• Nenhum resultado encontrado

Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

N/A
N/A
Protected

Academic year: 2017

Share "Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement"

Copied!
8
0
0

Texto

(1)

AppliedSurfaceScience282 (2013) 245–252

ContentslistsavailableatSciVerseScienceDirect

Applied

Surface

Science

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Si-based

thin

film

coating

on

Y-TZP:

Influence

of

deposition

parameters

on

adhesion

of

resin

cement

José

Renato

Cavalcanti

Queiroz

a,∗

,

Lafayette

Nogueira

Junior

b

,

Marcos

Massi

c

,

Alecssandro

de

Moura

Silva

b

,

Marco

Antonio

Bottino

b

,

Argemiro

Soares

da

Silva

Sobrinho

d

,

Mutlu

Özcan

e

aPotiguarUniversity,DepartmentofBiotechnology,Natal,Brazil

bSãoPauloStateUniversity,DepartmentofProsthodonticsandDentalMaterials,SãoJosédosCampos,Brazil cFederalUniversityofSãoPaulo,InstituteofScienceandTechnology,SãoJosédosCampos,Brazil

dTechnologicalInstituteofAeronautics,DepartmentofPhysics,SãoJosédosCampos,Brazil

eUniversityofZurich,DentalMaterialsUnit,CenterforDentalandOralMedicine,ClinicforFixedandRemovableProsthodonticsandDentalMaterials Science,Zurich,Switzerland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12November2012 Receivedinrevisedform22May2013 Accepted23May2013

Available online 30 May 2013

Keywords: Adhesion Film Plasma Roughness Surfacetreatment Zirconia

a

b

s

t

r

a

c

t

ThisstudyevaluatedtheinfluenceofdepositionparametersforSi-basedthinfilmsusingmagnetron sputteringforcoatingzirconiaandsubsequentadhesionofresincement.Zirconiaceramicblockswere randomlydividedinto8groupsandspecimenswereeithergroundfinishedandpolishedorconditioned usingair-abrasionwithaluminaparticlescoatedwithsilica.Intheremaininggroups,thepolished speci-menswerecoatedwithSi-basedfilmcoatingwithargon/oxygenmagnetrondischargeat8:1or20:1flux. Inonegroup,Si-basedfilmcoatingwasperformedonair-abradedsurfaces.Afterapplicationof bond-ingagent,resincementwasbonded.Profilometry,goniometry,EnergyDispersiveX-raySpectroscopy andRutherfordBackscatteringSpectroscopyanalysiswereperformedontheconditionedzirconia sur-faces.Adhesionofresincementtozirconiawastestedusingshearbondtestanddebondedsurfaceswere examinedusingScanningElectronMicroscopy.Si-basedfilmcoatingappliedonair-abradedrough zir-coniasurfacesincreasedtheadhesionoftheresincement(22.78±5.2MPa)comparedtothoseofother

methods(0–14.62MPa)(p=0.05).MixedtypeoffailuresweremorefrequentinSifilmcoatedgroupson eitherpolishedorair-abradedgroups.Si-basedthinfilmsincreasedwettabilitycomparedtothecontrol groupbutdidnotchangetheroughness,consideringtheparametersevaluated.Depositionparameters ofSi-basedthinfilmandafterapplicationofair-abrasioninfluencedtheinitialadhesionofresincement tozirconia.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Yttrium stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic (hereon: zirconia) lately gained popularity for restor-ativeapplicationsas it presentsmechanical propertiessuperior tootheravailableall-ceramicsindentistry[1].Thepossibilityof millingzirconiausingCAD/CAMdevicesalsoincreaseditsclinical indications.Unfortunately, theachievedroughnessaftermilling proceduresis notsufficient toadhereresin-basedcements that

PartofthisstudyhasbeenpresentedattheAcademyofDentalMaterials(ADM),

35thAnnualCongress,October13–15,2011,CostadoSauipe,Bahia,Brazil.

Correspondingauthorat:PotiguarUniversity,DepartmentofBiotechnology,Av.

Gov.JuvenalLamartine,326,Tirol,ZipCode59020-280,Natal,RN,Brazil. Tel.:+558432221804;fax:+558432229975.

E-mailaddress:joserenatocq@hotmail.com(J.R.C.Queiroz).

consequentlylimittheirpotentialuseforminimalinvasive recons-tructions[2].Inaddition,traditionaladhesionprotocolsusedfor silica-basedceramicsystemssuchasacidetchingwith hydroflu-oricacidandsubsequentsilanizationisnoteffectiveforgenerating physicalandchemicalchangesonzirconiasurface[3,4].Sincegood adhesionobtainedatthecementationinterfacecouldpromote pre-vention of microleakage[4], surface modification of zirconiais essentialtoachieveastableadhesivejointwithresincements[3]. Thus,severalsurfaceconditioningmethodshavebeensuggested toconditionzirconiasurfacesphysicallyand/orchemically,suchas air-particleabrasionusingaluminaparticlesfollowedby applica-tionofceramicprimers,adhesivemonomersortribochemicalsilica coating(RocatecandCoJetSystems)followedbytheapplicationof silanecouplingagents[3,5].Chairsideair-abrasionprotocolsusing aluminaoraluminaparticlescoatedwithsilica(tribochemical coat-ing)isparticularlyfavoredtoconditionzirconiaasiteliminatesthe organiccontaminantsonthesurface,improvewettability,increase

(2)

246 282 (2013) 245–252

Table1

Thebrands,types,chemicalcompositions,manufacturersandbatchnumbersofthematerialsusedinthisstudy.

Brand Type Chemicalcomposition Manufacturer Batchnumber

Cerconzirconia Ceramiccore Zirconiumoxide,yttriumoxide,hafnium oxide

Dentsply/Degudent,Hanau,Germany 318900-3

OxidedeAluminio Particleforair-abrasion(45␮m) Aluminumoxide Polidental,SãoPaulo,Brazil 20919 Monobond-S Silanecouplingagent EthylAlcohol,

3-methacryloxypropyltrimethoxy, methylethylketone

IvoclarVivadent,Schaan,Liechtenstein N011595

Metal/zirconiaprimer Ceramicprimeragent Methylisobutylketone,phosphonicacid acrylate,benzoylperoxide

IvoclarVivadent M68692

Multilink Resincement Benzoylperoxide,HEMA,inorganicfillers, ytterbiumtrifluoride,pigments

IvoclarVivadent N42713

bondingarea,roughness[6,7].Air-abrasionprotocolsalsopromote micromechanicalinterlockingoftheresin[8,9].Furthermore, depo-sitionofamorphoussilicalayersonthezirconiasurfaceenables silanereactionsbytribochemicalcoating[3,10].

Theimpactofparticledepositiononzirconiausingair-abrasion protocolscouldpromotesurfacechanges bylocallattice distor-tionsand/or by the emergence of a new phase by ferroelastic domainswitchingunder stress[11] oryieldtocompletelateral cracks[12]. Whenalumina particlesare used,subsurface dam-agecanoccurin zirconiaandthis influencesthesurvivalinthe cyclicfatiguetesting [12–14].Instead,theuseofalumina parti-clescoatedwithsilica(CoJet)wasreportedtoreducetheimpact induced surface flaws and not affect the survival under cyclic fatigueloadingcomparedtonon-airabradedcontrolgroups[11]. Yet, tribochemical conditioning and silanization is not always indicatedforthecementationofinlay-retainedfixeddental pros-thesis(FDP)whenchemicaladhesioncouldbeobtainedwithresin cements[15].

Sincecontroversialopinionsexistregardingtosurface activa-tionofzirconiawithair-abrasion protocols,newapproaches for surface conditioningthat do not compromise thestrength and marginaladaptationofcrownsandFPDshavebeensuggestedsuch asselectiveinfiltrationetching[16],glazing[17],aluminacoating

[18],theuseofadhesivepromoterswithbifunctionalmonomers

[2,19,20],strongacidetching[21,22],chemicalvapordeposition usinghexamethyldisiloxane[23],chlorosilanegas[4],orsulphur hexafluoride[24],physicalvapordepositionusingthemagnetron sputteringtechnique[25,26],non-thermalplasmaexposure[27]

andlaserirradiation[28].Amongthesemethods,itcanbe antici-patedthatSi-basedfilmdepositionprocesscouldimproveadhesion betweenzirconiaandresincement[25,26]basedonthefactthat thesilanecouplingagentshowschemicalaffinitytosiliconoxides

[3,10,29]. Previous studies showed promising results using Si-basedfilms[25,26].However,adhesionwasnotoptimumatthe film-zirconiainterface[26].

Using magnetron sputtering technique, thin films could be depositedonzirconiasurface.Thisphysicalprocessfunctionalizes surfacesandimprovesthesurfaceenergyofthesubstrate[30].The depositionrateofcompoundsdependsonthematerialofthe sput-teredtarget,gas,electricalconductivityofthesputteredtargetand typeof powersupply usedtogrowthefilm.Whenparameters areoptimized,uniformdeposition,controlledfilmthicknessand multilayerdepositionoffilmscouldbeachieved[30].

Theobjectivesofthisstudytherefore,weretoevaluatethe influ-enceofsurfacetextureanddepositionparametersforSi-basedthin filmsusingreactivemagnetronsputteringoncoatingzirconia,to characterizethefunctionalityof thesecoatingsandassesstheir effectonadhesionofresincementcomparedtoconventional sur-faceconditioningmethods.Thetestedhypothesiswasthatplasma parametersusedfordepositionofSi-basedthinfilmswouldaffect thechemicalreactivityofzirconiaandincreaseadhesionofresin cementcomparedtoconventionalconditioningmethods.

2. Materialsandmethods

2.1. Specimenpreparationandexperimentalgroups

Thebrands,types,chemicalcompositions,manufacturersand batchnumbersof thematerialsusedin thisstudy arelistedin

Table1.

Zirconiaceramic(CerconZirconia,Dentsply/Degudent,Hanau, Germany) blocks(N=80)(6mm×6mm×3mm)wereprepared andsintered(VitaZircomatfurnace,VitaZahnfabrik,Bad Säckin-gen,Germany)accordingtothemanufacturer’sinstructions.They werethenrandomlydividedinto8groups(n=10pergroup)and conditionedasfollows:

GC:Theceramicsurfacesweregroundfinishedto1200silicon carbide(SiC)paperunderwatercoolinginapolishingmachine (DP-10,Panambra,SãoPaulo,Brazil)andcleanedinanultrasonicbath (Vitasonic,VitaZanhfabrik)indistilledwaterfor10min.

GP:ThespecimenswerepreparedasdescribedforgroupGC. Then,aceramicprimer(Metal/Zirconiaprimer,IvoclarVivadent, Schaan,Liechtenstein)wasappliedtotheceramicsurfaceusinga cleanbrushonelayerandlefttoreactwiththesurfacefor180sat roomtemperature(20◦C),50%relativehumidity.Next,theexcess

primerwasremovedbyairspray(2.8bar)freefromoil contamina-tionfor5s.

GS:ThespecimenswerepreparedasdescribedforgroupGC.The cementationsurfaceswereairabradedwith30␮malumina parti-clescoatedwithsilica(CoJetSand,3MESPEAG,Seefeld,Germany) usingachairsideairabrasiondevice(CoJet-Prep,3MESPEAG)at pressureof2.8barfor10s.Thedistancebetweentheceramic sur-faceand thenozzle wasstandardized at10mm, atan angleof 90◦.Thespecimenswerethenultrasonicallycleanedindistilled

waterfor10minandsilanecouplingagent(MonobondS,Ivoclar Vivadent)asdescribedingroupGP.

GR:Priortosinteringprocess,thecementationsurfaceswereair abradedwith45␮maluminaparticlesatpressureof2.8barfor10s. Thedistancebetweentheceramicsurfaceandthenozzlewas stan-dardizedat10mm,atanangleof90◦.Aftersintering,thespecimens

wereultrasonicallycleanedindistilledwaterfor10minandthen ceramicprimer(Metal/Zirconiaprimer)wasappliedasdescribed ingroupGP.

GF1:ThespecimenswerepreparedasdescribedforgroupGC. Si-basedthinfilmcoatingwasachievedusingArgonradiofrequency magnetrondischarge.Asilicatarget(KurtJ.Lesker,Pittsburgh,USA) wassputteredonthecementationsurfaceofthezirconia. Follow-ingfilmdeposition,thespecimenswereultrasonicallycleanedin distilledwaterfor10minandsilanecouplingagent(MonobondS, IvoclarVivadent)wasappliedasdescribedinGroupGP.

(3)

282 (2013) 245–252 247

Table2

ParametersusedduringSi-filmdeposition(targetcomposition,Ar,O2gasflux,pressure,powersupplytype,power,target-substratedistance).

Film Target Arflux(sccm) O2flux(sccm) Pressure(mTorr) Powersupplytype Power(W) Distance(cm)

GF1 SiO2 20 – 7 Radiofrequency 120 8

GF2/GF2R Si 20 2.5 7 Directcurrent 120 8

GF3 Si 20 1 7 Directcurrent 120 8

GF3:ThespecimenswerepreparedasdescribedforgroupGC. Adirectcurrentmagnetrondischarge,silicontarget(KurtJ.Lesker), andargon/oxygengases(20:1influx)wereusedtopromotefilm growthonthezirconiasurface.Applicationofthesilanecoupling agentwasperformedasdescribedinGF1.

GF2R:ThespecimenswerepreparedasdescribedforgroupGR. Adirectcurrentmagnetrondischarge,silicontarget(KurtJ.Lesker), andargon/oxygengases(8:1influx)wereusedtopromotefilm growthonthezirconiasurface(asGF2).Applicationofthesilane couplingagentwasperformedasdescribedinGF1.

DepositionparametersforgroupsGF1,GF2,GF3,GF2Rare pre-sentedinTable2.

Additional15 zirconiablocks (2mm×10mm×10mm)were manufacturedfor theadhesiontestand wererandomlydivided intothreegroups(n=5):(a)GC,(b)GSand(c)GF2.

2.2. Silicafilmgrowth

ThesurfacesofzirconiaspecimenswerecoatedwithSi-based thin film by physical vapour deposition (PVD) method using a reactivemagnetronsputtering(RMP)technique.Forthisprocess, highpurity(99.99%)SiO2-andSi-target(KurtJ.Lesker)andthe zir-coniablockswerepositionedina tailormadevacuumchamber (LaboratoryofPlasmaandProcess,ITA,Brazil)andevacuatedtoa backgroundpressureof5×10−5Torr.ApreviousArgondischarge wasperformedfor10mintoremove surfacecontaminations on thetargets.Thedepositionswereperformedataworkingpressure of7mTorr(∼2.7Pa).Athermocoupleevaluatedthetemperature onthespecimenholderduringdepositionprocesses.Allsubstrates attainedamaximumof95◦C.

ForGF1,asilicatargetwassputteredbyanargonradiofrequency magnetrondischargeinordertodepositthefilms.ForGF2,GF3and GF2R,SiatomssputteredfromtheSi-targetreactedwithoxygen plasma,formingsiliconoxides(SiOx)thataredepositedon sub-stratesurface,producingathinfilm.Depositionofstoichiometric andnon-stoichiometricfilms(SiOxwhere0≥x≥2)wasobtained byalteringtheoxygenconcentrationintheplasma[31].The depo-sitiontime wasmaintainedconstantat30minand thecathode voltageandelectriccurrentweremeasuredevery5minto con-troltheprocessstability. Threeadditionalsiliconplatesamples (n=3)thatwereelectrochemicallypolished(Ra<15nm)and par-tiallycoveredwithamask,weresubmittedtoeachfilmdeposition processandusedforfilmthicknessmeasurements.

Subsequently,thespecimenswereremovedfromthereactor, cleanedultrasonicallyin distilledwaterfor10minanddriedby oil-freeairsprayfor30sat2.8bar.

2.3. Bondstrengthtestandfailureanalysis

Equalamountsofthebaseandcatalystpasteofresincement (Mutlilink,IvoclarVivadent)weremixedfor20sand bondedto theconditionedzirconiaspecimensusingpolyethylenemolds(Ø: 2.4mm;thickness:3mm).Followingauto-polymerizationfor24h, thespecimens werestored in distilled water (37◦C

±1◦; 48h). Shearbondstrengthtestwasperformedusingauniversaltesting machine(DL-1000,EMIC,SãoJosédosPinhais,Brazil)(crosshead speed:1mm/min;100kgFload-cell)andthebondstrength(MPa) wascalculated(force(inN/adheredareainmm2).

Thedebondedsurfaceswereexaminedusinganoptical micro-scopeat60×magnification(MeasuringMicroscopeMFA,Mitutoyo, Kawasaki,Japan)andScanningElectronMicroscopes(SEM) (SSX-550, Shimadzu, Kyoto, Japan) at 35×–5000× magnification in secondaryelectron(SE)modetocharacterizethefailuremode.In ordertoverifythepresenceofSiontheceramicsurfacesafterbond test,additionalsurfaceanalysiswasperformedusingSEM/Energy DispersiveSpectrometer(EDX,Shimadzu).

Failure typeswereclassifiedasfollows: A1:adhesivefailure alongtheinterfacialregionbetweenthefilmandthecement;A2: adhesivefailurealongtheinterfacialregionbetweenthefilmand theceramic;C:cohesivefailureintheresincement;andM:mixed failure,adhesivefailurebetweenthecementandceramictogether withcohesivefailureintheresincementand/orceramic.

2.4. SurfaceroughnessandRutherfordBackscattering Spectroscopy(RBS)analysis

For roughness analysis (Ra) of the zirconia surfaces follow-ing surface conditioning, four additional specimens from each group were evaluated using an optical profilometer (Wyko NT 1100,Veeco,Plainview,USA)thatwasconnectedtoacomputer drivecontainingtheSoftware Vision32 (Veeco).Measurements were performed at 20× magnification on two random areas (301.3␮m×229.2␮m)ofeachspecimen.

Thefollowingroughnessparametersweremeasured:

Ra: Arithmeticalmean ofthe absolutevalues of thesurface departuresfromthemeanplanewithinthesamplingareain␮m.

Rz:Themeanvalue(␮m)oftheabsoluteheightsof thefive highestpeaksandtheabsolutevalueofthefivedeepestvalleys withinthesamplingarea.Thisparameterissensitivetothechanges ofpronouncedtopographyfeatures.

Sdr(surfacesarearatio):Thisratioexpressestheincrementof theinterfacialsurfacearearelatedtotheareaoftheprojected(flat) xyplane.Foratotallyflatsurface,thesurfaceareaandtheareaof thexyplanewerethesameandSdrwas0%.

Thesiliconplatesampleswereevaluatedtomeasurefilm thick-nessinordertocalculatethedepositionratebydeterminingthe ratiobetweenfilmthicknessanddepositiontime.

Inaddition,specimenswerefurthergoldsputteredina sput-teringdeviceandanalyzedunderanSEM(SSX-550,Shimadzu)at 20kVtoobservethetopographicchangesonthezirconiaceramic surfaceindifferentgroupsinsecondaryelectron(SE)mode.

RutherfordBackscatteringSpectroscopy(RBS)isanionbeam analysiswithhighsensitivitytodetectchemicalelemental concen-trationindepth.Theatomiccompositionofthefilmsasdeposited on zirconia specimens was analyzed by RBS (Pelletron-tanden 5SDH, National Electrostatic Corporation,Middleton, USA). RBS studieswereperformedwitha1mmdiametercollimatedbeam of2.2MeV4He+ions.BackscatteredionsweredetectedusingSi(Li) detectorsplacedat10◦scatteringangles.Theresolutionof

detec-tionwas<15atoms/cm2.

2.5. Contactangleandworkofadhesionanalysis(WA)

(4)

248 282 (2013) 245–252

sessiledroptechniqueatcontrolledroomtemperature(20◦C)and

humidity(40%),adropofdeionizedwater(15␮L)wasappliedon thespecimensurfaceandallowedtoflowuntilitreached equilib-rium.Workofadhesion(WA)wascalculatedbytheYoung-Dupré equation,usingthemeanof themeasuredcontactanglevalues obtainedfor each group()and theinterfacialenergybetween liquidandsolid(yLS).

WA=yLS.[cos()+1]

2.6. Statisticalanalysis

Statisticalanalysiswasperformedusingone-wayANOVAand posthocmultiplecomparisonsweremadebetweengroupsbythe Tukey‘sposthoctest(SPSS11.0softwareforWindows,SPSSInc., Chicago,IL,USA).Pvalueslessthan0.05wereconsidered statisti-callysignificantforallstatisticaltests.

3. Results

TheRBSanalysisoftheSi-basedthinfilmidentifiedonly sili-con(Si)andoxygen(O)atomswithslightdifferencesamongthe films.TheSiandOconcentrationsforeachfilmwereGF1:31.25% and68.75%;GF2/GF2R:33.3%and66.7%;andGF3:39.2%and60.8%, respectively.Thefilmthicknessdata(␮m)andthedepositionrates (nm/min)foreachfilmwere:GF1:0.17and∼5;GF2/GF2R:0.23 and∼8;GF3:0.35and∼11,respectively.

SEMimagesshowedsimilarsmoothsurfacetopographyforGC, GP,GF1, GF2 and GF3. From these groups, representative SEM ofGF2is presentedinFig.1a. Othergroups presenteddifferent patternsofsurfacetopography.ForGS,sharpgroovesandpeaks werefoundwithrandomdistribution(Fig.1b).ForGR,air-abrasion beforethesinteringprocesscreatedanewretentivesurfacewith microhollowsthegrainboundarieswerevisibleinGC(Fig.1c)that disappearedafterfilmdepositiontoGF2R(Fig.1d).SEMimageto GFspecimensshowedgrainboundariesunderthefilm,suggesting ananothicknessofthefilmandmicrospotdefectsatsomeareas ontheSi-film(Fig.2aandb).

Bondstrength resultsweresignificantlyaffectedby the sur-faceconditioningmethods(p≤0.05,one-wayANOVA).Themean bondstrengthdataobtainedinGF2Rwassignificantlyhigherthan thoseofothergroups(p≤0.05)(Table3).Air-abrasiontreatment increasedtheroughnessbutthefilmdepositionprocessdidnot.

Failure analysis of the specimens under optical microscopy revealedmainlyA1typeoffailureingroupsGC,GP,GS,GR(Table4). GF2R group, where the highest bond strength was observed, demonstratedmainlyMtypeoffailures(Fig.3a).InGF2andGF2R whereMtypeoffailuresweredominant,qualitativeEDSanalysis ontheadhesivebondingareaindicatedtracesofSionthe zirco-niasurfacecorrespondingtoadhesivefailurebetweentheSifilm coatingandzirconia(Fig.3b).

Table3

Shearbondstrength(±SD)(MPa),Ra(±SD)(␮m)resultsforallgroups.

Groups Bondstrength(MPa) Tukey’stest Ra(␮m)

GC 0 D 0.12(<0.1)

GP 2.42(0.3) D 0.12(<0.1)

GS 14.62(3.2) B 0.51(0.1)

GR 8.29(1.2) C 0.62(0.2)

GF1 6.85(2.2) C 0.11(0.1)

GF2 10.51(1.5) C 0.10(0.1)

GF3 2.77(0.7) D 0.12(0.1)

GF2R 22.78(5.2) A 0.61(0.2)

*Thesamelettersinthebondstrengthcolumnindicatenosignificantdifferencesin thesamecolumn(Tukey’stest,alfa=0.05).

(5)

282 (2013) 245–252 249

Fig.2.SEMimageofaspecimenfromgroupGFshowing(a)grainboundariesunder Si-film,suggestingananometricthicknessofthefilmand(b)film(F)coatingY-TZP surface(Y)andapore(P)inducingafilmcrack.

Contactangle,WAandroughnessparameters(Ra,RzandSdr) weresignificantlyaffectedbythesurfaceconditioningevaluatedin groupsGC,GSandGF2accordingtoone-wayANOVA(p=0.0)forall results(Table5).Bothair-abrasion(GS)andfilmdeposition(GF2) improvedthewettabilitycomparedtoGC.Thebestresultswere foundintheGF2group.Themeanvaluesforsurfaceroughness, contactangleand workofadhesion,calculatedbyYoung-Dupré equation,showedsignificantdifferencesbetweengroups(Tukey‘s test)Table3.

4. Discussion

Durable adhesionofresin cementto zirconiacouldincrease theminimalinvasiveapplicationsforprostheticrehabilitation.This

Table4

Distributionandfrequencyoffailuretypesafterbondstrengthtestper experimen-talgroup:A1:adhesivefailurealongtheinterfacialregioninvolvingcement;A2: adhesivefailurealongtheinterfacialregionbetweenthefilmandtheceramic;C: cohesivefailureintheresincement;andM:mixedfailure,adhesivefailurebetween thecementandceramictogetherwithcohesivefailureintheresincementand/or ceramic.

Groups N A1 A2 C M

GC 10 10 0 0 0

GP 10 10 0 0 0

GS 10 9 0 0 1

GR 10 9 0 0 1

GF1 10 0 10 0 0

GF2 10 0 0 0 10

GF3 10 0 10 0 0

GF2R 10 0 0 1 9

Fig.3.(a)TypicalSEMimage(×35)insecondaryelectron(SE)modeofamixed typeoffailure(adhesivefailurebetweenthecementandceramictogetherwith cohesivefailureintheresincementand/orceramic)inGF2,(b)elemental compo-sitionmappingbyEDSanalysis(Zr(blue)andSi(red)mapping)ofaregionnear theresincementinamixedfailureofaspecimenfromGF2(forinterpretationof thereferencestocolorinthistext,thereaderisreferredtothewebversionofthe article).

Table5

DescriptiveanalysisforgroupsGC,GSandGF2regardingtoRa(nm),Rz(␮m),Sdr (%),contactangle(CA)andworkofadhesion(WA).

GC GS GF2

Ra 155.7±30.1b 568.9±17.7a 163.4±32.6b Rz 2.6±0.5b 6.2±0.2a 2.5±0.6b Sdr 2.8±0.9b 80.4±4.9a 2.70.7b CA(o) 86.54±1.3a 73.11±1.6b <20c WA 77.19±1.7a 93.95±2.0b >141.21c

*Samesuperscriptlettersindicatenostatisticallysignificantdifferenceinthesame row(Tukey‘stest,p<0.05).

(6)

250 282 (2013) 245–252

Thesuccessofadhesioninordertopreventdegradationunder aggressiveenvironmentsdependsonthechemicalcompatibility anddurability oftheinterfacebetweendifferentmaterials.The surfacepropertiesofthematerialsinvolvedandthestudyof adhe-sionmechanismareimportantissuesforpredictingthebehaviorof bondedinterfacesthroughwhichbondstrengthcouldbeoptimized

[32].Inthisregard,surfacewettabilityinparticularisofimportance andinthisstudy,theSi-basedthinfilmimprovedwettability. Phys-icalandchemicalpropertiesofmaterialsinvolvedincementation processaffectthestabilityoftheinterface.Anessentialaspectinthe cementationprocessisthecementchoice.Thecementchosenin thisstudy(Multilink)isabis-GMAbasedconventionalresin com-positelutingagentthatrequiresmoisturecontrolandapplicationof asilaneandabondingagenttoachieveeffectiveadhesionto zirco-nia.Thisresincementwaschosenbecausebifunctionalmonomers arenotpresentinitschemicalcomposition.Functionalmonomers presentinsomeresincementsincreasebondstrengthtozirconia

[26,33]andcouldhavemaskedtherealeffectofnovelsurface treat-mentsproposedinthisstudy.Thecementchoiceseemedtobenot relevantaccordingtothefailuretypesobservedinthisstudy,since theweakestinterfacewasbetweentheSi-basedfilmand zirco-nia.Previousstudieshaveevaluatedthebondstrengthofbis-GMA basedresincementtozirconiaandreportedthattheuseofadhesive promoterswasnoteffectiveatpromotinganincreaseinadhesion tozirconia[3,7,26].Inagreementwiththesestudies,inthisstudy, GCgrouppresentedexclusivelypre-testfailuresandGPshowed lesschemicaladhesion.Ontheotherhand,GSpresentedbetter ini-tialbondstrengthresultscomparedtothoseofGCandGP.This indicatesthatsurfaceactivationthroughparticleabrasionandin particularusingsilica-containingabrasivesisessentialtoachieve betteradhesiontozirconiawiththiscement.Yet,theresultscould stillbeconsideredweak.

Using the plasma technique for film deposition as a condi-tioningstrategyforbetteradhesiontozirconia,theeffectofthe nanofilmdepositedonzirconiawasreportedtopromotethe chemi-caladhesionofthesilanecouplingagent[4].Thisstudyshowedthat air-abrasionwith50␮maluminaabrasivefollowedbygas-phase chlorosilanepretreatmentfordepositingultra-thinsilica-like lay-ersimprovedadhesiontozirconiausingtraditionalsilanationand bonding techniques.Thus, theresponse of an interface and its chemicalinteractionswithothermoleculesmaybeobtainedby superficialsurfacemodificationsusingadvancedtechniques.Itis wellknownthatsilanecouplingagentshowschemicalaffinitywith siliconoxides[3,10,29].Theuseofsilaneisrecommendedfor felds-pathicceramicstoformasiloxanenetworkwiththesilicainthe glassphaseoftheceramicstoimprovethebondstrength.Duetothe chemicalstabilityofzirconia,adhesionofsilanecouplingagentwas reportedtobepoorandpresentedahigherpotentialforhydrolytic degradation[10,34].In a previousstudy,it wasshown that Si-basedfilmcouldimprovebondstabilitywhencomparedtosolely air-abradedzirconia[26].Thus,thisstudywasconductedinorder togrowdifferentSi-basedthinfilmsusingthemagnetron sput-teringtechniqueatvaryingdepositionparametersonflatzirconia surfaces.

Whenthemeanbondresultsonflatsurfacesarecompared(GC, GP,GF1,GF2andGF3),itwasevidentthatchemicaladhesion(GF2 andGF1)improvedtheresultscomparedtotheremaininggroups. EveninthegroupGR,wherethemainadhesionmechanismused wasbasedonmicromechanicalretention,nostatisticaldifference wasverifiedbetweenthisgroupandthoseofGF1andGF2. More-over,GF2Rrevealedstatisticallyhigherresultscomparedtothe silicacoatingandsilanizationmethodappliedinGS.

Aroughsurfacepresentsalargersurfacearea,increasingbond sites,thateventuallyincreasesthebondstrengthby micromechan-icalretentionandimproveswettabilityforzirconiaceramics[7,8]. Despiteof this,reports intheliteratureaffirm thattheoriginal

roughnessproducedbymillingduringfabricationisnotsufficient to promote adhesion to resin cements zirconia [2]. This study showedthatroughenedsurfaceproducedbeforefiring(greenstate) usingtheair-abrasionprocedure(GR)wasnotsufficientto pro-moteinitiallyasgoodresultsasthegroupthatreceivedchairside silicacoating(GS).Thisfindingisindisagreementwitharecent study[35].Itisknownthatair-abrasionofzirconiasurfaceafter sinteringcausesphasetransformationfromtetragonalto mono-clinic[36,37].AsitisdemonstratedingroupsGSandGR,presenting higherroughnessfortheRaparameter,indicatesthatmonoclinic statemay bemore reactivethan tetragonalpolycrystals [2,38]. However,whenaSi-basedthinfilmwasusedonGR,formingthe groupGF2R,theinitialbond strengthwasimproved,increasing thefrequency of mixed failures. In addition,surface roughness remainedunchangedfollowingthefilmdepositionprocess, sug-gestingthatthechemicalmodificationpromotedinGF2andGF2R couldbethemechanismusedtoincreasebondstrengthcompare tothesameroughsurfacewithoutfilm(GPandGR).Thegrowth ofathin filmonthesurfaceusingacoldplasmatechniquecan modifysurfacechemicalandphysicalpropertieswithout chang-ingthepropertiesofthebulkmaterial[30].However,theeffect oftreatmentonthemechanicalpropertiesofzirconiaappliedin thegroupGRwasnotstudiedinthis studybut warrantsfuture research.

Regardingfilmadhesioninzirconiasubstrate,theresultsfor GF1,GF2andGF3occurredindependentofthemicromechanical adhesionmechanismastheywereproducedonaflatsurface.Yet, thefilmdetachedfromthezirconiasurfacetogetherwiththeresin cementafterdebonding,suggeststhatchemicalaffinityofthe Si-basedfilmstothecementfollowedbysilanizationwashigherthan tozirconiasurface.Consequently,theeffectofthisfilmonthebond strengthwithcementcannotbemeasured.Thelowestbondvalues obtainedin GF3showedthat thepresenceofSi-basedthinfilm asinterlayerbetweenzirconiaandresincementincombination withthesilaneapplication,wasnotsufficienttopromotestrong initialbondstrengthasthisfilmwasnotfoundtobeattachedto thezirconiasurfaceafterbondtest.ReducedoxygenfluxinGF3, diminishingtheoxygenconcentrationinthis filmcouldchange nucleationbehaviorofthefilmduringdepositionprocess, influ-encingtheadhesionbetweenthefilmandtheceramicsurface[30]. ForGF1,thereasonsfortheincreaseinoxygenconcentrationwere notinvestigatedinthisresearch.Althoughelemental concentra-tioncouldbeexpectedtobesimilartoGF2,sincetheplasmaused forGF1wasnonreactive(onlyargongas),probablythesputtering ofSiO2targetpreferentiallyremovedoxygen[30].However,the resultssuggestthattheincreaseofoxygenintheSi-basedfilm(as inGF1)couldpromotehigherinternalstressontheSi-basedfilm, diminishingadhesiontozirconiainthisgroup.AlthoughGF1and GF2presentedstatisticallysimilarresults,analysisofthefailure typesunderSEMandusingEDS,showedthattheresincementand thecoatingfilmremainedonthezirconiasurfaceafterbondtest onlyforthegroupGF2.

AccordingtoSEMimages,Si-basedthinfilmseemstobedense butmicrometricflawsinthefilmintegritywerestillapparent.The localizedpinholedefectsinthisfilmcouldbeinducedasa conse-quenceofimpuritiesonthezirconiasurface,intrinsicfilmstress, lowenergysurface ofzirconiaor plasmasputteringonthefilm

(7)

282 (2013) 245–252 251

The deposition rate for Si-based thin films decreased from approximately11–8nm×min−1astheoxygenfluxincreasedfrom 1to2.5sccminthegasdischargedforGF3andGF2,respectively, influencingthefilmthickness.Thisisdue totheprocessof tar-getpoisoning(oxidation)thatreducesthesputteringyieldoffthe targetand,accordingly,thecondensingatomfluxtowardthe zir-coniasurface[25].AccordingtovanHattumandcoworkers,asthe oxygenflowrateincreases,thegasdischargeischaracterizedbya suddendecreaseinsiliconatomstowardthegrowingfilm,witha simultaneousincreaseinSiOxmolecules,indicatingcoverageofthe targetandsubstratebythecompound[31].Furthermore,theuseof asilicatargetforGF1reducedthedepositionrateto5nm×min−1 becausetheinsulatingaspectinherenttothistargetreducesthe sputteringrate.Thisisthereasonwhyaradiofrequencywas cho-sentosubstitutedirectcurrentasthepowersupplyinthisgroup (GF1).

SEMand atomic forcemicroscopy(AFM) analysishavebeen oftenused toevaluatethesurface roughnessin similarstudies

[2,40].Inthisstudy,profilometrywasusedforqualitativeand quan-titativeanalysesoftheroughnessfollowingsurfaceconditioning methods.Thisisanopticaltechniqueformeasuringsurface rough-nessusingopticalinterference,inwhichthelightintensityofthe fringes isrelated to thesurfaceheight. Profilometrypresents a nanometricverticalresolution withadynamicrange (scansize) thatgreatlyexceedsthemicroscopeprobes,providingquickimages ofthesurfacesimilartoSEMwiththeroughnessparameter sup-portedby3DimageasinAFM[29].

Adequateroughnessparameteranalysesandalargescansize toevaluatetheeffectoftopographymodificationonadhesioncan help tounderstandthebehavior of a newsurface conditioning methodonbondstrengthandadhesionproperties.Rahasbeen usedfrequentlyin ordertoexpressthetopographicchanges on thezirconiasurfaceinthedentalliteratureandconsideredasan importantparameterforgeneraluse[40].However,itisimportant tostressthattheRaparameterreducestheeffectsofoddscratches ornon-typicalirregularities.Instead,Rzpresentsadditional infor-mation,revealingthepossiblepresenceofdefectsonthesurface.If RaandRzparametersshowsimilaramplitudes,auniformstandard ofroughnessisexpectedtobepresentonthesurface.Thelarge dif-ferencebetweentheRaandRzparametersshowedthepresenceof spotflawsontheconditionedzirconia,evenontheflatsurface.

Analysisof theroughnessresultsofGC,GS andGF2showed thatRaincreasedby0.4␮mwhenthesurfaceswereair-abraded, suggestingabettermicromechanicalinterlockingbetweenthis sur-facewithresincements.TheincreaseintheRzparameterbetween GSandGC(3.5␮m)verifiedtheenergyeffectproducedby par-ticleimpactduringair-abrasionproducingmorphologicalsurface changes.TheSdrparameterindicatedanincreaseinsurfacearea ofapproximately80%whentheY-TZPceramicwasair-abraded, increasingbondingsitesavailabletoreactwithanadhesive pro-moter.Thus, thisprocedurecanimprove bondstrength results, affectingbothphysical(micromechanicalinterlockingmechanism) andchemical(adsorptionmechanism)adhesionandatthesame time increasing the wettability of the zirconia surface. How-ever,severalstudies showedthat additionalchemical adhesion promotedonly by martensitic transformation mediated by air-abrasionprocedurewithaluminaparticlesbutitwasinefficientto resisthydrolyticdegradationafteragingoftheinterface[4,8,39]. Theresultsofsurfaceroughnessforallthreeparameters(Ra,Rz andSdr)inGF2werenotstatisticallysignificantcomparedtoGC (controlgroup),suggestingthattheimprovedcontactangleandWA inGF2occurredduetochemicalmodificationonthesurface.WA playsavitalroleinadhesionandisdefinedasthereversiblework, requiredseparatingaunitareaofinterfacebetweentwodifferent materials[32].Evenmodestchangesintheirvaluescancauselarge differencesinpracticaladhesionmeasurements[32].Thestrong

implicationisthat ifspontaneousspreadingdoesnotoccur, the interfacialcontactcouldbeincomplete.Thisstudyshowedthat WAforGF2(calculationbasedon20◦)wasimprovedcomparedto theothergroups(GCandGS),implyingthatchemicalmodification onthesurfacesprovidedbytheSi-basedthinfilmwasmore effi-cientthanphysicalandchemicalchangespromotedbyair-abraded surfaceregardingthisproperty.

5. Conclusions

Overall,thisstudyshowedthattheair-abrasionprotocolused inGSimprovedthecontactangleagainstthepolishedsurfacein GC.Likewise,theeffectoftheSi-basedthin filmonthesurface wassignificant.Despiteusingasmoothsurfaceforthesegroups, theyexceededtheanglelimit(20◦)detectedbythegoniometer.

Therearetwoprimaryreasonsforseekingmethodstominimize thecontactangleofthebondingagentagainstthezirconia sur-face:(a)minimumcontactanglecorrespondstomaximumarea andintimacyofcontactbetweenthebondingagentandceramic surfaceand (b)minimum contactanglecorrespondstoa maxi-mumthermodynamicworkofadhesion(WA).TheSi-basedthin filmsdepositedonzirconiabyreactivemagnetronsputtering tech-niquedidnotchangetheroughness,consideringtheparameters evaluated.Theadjusteddepositionparametersfor Si-basedthin films followed by silane application increased the initial bond strengthresultsbetweenresincementandzirconiaceramictested butthevariationindepositionparametersseemedtoplayaroleon improvedadhesionwithzirconiainterface.Initiallyroughzirconia surfacesmadeitpossibletoachievebetterdepositionofSi-based thin films compared to smoothersurfaces. Different sputtering parametersforSi-basedthinfilmdepositionaffectedthe chemi-calpropertiesofthezirconiasurfaceandallconditioningmethods testedimprovedwettabilityofthezirconiasurfacecomparedto thecontrolgroup.Finally,adjustmentsintheparametersusedfor a moreuniformfilmgrowthand forimprovingadhesionof the filmonthesubstrate,usingdifferentdepositiontechniques,require furtherinvestigations.Irrespectiveoffutureresearch,theplasma techniqueisnotacommonprocessindentistryandthecostofits implementationinaprostheticslaboratoryremainscurrentlyhigh.

Acknowledgements

Thisstudywasbased ona thesissubmitted tothegraduate faculty, São Paulo StateUniversity, in partialfulfillment of the requirementsfora PhDdegree.TheStateofSãoPauloResearch Foundation(FAPESP)isgreatlyacknowledgedforsupportingthis research(Grantno.09/53584-4).

References

[1]H.J.Conrad,W.J.Seong,I.J.Pesun,Currentceramicmaterialsandsystemswith clinicalrecommendations:asystematicreview,JournalofProstheticDentistry 98(2007)389–404.

[2]P.Magne,M.P.G.Paranhos,L.H.BurnettJr.,Newzirconiaprimerimprovesbond strengthofresin-basedcements,DentalMaterials26(2010)345–352. [3]M.Özcan,H.Nijhuis,L.F.Valandro,Effectofvarioussurfaceconditioning

meth-odsontheadhesionofdual-cureresincementwithMDPfunctionalmonomer tozirconiaafterthermalaging,DentalMaterialsJournal27(2008)99–104. [4]J.R.Piascik,E.J.Swift,J.Y.Thompson,S.Grego,B.R.Stoner,Surface

modifica-tionforenhancedsilanationofzirconiaceramics,DentalMaterials25(2009) 1116–1121.

[5]M.A.Bottino,L.F.Valandro,R.Scotti,L.Buso,Effectofsurfacetreatmentsonthe resinbondtozirconium-basedceramic,InternationalJournalofProsthodontics 18(2005)60–65.

[6]M.Wolfart,F.Lehmann,S.Wolfart,M.Kern,Durabilityoftheresinbond strengthtozirconiaceramicafterusingdifferentsurfaceconditioningmethods, DentalMaterials23(2007)45–50.

(8)

252 282 (2013) 245–252

[8]M.B.Blatz,G.Chiche,S.Holst,A.Sadan,Influenceofsurfacetreatmentand simulatedagingonbondstrengthsoflutingagentstozirconia,Quintessence Int.38(2007)745–753.

[9]A.DellaBona,T.A.Donassollo,F.F.Demarco,A.A.Barrett,J.J.MecholskyJr., Char-acterizationandsurfacetreatmenteffectsontopographyofaglass-infiltrated alumina/zirconia-reinforcedceramic,DentalMaterials23(2007)769–775. [10]C.Y.K.Lung,J.P.Matinlinna,Aspectsofsilanecouplingagentsandsurface

con-ditioningindentistry:anoverview,DentalMaterials28(2012)467–477. [11]M.CattaniLorente,S.S.Scherrer,J.Richard,R.Demellayer,M.Amez-Droz,H.W.

Wiskott,SurfaceroughnessandEDScharacterizationofaY-TZPdentalceramic treatedwiththeCoJetTMSand,DentalMaterials26(2010)1035–1042. [12]T.Kosmac,C.Oblak,P.Jevnikar,N.Funduk,L.Marion,Strengthandreliabilityof

surfacetreatedY-TZPdentalceramics,JournalofBiomedialMaterialsResearch B:AppliedBiomaterials53(2000)304–313.

[13]Y.Zhang,B.R.Lawn,K.A.Malament,V.P.Tompson,E.D.Rekow,Damage accu-mulationandfatiguelifeofparticle-abradedceramics,InternationalJournalof Prosthodontics19(2006)442–448.

[14]S.Karakoca,H.Yilmaz,Influenceofsurfacetreatmentsonsurfaceroughness, phasetransformation,andbiaxialflexuralstrengthofY-TZPceramics,Journal ofBiomedialMaterialsResearchB:AppliedBiomaterials91(2009)930–937. [15]B.Ohlmann,P.Rammelsberg,M.Schmitter,S.Schwarz,O.Gabbert,All-ceramic

inlay-retainedfixedpartialdentures:preliminaryresultsfromaclinicalstudy, JournalofDentistry36(2008)692–696.

[16]M.N.Aboushelib,J.P.Matinlinna,Z.Salameh,H.Ounsi,Innovationsinbonding tozirconia-basedmaterials:PartI,DentalMaterials24(2008)1268–1272. [17]P.Ntala,X.Chen,J.Niggli,M.Cattell,Developmentandtestingofmulti-phase

glazesforadhesivebondingtozirconiasubstrates,JournalofDentistry38 (2010)773–781.

[18]P.Jevnikar,K.Krnel,A.Kocjan,N.Funduk,T.Kosmac,Theeffectof nano-structuredaluminacoatingonresin-bondstrengthtozirconiaceramics,Dental Materials26(2010)688–696.

[19]J.P.Matinlinna,T.Heikkinen,M.Özcan,L.V.Lassila,P.K.Vallittu,Evaluationof resinadhesiontozirconiaceramicusingsomeorganosilanes,DentalMaterials 22(2006)824–831.

[20]M.N.Aboushelib,H.Mirmohamadi,J.P.Matinlinna,E.Kukk,H.F.Ounsi,Z. Salameh,Innovationsinbondingtozirconia-basedmaterials.PartII:focusing onchemicalinteractions,DentalMaterials25(2009)989–993.

[21]U.Lohbauer,M.Zipperle,K.Rischka,A.Petschelt,F.A.Müller,Hydroxylation ofdentalzirconiasurfaces:characterizationandbondingpotential,Journalof BiomedialMaterialsResearchB:AppliedBiomaterials87(2008)461–467. [22]C.Y.K.Lung,E.Kukk,T.Hägerth,J.P.Matinlinna,Surfacemodificationof

silica-coatedzirconiabychemicaltreatments,AppliedSurfaceScience257(2010) 1228–1235.

[23]T.Derand,M.Molin,K.Kvam,Bondstrengthofcompositelutingcementto zirconiaceramicsurfaces,DentalMaterials21(2005)1158–1162.

[24]J.R.Piascik,S.D.Wolter,B.R.Stoner,Developmentofanovelsurface modifica-tionforimprovedbondingtozirconia,DentalMaterials27(2011)e99–e105. [25]J.R.C.Queiroz,D.A.Duarte,R.O.A.Souza,S.F.Fissmer,M.Massi,M.A.Bottino,

DepositionofSiOx thinfilmsbyreactivemagnetron sputtering:influence

ofplasmaparametersontheadhesionpropertiesbetweenY-TZPandresin

cementforapplicationindentalprosthesis,MaterialsResearch14(2011) 212–216.

[26]J.R.C.Queiroz,M.Massi,L.NogueiraJr.,A.S.S.Sobrinho,M.A.Bottino,M.Özcan, Silica-basednano-coatingonzirconiasurfacesusingreactivemagnetron sput-tering:effectonchemicaladhesionofresincements,JournalofAdhesive Dentistry15(2013)151–159.

[27]N.R.Silva,P.G.Coelho,G.B.Valverde,K.Becker,R.Ihrke,A.Quade,V.P. Thomp-son,SurfacecharacterizationofTiandY-TZPfollowingnon-thermalplasma exposure,JournalofBiomedialMaterialsResearchB:AppliedBiomaterials99 (2011)199–206.

[28]A.N.Cavalcanti,R.M.Foxton,T.F.Watson,M.T.Oliveira,M.Giannini,G.M. Marchi,Bondstrengthofresincementstoazirconiaceramicwithdifferent surfacetreatments,OperativeDentistry34(2009)280–287.

[29]J.R.C.Queiroz,P.Benetti,M.Özcan,L.F.C.Oliveira,A.DellaBona,F.E.Takahashi, M.A.Bottino,SurfacecharacterizationoffeldspathicceramicusingATR FT-IRandellipsometryaftervarioussilanizationprotocols,DentalMaterials28 (2012)189–196.

[30]D.M.Mattox,Adhesionandde-adhesion,in:HandbookofPhysicalVapor Depo-sition(PVD)Process,Elsevier,Oxford,2010.

[31]E.D. vanHattum,A.Palmero, W.M.Arnoldbik, F.H.P.M.Habraken, Exper-imental characterization of thedepositionof siliconsuboxide filmsin a radiofrequencymagnetronreactivesputteringsystem,SurfaceandCoatings Technology188–189(2004)399–403.

[32]J.C.Berg,Semi-empiricalstrategiesforpredictingadhesion,in:M.Chaudhury, A.V.Pocius(Eds.),AdhesionScienceandEngineering2–SurfacesChemistry andApplications,Elsevier,Amsterdam,2002,pp.1–73.

[33]F.P.Nothdurft,P.J.Motter,P.R.Pospiech,Effectofsurfacetreatmentontheinitial bondstrengthofdifferentlutingcementstozirconiumoxideceramic,Clinical OralInvestigations13(2009)229–235.

[34]J.P.Matinlinna,L.V.J.Lassiva,M.Özcan,A.Yli-Urpo,P.K.Vallittu,Anintroduction tosilanesandtheirsclinicalapplicationsindentistry,InternationalJournalof Prosthodontics17(2004)155–164.

[35]C.Monaco,P.Cardelli,R.Scotti,L.F.Valandro,Pilotevaluationoffour experi-mentalconditioningtreatmentstoimprovethebondstrengthbetweenresin cementandy-tzpceramic,JournalofProsthodontics20(2011)97–100. [36]M.Guazzato,L.Quach,M.Albakry,M.V.Swain,InfluenceofSurfaceandheat

treatmentsontheflexuralstrengthofY-TZPdentalceramic,Journalof Den-tistry33(2005)9–18.

[37]M.Özcan,R.M.Melo,R.O.Souza,J.P.Machado,F.L.Valandro,M.A.Botttino, Effectofair-particleabrasionprotocolsonthebiaxialflexuralstrength,surface characteristicsandphasetransformationofzirconiaaftercyclicloading,Journal oftheMechanicalBehaviorofBiomedicalMaterials29(2013)19–28. [38]A.Christensen,E.A.Carter,First-principlesstudyofthesurfacezirconia,

Phys-icalReviewB58(1998)8050–8064.

[39]R.L.Smith,C.Villanueva,J.K.Rothrock,C.E.Garcia-Godoy,B.R.Stoner,J.R. Pias-cik,J.Y.Thompson,Long-termmicrotensilebondstrengthofsurfacemodified zirconia,DentalMaterials27(2011)779–785.

Referências

Documentos relacionados

Carbon thin films deposited by the magnetron sputtering technique were evaluated by Raman spectroscopy to study the influence on their crystallinity caused by different parameters

Desta forma, diante da importância do tema para a saúde pública, delineou-se como objetivos do es- tudo identificar, entre pessoas com hipertensão arterial, os

The deposition of silver via ion sputtering on the surface of the epoxy resin DGEBA leads to the formation of silver clusters on its surface which coalesce into polycrystalline

In this work was studied the bond strength between Y-TZP substrates and resin cement through deposition of SiO x thin films between these two materials by reactive

Zirconium silicon nitride (ZrSiN) thin ilms were deposited by reactive magnetron sputtering in order to verify the silicon inluence on coating morphology and mechanical

The effect of experimental parameters on the deposition rate and the coatings performance, including corrosion resistance, interfacial adhesion strength and hardness,

Molybdenum thin films with adequate properties to be used as electrical back contact of solar cells based on CIGS were grown using a DC magnetron sputtering system with an

Influence of Process Parameters on the Growth of Pure-Phase Anatase and Rutile TiO2 Thin Films Deposited by Low Temperature Reactive Magnetron