m)) y(m+1)−y(m) =D L(y(m), )(m)) ′. ("

< $ % ( ! G & # %

& ' = %' & D*

# $ # B % % # 3

(29) + & 4 D L(y(m), )(m)) H L(y(m), )(m))

% ;; "*

, # + % +% (" ! " # [j(g(y))]

[j(g(y))] *

% ( ' [j(g(y))] nl=nh= 2*

E # # + e y # e nl nh I nl nh .*

! 5 3 !*F 6 F* *

G 02 G5< F4 # G (

G 5 K & 9K<G G <K<5< >"

D # % ' = %' + # . # *

3,# & $ ) E ( *

4,# & $ ) )

. *

(39)

% ! ' [j(g(y))] nl=nh= 2*

"

# & # $ ) $ #

nl = nh = 1 # * * S = 3

B = 0.50 β= 0.79 γl= 3.0 γh= 2.5 % π ψ∈ {0.01,0.25,0.50,0.75,0.99}*

$ + $ $# $ # %# r<l,h>≡

y

y −1

$ $# $ $ r<l,l>≡ y

y −1* # $ $ +

# %# $# $ $ r<h,l> ≡ y

y −1

# %# $# $ # %# r<h,h>≡ y

y −1*

, & 3" # yl∗ y∗h % #

$# # ) 0 * * π+ψ= 1*

(40)

π 0.01 0.25 0.50 0.75 0.99

ψ 0.99 0.75 0.50 0.25 0.01

ybb

<l> 100.0000 100.0000 100.0000 100.0000 100.0000

ybb<h> 100.0000 100.0000 100.0000 100.0000 100.0000

ybn

0<l> 82.8749 86.9911 91.7414 96.6209 99.9006

ybn0<h> 79.4499 84.3894 90.0896 95.9451 99.8807

ybn

1<l> 111.2575 109.3332 106.6134 103.0678 100.0991

ybn

1<h> 113.5089 111.1998 107.9361 103.6814 100.1189

ynb

0<l> 110.8154 107.0639 104.2583 102.7023 100.0994

ynb

0<h> 80.6555 77.9250 75.8830 74.7505 74.1719

ynn

01<l> 110.8154 107.0639 104.2583 102.7023 100.1985

ynn

01<h> 80.6555 77.9250 75.8830 74.7505 74.1719

, & 3 ' 5 B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S= 3

$ #nl=nh= 1.

, & 4" & 3"*

< $# # ) & ) & %

$ * * # *

π 0.01 0.25 0.50 0.75 0.99

ψ 0.99 0.75 0.50 0.25 0.01

r<l,h> 0.40 2.12 2.26 0.36 −1.77

r<l,l> 0.40 2.12 2.26 0.36 0.00

r<h,l> 40.73 42.70 42.24 38.70 37.42

r<h,h> 40.73 42.70 42.24 38.70 34.98

, & 4 ' L" B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S= 3

$ #nl=nh= 1.

, & 0" # yl∗ y∗h % #

$# & P # +. ϕ= [ 0.5 0.5 ]* * * π=ψ*

(41)

π 0.01 0.25 0.50 0.75 0.99

ψ 0.01 0.25 0.50 0.75 0.99

ybb

<l> 100.0000 100.0000 100.0000 100.0000 100.0000

ybb<h> 100.0000 100.0000 100.0000 100.0000 100.0000

ybn

0<l> 89.3783 90.1835 91.7414 95.0001 99.7770

ybn0<h> 92.7732 91.8701 90.0896 86.0945 79.4354

ybn

1<l> 108.0425 107.5736 106.6134 104.3468 100.2215

ybn

1<h> 106.1187 106.7534 107.9361 110.2986 113.5151

ynb

0<l> 102.4802 103.1965 104.2583 104.9999 100.2230

ynb

0<h> 76.6543 76.2870 75.8830 76.0764 80.4265

ynn

01<l> 102.4802 103.1965 104.2583 105.4163 100.4445

ynn

01<h> 76.6543 76.2870 75.8830 76.0764 80.4265

, & 0 ' 5 B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S = 3

$ #nl=nh= 1.

, & F" & 0"*

< $# # ) $ $

# * * # *

,# # % $ # K !(( " + % * K F

$# # $ $ % * # #' '

% ' ) - # - & # * G

# # % # & % " % & )

PL=

   

κ 1−κ

1−κ κ

  

 # $ #

/

# . * $ #

. % % # ' $ $ & % #

(42)

& ' 2 * * * G 3 % # #

# ) * ,# # & $# #

# $# $ # # - $ & % *

5 # # ) # ) $# # $ & # & $ & *H

π 0.01 0.25 0.50 0.75 0.99

ψ 0.01 0.25 0.50 0.75 0.99

r<l,h> 2.59 2.63 2.26 −0.17 −9.30

r<l,l> 5.43 4.24 2.26 −0.62 0.00

r<h,l> 42.27 42.13 42.24 44.33 55.62

r<h,h> 38.44 39.94 42.24 44.98 41.14

, & F ' L" B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S= 3

$ #nl=nh= 1.

)

# $ ) $ # #

# # * * S= 3 B= 0.50 β= 0.79 γl= 3.0 γh= 2.5 %

π ψ∈ {0.01,0.25,0.50,0.75,0.99}*

$ + + & $(l1)$# $ & # %#(hn)

r<l ,h > ≡ y

y −1 n∈ {1,2, ..., nh} & $(ln)$#

$ # & $(ln−1) r<l ,l − >≡

y y

−1 n∈ {2, ..., nl}*

# $ $ + + & # %#(h1)$# $ &

$(ln) r<h ,l >≡ y

y −1 n∈ {1,2, ..., nl} & # %#(hn)$#

$ # & # %#(hn−1) r<h ,h − >≡

y y

−1 n∈ {2, ..., nh}*

# & ) % nl = 1 nh = 5 # - % &

# %# *

, & 2" # y∗l y∗h % #

2,# & . # # % % %*

(43)

$# π # +. 0.25 $ # - ψ*

π 0.25 0.25 0.25 0.25 0.25

ψ 0.01 0.25 0.50 0.75 0.99

ybn

0<l > 91.4708 90.2941 88.8965 87.3057 85.5310

ybn

0<h > 94.2444 93.5642 92.7975 91.9647 91.0638

ybn

0<h > 88.1996 87.7610 87.3263 86.9003 86.4430

ybn

0<h > 83.2700 83.2417 83.3153 83.4521 83.5582

ybn

0<h > 79.3573 79.8537 80.5160 81.2475 81.9055

ybn

0<h > 76.3030 76.8538 77.6150 78.4635 79.2305

ybn

1<l > 106.7855 107.5078 108.3146 109.1711 110.0561

ybn1<h > 105.0306 105.5424 106.1014 106.6880 107.2998

ybn

1<h > 109.1006 109.3584 109.6096 109.8516 110.1070

ybn

1<h > 111.7605 111.7744 111.7383 111.6709 111.6184

ybn

1<h > 113.5484 113.3354 113.0452 112.7165 112.4132

ybn1<h > 114.7801 114.5676 114.2672 113.9226 113.6022

ynb

0<l >=y01nn<l > 102.3762 102.8740 103.5312 104.3139 105.1536

ynb

0<h >=y01nn<h > 76.2533 76.4963 76.8750 77.3598 77.8711

ynb

0<h >=y01nn<h > 76.2653 76.8155 77.5358 78.3601 79.1794

ynb

0<h >=y01nn<h > 76.2753 77.0651 78.0226 79.0596 80.0583

ynb

0<h >=y01nn<h > 76.2835 77.2634 78.4022 79.6000 80.7371

ynb

0<h >=y01nn<h > 76.2835 77.2634 78.4022 79.6000 80.7371

, & 2 ' 5 B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S = 3

$ #nl= 1 nh= 5 π= 0.25.< & $ & ) 100.0000*

% !!" # $ & ) # %# & 2"*

% # π ψ*

< +% !!" $ # # ( # %#

(< $ $ # $# $ ) n

(44)

ψ* # % # & & # % + $ * * #

ψ # % *

# $# ψ−→1 & # %# r<h , > 40.61%.

,# # $# # %#* ,# & . & " #

& *

Interest rates in period state high

40 41 42 43 44 45 46 47 48 49 50 51

(%

)

0.01 0.25 0.50 0.75 0.99

r

h1,l1 r h2,h1

r

h3,h2

r

h4,h3

r

h5,h4

r

h5,h5

% !! ' 6 # L" B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S= 3

$ #nl= 1 nh= 5 π= 0.25 ψ∈ {0.01,0.25,0.50,0.75,0.99}*

E $ ) nl= 5 nh= 1 # - % & $*

% ! " # $ & ) $ #

$# ψ # +. ψ = 0.25 $ # - π* $ %

$# # # $# $* ,# & . & !"

# & *

(45)

Interest rates in period state low

-2 -1 0 1 2 3 4

(%

)

0.01 0.25 0.50 0.75 0.99

r

l1,h1

r

l2,l1

r

l3,l2

r

l4,l3

r

l5,l4

r

l5,l5

% ! ' 6 # L" B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S= 3

$ #nl= 5 nh= 1 ψ= 0.25 π∈ {0.01,0.25,0.50,0.75,0.99}*

,# & $ $ # %# = # # $# # %# & )@

& # & # % % * * & ) $ ' ) %*

; # # # $# $ & )@ & )$ ' ) %*

$ ) nl= 5 nh= 10 $# & $

& $# # % D *

$ % > > !" $ + . #

* K y<p> P<p> # % % p*

# # % /

S y<p>=xbxbybb<p>+xbxn0ybn0<p>+xbx1nybn1<p>+xn0xby0nb<p>+xn0xn1y01nn<p>

p∈ {l1, ..., ln, h1, ..., hn }*

) P<p> & # = 1 Y<p> &

y<p>* , $ %# # & % $# * ,#

S Y<p>=xbxb+xbxn0+xbx1n+xn0xb+xn0xn1 =B+( 1−B )

4 .

D $ n

(46)

< $ # %# %# # - +% !D" !3" $# +% !4"

!0" # $ # . & # $ # %# $# # ) *

Total output in period state low

0.0342 0.0343 0.0344 0.0345 0.0346

y<l1> y<l2> y<l3> y<l4> y<l5>

π = 0.25 ; ψ = 0.75 π = 0.50 ; ψ = 0.50 π = 0.75 ; ψ = 0.25

% !D ' 6 # B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S= 3

$ #nl= 5 nh= 10$# # ) *

Total output in period state high

0.0431 0.0432 0.0433 0.0434 0.0435 0.0436 0.0437 0.0438 0.0439 0.0440 0.0441

y<h1> y<h2> y<h3> y<h4> y<h5> y<h6> y<h7> y<h8> y<h9> y<h10>

π = 0.25 ; ψ = 0.75 π = 0.50 ; ψ = 0.50 π = 0.75 ; ψ = 0.25

% !3 ' 6 # B= 0.5 β= 0.79 γl= 3.0 γh= 2.5 S= 3

$ #nl= 5 nh= 10$# # ) *

(47)

Price index in period state low

0.0663 0.0664 0.0665 0.0666 0.0667 0.0668 0.0669 0.0670

P<l1> P<l2> P<l3> P<l4> P<l5>

π = 0.25 ; ψ = 0.75 π = 0.50 ; ψ = 0.50 π = 0.75 ; ψ = 0.25

% !4 ' 6 # . B = 0.5 β= 0.79 γl= 3.0 γh= 2.5 S = 3

$ #nl= 5 nh= 10$# # ) *

Price index in period state high

0.0520 0.0521 0.0522 0.0523 0.0524 0.0525 0.0526 0.0527 0.0528 0.0529 0.0530 0.0531

P<h1> P<h2> P<h3> P<h4> P<h5> P<h6> P<h7> P<h8> P<h9> P<h10>

π = 0.25 ; ψ = 0.75 π = 0.50 ; ψ = 0.50 π = 0.75 ; ψ = 0.25

% !0 ' 6 # . B = 0.5 β= 0.79 γl= 3.0 γh= 2.5 S = 3

$ #nl= 5 nh= 10$# # ) *

< . % * ,# $

> > !" $# % & # ) *

< # % # & $ % # #

(48)

+

#

%

# # $ % # ' @ " - # * ,# %

$ & ) # # & ) # & $ $ - & ) %

* # & ) ) & ) $ # * * % $ *

,# # +

% $ # # % *

# & ) % # # & ) #

. # % $ # # & ) # & ) % & *

,# # & ) % # % % # . # % %

& $ # % $# * 6 & )

$ # & ) # *

G & & ) % & & % #

# & # # *

,# & ) # & $ .' * * *

,# $ % ' % & ykm

ij ∈ ℜ+ $#

# 'k m∈ {R & ) "G % & ) " n & ) "}$# k # +

# # l # # # ' # &

% & ) 'i, j∈ {, R} & ) 'i, j∈ {0, G, R}$# i # + &

# # j # # # *

xk

i $ #k∈ {R, G, n} i∈ {, R}$# k=G i∈ {0, G, R}$# k=n #

# ' $# # k % & )

& ) $# i* G # /

xR=BR xG+xGR=B−BR xn0+xnG+xnR= (1−B) D "

0≤BR≤B≤1*

G % #

(49)

% & & $ / % ' % & $ & ) #

. # % # $ # # % #

% # & # % * < & ) # #

& ) & # & )* < & ) # # & )

# - * < & ) & ) # & ) # $# #

# & ) * < % & ) & ) # % % $# # #

& ) & ) # % $# # # & )

# # & ) # * < % & ) $ # % & )* #

# # # $ # # * % & )

& ) # # * & ) $

# & ) # & ) % * # % # % # *

,# & + * .

. $ + + vk

i # .

$ # k$# & % i*

,# + & % & ) $ # /

−yGG+βvG 0 D!"

−yGGR +βvRG ≥ 0 D "

−yGR+βvRG 0 DD"

−yGnG +βvG 0 D3"

−yGnR +βvRG ≥ 0 D4"

,# . & % & ) $ # /

−yGGR +βvRG 0 D0"

−yGGRR+βvRG ≥ 0 DF"

(50)

,# . & & ) /

−yRGR +βvR 0 D("

−yRR+βvR ≥ 0 3 "

−yRnR +βvR ≥ 0 3!"

,# %# '# D!" ' 3!" & # # %# & # & )

% *

# & ) # % % $# # * ,# .

#

u(ynn0G) +βv0n βvnG 3 "

u yGn

G +βv0n ≥ βvnG 3D"

u yRGGn +βv0n ≥ βvnG 33"

u(ynn0R) +βv0n ≥ βvnR 34"

u(yGRnn) +βvnG ≥ βvnR 30"

u yGnR +βvnG ≥ βvnR 3F"

u yRnR +βv0n βvnR 32"

(51)

,# . # & ) # % % $# #

−ynn0G+βvnG βvn0 3("

−y0nnR+βvnR ≥ βvn0 4 "

−ynG0 +βvnG ≥ βvn0 4!"

−ynG0R +βvnG βvn0 4 "

−y0nR+βvnR ≥ βvn0 4D"

−yGRnn +βvnR ≥ βvnG 43"

−yGRnG+βvnR βvnG 44"

−yGnR+βvnR ≥ βvnG 40"

$ # & ) * < & ) $#

$ # % *

,# # # = $ 0 G # = $

0 G & ) # = $ R # = $ R

% & ) * */

xnG[B−BR] +xnRBR = xn0B 4F"

xn0[B−BR] +xGxnR = xnG B+xGR 42"

xG[BR+xnR] = xGR[xnG+BR] 4("

D " 4F"' 4(" $# # %

. 9*

,# # $ $ /

v0n = x

n G

S (−y

nn

0G) +

xn R

S (−y

nn

0R) +

xG

S −y

nG

0 +

xG R

S −y

nG

0R +

xR

S −y

nR

0 +

+β x

n

G+xG+xGR

S v

n G+

xn R+xR

S v

n

R+ 1−

xn

G+xG+xGR+xnR+xR

S v

n

(52)

vGn = x

n

0 S u(y

nn

0G) +

xG

S u y

Gn G +

xG R

S u y

Gn RG +

xn R

S (−y

nn GR) +

xG R

S −y

nG GR +

xR

S −y

nR G +

+β x

n

0+xG+xGR

S v

n

0 + xn

R+xGR+xR

S v

n

R+ 1−

xn

0 +xG+ 2xGR+xnR+xR

S v

n G 0!"

vRn = x

n

0 S u(y

nn

0R) +

xnG S u(y

nn GR) +

xG

S u y

Gn R +

xR

S u y

Rn R +

+β x

n

0 +xR

S v

n

0 + xn

G+xG

S v

n

G+ 1−

xn

0+xR+xnG+xG

S v

n

R 0 "

vG = x

n

0

S u y

nG

0 +

xG

S u y

GG +xGR

S u y

GG R +

+x

n G

S −y

Gn G +

xn R

S −y

Gn R +

xG

S −y

GG +xGR

S −y

GG R +

xR

S −y

GR +

+β x

n

R+xGR+xR

S v

G

R+ 1−

xn

R+xGR+xR

S v

G 0D"

vRG = x

n

0

S u y

nG

0R +

xn G

S u y

nG GR +

xG

S u y

GG R +

xG R

S u y

GG RR +

xR

S u y

RG R +

+x

n G

S −y

Gn RG +

xG

S −y

GG R +

xG R

S −y

GG RR +

+β x

n

G+xG+xR

S v

G+ 1xnG+xG+xR

S v

G

R 03"

vR = x

n

0

S u y

nR

0 +

xn G

S u y

nR G +

xG

S u y

GR +xR

S u y

RR +

+x

n R

S −y

Rn R +

xR

S −y

RR +xGR

S −y

RG

R +βvR 04"

E # % 0 " 04" 6 .

* ,# # * < % # $ & # # &

% % *

,# & . $ # &

(53)

& # % * ,# ' %

w=

k,i

xkivki 00"

$# (k, i)∈ {(n,0),(n, G),(n, R),(G, ),(G, R),(R, )}

< # $ $ # $ & !D" !3"' !("

w=

k,m,i,j

xk ixmj

S(1−β)z y

km

ij 0F"

$# (k, m, i, j)∈ {(n, n,0, G), . . . ,(R, G, , R)} z ykm

ij =u ymkji −ykmij *

w & # . # *

"

θ= (B, BR, β)∈Θ =

[0,1]2×[0,1)

" # < . *

0F" # y∗ # + '& # # z(y) = 0*

$ % # $ # $# & + '& *

,# & # $# # % % % $ & C #

# & $ # $*

G & ) # .' & $ % & ) & .' # % #

& - # B # & ) % * ; # $ & ) B #

% & ) % *

,# $ # & ) % & $ / & ) B #

% & ) % # % - # % & - * * RA(B, BR)<0 $#

RA(B, BR)≡vR−

xGvG+xG RvRG

xG+xG R

(54)

# # B # & ) % # % - # & - * *

RA(B, BR)>0*

< & & $# RA(B, BR) = 0*

" ! " #

$ % B ∈ (0,1) & 0 < B < B˜ ≃ 0.12405 u(yy∗∗) <

B+1 2B

2

lim

B →0 RA(B, BR)>0 Blim→B−

RA(B, BR)<0

$ % B ∈ (0,1) & 0.12405 ≃ B < B <˜ 1 u(yy∗∗) >

B+1 2B

2

lim

B →0 RA(B, BR)<0 Blim→B−

RA(B, BR)>0

" # < . *

% !F"' " # % # %

-& B = 0.1 B = 0.6* +% !F" !2" $ %

& & & ) B = 0.1 β = 0.98 u(yy∗∗) = 6.36

S = 3 & & [ xn0 = 0.3049, xnG= 0.1547, xRn= 0.4403, xG= 0.0140, xGR= 0.0334, xR= 0.0526

yjimk=y∗,∀(k, m, i, j)∈ {(n, n,0, G), . . . ,(R, G, , R)} ]*

% !F ' 6 # % -(RA)

B= 0.1 β= 0.98 u(yy∗∗) = 6.36 S = 3 BR∈[0,0.1]*

(55)

% !2 ' 6 # &

B= 0.1 β= 0.98 u(yy∗∗) = 6.36 S = 3 BR∈[0,0.1]*

# +% !(" " $ % & & & )

B = 0.6 β = 0.98 u(yy∗∗) = 6.36 S = 3 &

& [ xn

0 = 0.1342, xnG= 0.0826, xnR= 0.1833, xG= 0.1296, xGR= 0.1631, xR= 0.3074

ymk

ji =y∗,∀(k, m, i, j)∈ {(n, n,0, G), . . . ,(R, G, , R)} ]*

% !( ' 6 # % -(RA)

(56)

% ' 6 # &

B= 0.1 β= 0.98 u(yy∗∗) = 6.36 S = 3 BR∈[0,0.6]*

+% !" # # M=xn

G+xnR+xGR - #

& ) B # % % # & ) Br∈[0, B]*

% ! '6 # # BR∈[0, B]

β= 0.98 u(yy∗∗) = 6.36 S= 3*

ρG= x

x +x ρ G R=

x

x +x * - % 02" $ # BR /

(57)

∂RA(B, BR)

∂BR

= ∂v

R

∂BR −

ρG∂v

G

∂BR

+ρGR∂v

G R

∂BR

+ ∂ρ

G

∂BR

vG+ ∂ρ

G R

∂BR

vGR 0("

G ∂B∂ρ =−∂B∂ρ

∂RA(B, BR)

∂BR

= ∂v

R

∂BR −

ρG∂v

G

∂BR

+ρGR∂v

G R

∂BR

+ ∂ρ

G R

∂BR

vRG−vG F "

& ) $# % & ) ) * # B %# & )

# $ * ,# & ) % & # % & ) %

# & & ) * * & ) $ # * 5 # & +

# % * * # $ & $ % & ) % %

& ) * ,# . # D * #

& ) # %# '# F " ∂RA∂B(B,B ) <0 # &

& * # . *

# B % %# # & + # % % % & ) $ - $#

# & ) % * ,# . # D * < #

& ) # %# '# F " % ∂RA∂B(B,B ) >0 # &

& * ; # $ $ # . *

,# . # & & * # # .

- # % $ ' # % & ) % *

E # +% !(" $ & & * # % & )

$ % $ # * ; # # # #

& ) $ % . % & ) %

# *

$# # $ & & & & ) %

$# # & & # . # $ # *

(58)

% *

E $ $ # . & & & & *

" % B (0,1) & β (0,1) u(yy∗∗) &

" # vn

R> vGn> v0n>0 vR>0 vRG> vG>0

" # < . *

" + % B (0,1) & β(0,1) & 3< u(yy∗∗)

'

" # B → 0 β → 1 3 < u(yy∗∗) # . & & & ) &

3 vn

R > vGn > vn0 >0 vR >0* vGR > vG >0 & + '& * ;

& + '& B+1 2B

2

& % & D RA(B,0+) > 0

RA(B, B−)<0*

" , % B(0,1) β(0,1) u(yy∗∗) & "

# vn

R> vGn> v0n>0 vR>0 vRG> vG >0

" # < . *

" - % B (0,1) β (0,1) & 3< u(yy∗∗)

'

" # B 1 β 1 3 < u(yy∗∗) # . & & & ) &

0 vn

R > vGn > vn0 > 0 vR > 0* vGR > vG > 0 & + '& *

; & + '& B+1

2B

2

% 1 & D RA(B,0+) < 0

RA(B, B−)>0*

. 6 $ & # $# % & ) % *

(59)

< # % # $ B $ # %# = & #

& $ $ # "* $#

# % # & $ # % & &B * <

* % "' 3" # * +% "

D" # . $ $# +% 3"

# . ) $ *

% ' 6 # w BR∈[0, B−Bg]$ #Bg+.

(60)

% D ' 6 # w Bg∈[0, B−BR]$ #BR +.

β= 0.98 u(yy∗∗) = 6.36 S= 3*

% 3 ' 6 # w B $ β= 0.98 u(yy∗∗) = 6.36 S= 3*

(61)

,

*

%

,# ' # % & # # % %

* ,# # & # # % & # &

% * $ #

% % & # # & #

# + * < # #

& # & # # & +

5 * # %

$# # & # # * G

B # # & # % %

# & # . # % # * < #

$ & # # # $ # . # % *

, & !(2 " # & !(2 " # % %

# % # # # $ &

# # ) # & *

,# ' # % # * , #

# # . & # ' ' . # %

$ # $ # * ,# # # = #

# . # % # * ,#

# # $ %* G # $ )

% & # $ & #

% # * > ) %# !(2(" # &

& % # # & # &

# * G ) % %

& & ) $ % % # % ) *

< & + & % " # . # %

(62)

* ,# - % % - %

% & # & $ # # % & %

& $ # G # M *

,# # ) % % #

% % " . *

> ) %# !(2(" # # # #

# & & * ,# ' # % #

& % % & * # .

$ & $ # # ' # % # # - # % %

# % 5# ' & # K !(F "

) % & $ $# . > )

!((D"* # % # ' *

< # %# > ) %# !(2(" $# # # #

% C # & , & *

# %# # # > ) ' %# & # #

+. & # #

# * $ # # # $ &

% % *D! > # ) !((2" &

# + # - & % # % #

> ) %# # # # # #

. & & ) $ % $ # & & * ,# # $ # $# # & &

# # % % % % % $#

# # # % % # % > ) %# *

- , !(((" + # > ) %#

& % # # #

% & & ) % # * G & %

D!,# # # & & % % & $ % %

& $ # # % *

(63)

% % & # , # $ # &

& $ # . # C # %#*

!(((" # % #

& ) % , * ,# !(((" (

# # & # # # & $ # - * ,# (

# $ # # # % & #

$ # * ; % % # & ) % %

% # " & ) % G #" # # %# $ #

* #

A # # %# $ A $ & - ' %

# ' A

,# # & ( # & & %# $ * ,#

# B ∈(0,1) # # "

& ) * ,# # # # 1−B * ,#

# & # $

% * # + & ) % #

& * & # '

* # & ) # # )

# > ) %# * & #

' * ,# ( # #

& # * ,# # $ # ' & $ #

% # & )

# ) % & # % # *

,# ' & + # & & ) % &

, !(((" & # # $ * ,# ' &

$ # # % # $# # #

(64)

# %# # > ) ' %# # B &

$ #

' # % * ,# $ # # )

' # # # # % & ) %

% * ,# # ' % # ( $ $ #

& ) % # # & % !(2D" # & *

,# > # ) !((2" !((("

-% % # % & #

& # # & ) % # ( , !(((" % *

# & ) $ # # # & # $ ) # ) %

. * ,# % & & ) ,

!(((" & # % & ) & $ # . & %

$ & # & & * 9 # & )

(* 9 ) ( % $ ) % # * #

- & ( ) # # ' &

# # $# # & *

# # $ # ( $ B $ * $ ) # $# # $

& ) % $ # - . &

& * # ) # # ( & & ) #

$ # - $ # $ ) # . & , & !(2 "

% % * + # # $ # #

%% % & ) B $ # # # % & ( < # %# #

& ( B # . $ ) B

& # %# B . % # * 9

$ B & % # # & ) & # % /

% $ ) # % & # *

,# # & $ B # & + & ) & $ - # $

(65)

. $# # # % & ) $ ) *

# %# %# # # % $ ) $ # &

# & & # $ & % # $# # #

# $ & & & *

,# B + # $ # #

' # # ' % # ( # %

# $ # & ) & $ & % #

# $ %% % # ) * + #

* " % # # # & ) %

% # & $ # # & $#

& $# # & & ( # %% % "* "

# # # # & & ) # )

& ) - # %# & ) *

,# . $# & ) & * K ) % $ +

# $ # # # % # & # # %# '

# $ # $ ) * " # " " $

+ # # # # * ,# & )

# %# & .' & & )

# * K ) # . " $ & #

# ' % $# # #

.' $ # %# # .' C * " " " )

% # # #

% . # * & #

# $# ) $ # & # % & $# #

(66)

$ #

N!O ;* < , , * J5

% ' # % *H M 5 8 ! F 4

; * !(((" ( ('(34*

N O ;* E * J ; <

. # % *H M 9 ) % 8 * D! E *D < % !((( 5 "*

NDO ;**J,# *H * *

N3O P* J,# % & & ) % *H * !*

N4O % * 5# * & %* J9 ) *H M

5 (! M !(2D" 3 !'!(*

N0O 6 %& % * “ # G G# > $ <& %'5 < # *”

< % # * !((!*

NFO > 9 M # > E * J; 5 K

-? # % *H M ,# ! 2 D" !F' 44*

N2O > ) E & # %# * J; . # % *H M 5

8 *(F E *3 < % !(2(" ( F'43*

N(O > # ) E E * J; < $ # ') %

E *H M ,# 2! < % !((2" F '2(*

N! O K K % K * . ' / * M !(2!*

N!!O % M * E ) * ) 0 1 2

3 * M # Q G !((3*

N! O > E & # > ) <) # ) * J, $ ,#

*H $ G 8 * 0 E * < !((D" 2D'D F*

(67)

N!DO M * **J< $# # ; *H * !*

N!3O 5 * G <* , ) ) ,* 8 % 9 5* *4 $

-- ' 3 * & % ? 5 !((0*

N!4O P*4 $ 56 ' * & % ? 5 !(((*

N!0O & * K M *J . # E *H M ,# 3 E *

< !(F " ! D'! 3*

N!FO & * K M *“K *”M ,# 8 *4 E * <

!(( "*

N!2O G ) E K* & * K M **$ ) 3 0 *

Referências

Documentos relacionados

Europeia, têm alcançado maior relevo nos últimos anos, em consequência do grande fluxo imigratório, acompanhado algumas vezes de mudança de rotas, em virtude da maior

The analysis about this issue, such as the pattern of muscle activity or muscles co- contraction (ANDRADE et al., 2011; FRÈRE et al., 2012), could give more

Quando questionados se ocorre separação dos resíduos em sua casa, cinquenta e sete por cento (57%) responderam que sim, pois os resíduos orgânicos, papel

No término desse encontro, solicitamos que os grupos fizessem uma pesquisa sobre os principais cientistas envolvidos no desenvolvimento do tema onda

3 proposes a way to estimate Confidence Sets for the Synthetic Control Estimator; section 4 analyzes size and power of different tests statistics employed in this hypothesis

3.1 Average prices and costs for the Retail Gasoline Market 39 3.2 Average prices and costs for the Retail Gasoline Market for Cartel Members 39 4.1 Result from the cases analyzed

Figure (2.6) displays the actual Gini and the counterfactual of marital sorting measured in 1992 and 2014, that is, we use the distribution of probability in marriage as it was in

Column (4) presents normalized-pooling approach which normalizes the score (gross operating revenue) so that the cutoff is zero for all units – Equation (1.6).. Column (5) pools