• Nenhum resultado encontrado

SIMULATION OF THE stress-strain state of excavation BOUNDARIES in fractured massifs

N/A
N/A
Protected

Academic year: 2017

Share "SIMULATION OF THE stress-strain state of excavation BOUNDARIES in fractured massifs"

Copied!
8
0
0

Texto

(1)

624.131

. .

, . .

, . .

.

. . .

И

И

-

И

И

Ы

И

ЩИ

Ы

Ы

И

Р я

-я я - я я

-я я .

Ключевыеслова: , я - я ,

-, я , , К , ,

я, - я .

А

,

.

--

«

»

,

.

,

,

-.

--

(

. 1—3).

(

,

.),

[1—3].

. 1.

. 2.

(2)

,

,

-.

,

. . [4].

,

-,

,

-,

.

,

,

[3].

Э

,

--

, . .

(

δ

,

h

.)

[5, 6].

,

-,

-.

-

-.

. .

[1, 2],

[3, 5—7]. [3]

,

.

-,

,

.

[12],

2·10

5

1,25·10

6

/

2

,

, . .

,

.

-.

[8—14]

-

.

-,

. . [3],

-

.

, . .

,

-,

.

-,

,

,

-.

,

,

,

.

-

.

,

x

y

,

11 12 13 44

12 11 13 44

13 13 33 11 12

,

,

,

,

,

2

,

x x y z yz yz

y x y z xz xz

z x y z xy xy

a

a

a

a

a

a

a

a

a

a

a

a

a

 

 

 

 



 

   

 

 

 

 

 

 

(3)

ij

a

.

a

ij

--

.

a

ij

:

11 1 12 1 1 44 2

1 33 2 13 2 2 66 11 12

1

1 /

;

/

;

1 /

;

2(1

)

1 /

;

/

;

2

,

E

E

G

E

E

a

a

E

 

 

 

(2)

1

,

2

,

2

,

1

,

2

E E G

 

,

.

,

a

ij

,

2 1

1

1 2 1

2 1

1 2 2

2

2 2 2

2(1

)

1

,

,

1

,

,

1

(

)

,

.

x x y z xy xy

yz

y y x z yz

xz

z x y z xz

E

E

E

E

E

G

E

E

G

 

 

    

 

 

 

    

 

  

   

 



(3)

,

xy

(

.

. 1).

-:

1

x

y

;

2

z

;

G

2

xz

yz

;

1

xy

;

2

,

x

y

z

;

z

x

y

.

y

(

.

. 1),

-,

,

:

11 12 13 15 44

12 22 23 25 55

13 23 33 35 66

,

,

,

,

,

.

x x y z xz yz yz

y x y z xz xz xz

z x y z xz xy xy

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4)

,

(4):

4 4 2 2

11

 

11

cos

 

33

sin

 

(

44

2

13

) sin

cos

;

4 4 2 2

33 11

sin

33

cos

(

44

2

13

) sin

cos

;

 

 

 

22 11

;

 

2 2

12

 

13

sin

 

a

12

cos

;

2 2 23 13

cos

12

sin

;

 

 

2 2 13

 

(

a

11

a

33

2

a

13

a

44

) sin

cos

 

a

13

;

2 2

44

a

44

cos

2(

11 12

) sin

;

 

 

(5)

2

55

(

a

11

a

33

2

a

13

a

44

) sin 2

a

44

;

 

 

2 2

66 44

sin

2(

11

a

12

) cos

;

 

 

2 2

15 33 11 44 13

1

2

sin

cos

2

cos 2

sin 2 ;

2

 

 

 

2 2

35 33 11 44 13

1

2

cos

sin

2

cos 2

sin 2 ;

2

(4)

25

(

13 12

) sin 2 .

 

[3]:

1 4 1

;

1

(1 sin

)

k

i

E

E

 

1 II 4 1

;

1

(1 cos

)

k i i

E

E

 

1 ,II 2 1 1

;

2 1

cos

k

i i

E

G

  

1 II 2 1 1

;

2 1

sin

k i i

E

G

  

2 2 ,II 1 1

sin

cos

,

k

i i i

  

(6)

II

,

E

E

,

-;

i

,

;

i

-i

-

,

/ ,

i i

h

i

   

(7)

i

;

h

i

(

);

i

,

i

-

;

4

3 10

  

,

;

i

;

G



;

G

 ,

,

;

 ,

,

.

-,

-,

.

[10]

.

Э

-

[15]

,

AX

 

B

(8)

A

,

;



X

;

B



.

. 1 2

-h

.

. 1.

,

-:

 

1

0,2,

 

0,03

,

 

0 ,

 5 2 1

6 10

 

/

,

x,

1,

-4

3 10 ,

  

h

50

,

R

200

t

, /

2 3

10 ,

n

u

8

NE

1,616

4, 267

0,9342

0,3726

16

NE

1,599

4,163 0,9748

0, 4456

32

NE

1,645

4,080 0,9979

0, 4765

64

NE

1,682

4,058 1,011

0, 4928

100

(5)

. 2.

,

:

 

1

0,2,

 

0,03

,

  

/ 6

30 ,

 5 2

1

6 10

 

/

,

x,

1,

-4

3 10 ,

  

h

0,5 ,

R

200

t

, /

2 3

10 ,

n

u

8

NE

1,186

3,373 0,1284

0, 4795

16

NE

1,163

3, 235 0,1330

0,5654

32

NE

1,185

3, 203 0,1358

0,6060

64

NE

1,07

3, 206 1,374

0,6270

100

NE

1, 217

3, 211 1,380

0,6348

. 3

(

.

. 3)

:

1

0,2,

 

R

200

,

 

0, 03

,

5 2

1

6 10

 

/

,

 

0 ,

 -4

3 10 ,

  

x,

1.

. 3.

h

,

,

-h

,

c

t

, /

2 3

10 ,

n

u

50

1,616

4, 267

0,9342

0,372

100

1,334

3,785

0,8003

0, 2955

150

1, 224

3,596

0,7476

0, 2654

200

1,163

3, 494

0,7190

0, 2491

250

1,126

3, 430

0,701

0, 2389

300

1,1

3,385

0,6885

0, 2319

3000

0,9727

3,169

0,6278

0,1977

. 3

,

h

.

. 4

-

.

,

-.

. 4.

,

-,

,

:

1

0,2,

 

h

const

40

,

0 ,

 

R

200

,

5 2 1

6 10

 

/

,

-4

3 10 ,

  

x,

1

,

t

, /

2 3

10 ,

n

u

0,05

2,0875

5,074 1,157

0,5022

0,04

1,921

4,790 1,079

0, 4565

0,03

1,738

4, 475 0,9918

0, 4060

0,2

1,529

4,117 0,8927

0,3486

0,01

1, 280

3,643 0,7746

0, 2808

0,005

1,132

3, 441 0,7040

0, 2406

(6)

ы

ы

.

1.

,

.

2.

-.

3.

, . .

 

0

h

 

,

-,

.

4.

-.

ч

1.

. .

А

,

.

.- . :

-

, 1947. 355 .

2.

.

.

.

.- . :

--

, 1950. 299 .

3.

.

.

.

. :

,

1975. 223 .

4.

. .,

.

.

-. -. :

Э

, 1967. 392 .

5.

. .

. . :

, 1988. 271 .

6.

. .,

. .

.

. :

-, 1986. 272 .

7.

. .,

. .

. . :

, 1975. 271 .

8.

. .

//

.

-

. .

.

1967.

. 68. . 62—70.

9.

. .

//

.

. :

-, 1961. . 143—156.

10.

.,

.

.

. :

, 1987. 328 .

11.

Ю

. .,

. .,

ы

. .

//

,

. 1966.

. 16.

329. . 94—106.

12.

Pancini M

. Result of the First Series of Tests Performed on a Model Reproducing the Actual

Structure of the Abutment Rock of the Vaiont Dam. Geologie und Bauwesen, H. 3, 4, 1962, p. 105—119.

13.

Tokano M.

Rupture Studies on Arch Dam Foundation by Means of Models. Geologie und

Bauwesen, H. 3, 4, 1961, p. 99—121.

14.

Walsh J.B.

The Effect of Cracks on the Uniaxial Elastic Compression of Rocks. Journal of

Geophysical Research. V. 70,

. 2, 1965, p. 399—411.

15.

. .

. . :

-

А

, 2000. 283 .

16.

.

.

. . :

, 1971. 255 .

2011 .

:

ч

,

,

,

,

-,

я

,

, .

,

+992 919355734, tiees@mail.ru;

ч

,

,

,

ч

-. -.

,

, .

,

(7)

ч

,

,

я

,

, .

-, +992 918720844-, orif-83@mail.ru.

:

. .,

Х

. .,

Х

. .

--

//

. 2012.

4. . 108—115.

D.N. Nizomov, A.A. Hodzhiboev, O.A. Hodzhiboev

SIMULATION OF THE STRESS-STRAIN STATE OF EXCAVATION BOUNDARIES IN FRACTURED MASSIFS

The authors have applied the method of boundary equations to resolve the problem of numer-ical calculation of the stress-strain state of arbitrary boundaries of excavation works in fractures massifs, if subjected to various impacts.

Benchmarking of the results have proven that the proposed model based on the method of boundary integral equations may be used to identify the concentrated stresses that the loose exca-vation boundaries in fractured massifs are exposed to.

The authors have developed an algorithm and a calculation pattern through the application of the method of boundary integral equations to calculate the values of stresses concentrated around arbitrary shape openings under impacts of various origins.

Any limiting process, namely, if  0 or h , and any results are in line with the isotropic medium.

The proposed algorithm and calculation pattern may be used to research the concentrated stresses alongside the boundaries of hydrotechnical engineering facilities.

Key words: massif, stress-strain state, fracturing, crack opening width, method of boundary equations, Kirsch problem, excavation, anisotropy, transversely isotropic medium.

References

1. Lehnickiy S.G. Anizotropnye plastinki [Anisotropic Plates]. Moscow – Leningrad, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury [State Publishing House of Theoretical Technical Literature]. 1947, 355 p.

2. Lehnickiy S.G. Teoriya uprugosti anizotropnogo tela [Theory of Elasticity of Anisotropic Bodies]. Moscow – Leningrad, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury [State Publishing House of Theoretical Technical Literature]. 1950, 299 p.

3. Ruppeneyt K.V. Deformiruemost' massivov treschinovatykh gornykh porod [Deformability of Fractured Rock Massifs]. Moscow, Nedra Publ., 1975, 223 p.

4. Roza S.A., Zelenskiy B.D. Issledovanie mehanicheskikh svoystv skal'nykh osnovaniy gidrotehnicheskikh sooruzheniy [Research of Mechanical Properties of Bedrock Foundations of Hydrotechnical Engineering Facilities]. Moscow, Jenergiya Publ., 1967. 392 p.

5. Baklashov I.V. Deformirovanie i razrushenie porodnykh massivov [Deformation and Collapse of Rock Masses]. Moscow, Nedra Publ., 1988, 271 p.

6. Baklashov I.V., Kartoziya B.A. Mehanicheskie processy v porodnykh massivakh [Mechanical Processes in Rock Masses]. Moscow, Nedra Publ., 1986, 272 p.

7. Baklashov I.V., Kartoziya B.A. Mekhanika gornykh porod [Rock Mechanics]. Moscow, Nedra Publ., 1975, 271 p.

8. Zelenskiy B.D. O metode ucheta vliyaniya treschinovatosti na deformacionnye svoystva skal'nykh massivov [About the Method of Analysis of the Impact of Fractures onto Deformation Properties of the Rock Massif]. Works of Leningrad Institute of Engineering and Economics. 1967, Issue No. 68, pp. 62—70.

9. Zelenskiy B.D. Osnovnye napravleniya issledovaniy informaciy skal'nykh porod kak osnovaniy betonnykh plotin [Principal Lines of Information Research of Rock Massifs as Bedrocks of Concrete Dams]. Problemy inzhenernoy geologii v stroitel'stve [Problems of Engineering Geology in Construction]. Moscow, Gostrojizdat Publ., 1961, pp. 143—156.

10. Krauch S., Starfild A. Metody granichnykh elementov v mekhanike tverdogo tela [Method of Finite Elements in Mechanics of Rigid Body]. Moscow, Mir Publ., 1987, 328 p.

(8)

12. Pancini M. Result of the First Series of Tests Performed on a Model Reproducing the Actual Structure of the Abutment Rock of the Vaiont Dam. Geologie und Bauwesen Publ., H. 3, 4, 1962, pp. 105—119.

13. Tokano M. Rupture Studies on Arch Dam Foundation by Means of Models. Geologie und Bauwesen Publ., H. 3, 4, 1961, pp. 99—121.

14. Walsh J.B. The Effect of Cracks on the Uniaxial Elastic Compression of Rocks. Journal of Geophysical Research. Issue no. 70, №. 2, 1965, pp. 399—411.

15. Nizomov Dzh.N. Metod granichnykh uravneniy v reshenii staticheskikh i dinamicheskikh zadach stroitel'noy mekhaniki [Method of Boundary Equations Used to Solve Static and Dynamic Problems of Structural Mechanics]. Moscow, ASV Publ., 2000, 283 p.

16. Myuller L. Inzhenernaya geologiya. Mekhanika skal'nykh massivov [Engineering Geology. Mechanics of Rock Massifs]. Moscow, Mir Publ., 1971, 255 p.

A b o u t t h e a u t h o r s : Nizomov Dzhahongir Nizomovich, Institute of Geology, Antiseismic Con-struction and Seismology, Academy of Sciences of the Republic of Tajikistan; Dushanbe, Republic of Tajikistan; tiees@mail.ru; 8 (992) 919-35-57-34;

Hodzhiboev Abduaziz Abdusattorovich, Tajik Technical University named after academic M.S. Osimi, 10 Akademikov Radzhabovyh St., 734042, Dushanbe, Republic of Tajikistan; hojiboev@mail.ru; 8 (992) 918-89-35-14;

Hodzhiboev Orifdzhon Abduazizovich, Institute of Geology, Antiseismic Construction and Seismology, Academy of Sciences of the Republic of Tajikistan; Dushanbe, Republic of Tajikistan; orif-83@mail.ru; 8 (992) 918-72-08-44.

Referências

Documentos relacionados

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

não existe emissão esp Dntânea. De acordo com essa teoria, átomos excita- dos no vácuo não irradiam. Isso nos leva à idéia de que emissão espontânea está ligada à