• Nenhum resultado encontrado

Mathematical modeling of flutter of viscoelastic plates and cylindrical panels

N/A
N/A
Protected

Academic year: 2017

Share "Mathematical modeling of flutter of viscoelastic plates and cylindrical panels"

Copied!
11
0
0

Texto

(1)

Ս Ի Ի ՈՒԹ ՈՒ Ի Ի Ի Ի Ղ Ի

ա ա 59, 11, 2006

539.3

. .

. . Խ ա ա

ա ա ա ա ա ա ա ա ա ա ա ա ա

ա ա ք ա ա ա ա ա ա ա ա

ա : ա ա ք ա ա ա ա ա ա ա

ա ա ա ա ա ա ա ք : ա ա ա

-ա ա ա ա ա ա ա : ա ա ա ա

ա ա ա ա ա ա ա ք :

B. A. Khudayarov

Mathematical modeling of flutter of viscoelastic plates and cylindrical panels

The flutter of viscoelastic plates and cylindrical panels streamlined by a gas current are investigated. The basic direction of the present work consists in taking into account of viscoelastic material properties at supersonic speeds. An algorithm of the numerical solution for the problem has been worked out on the basic of the method. The results of the flutter critical speed calculations have been given.

,

.

.

- .

Вв .

.

Э .

, ,

.

.

,

[1] ,

.

[2].

[3-7] .

,

.

-, У

. У

-

У

(2)

, ,

, [8, 10].

,

, .

1. П а вка а а ы я

,

, - ,

[9, 10] .

.

,

-; V

.

[11, 12],

-- .

У

u, v w

[10]:

2 2 2 2 2

1

2 2 2

2 2 2 2 2

2

2 2 2

1

1

1

(1

)

( )

0

2

2

1

1

1

(1

)

( )

0

2

2

u

u

v

u

R

L w

x y

E

x

y

t

v

v

u

v

R

L w

x y

E

y

x

t

− µ ∂

+ µ ∂

− µ ∂

+

+

+

− ρ

=

∂ ∂

− µ ∂

+ µ ∂

− µ ∂

+

+

+

− ρ

=

∂ ∂

2 4

3 2

(1

)

( , , )

w

D

R

w

L

u v w

h

q

t

∗ ∗

+

+ ρ

=

(1)

(

)

2 3

1

12

µ

=

Eh

D

– ;

ρ

– ;

h–

; – ; μ – ;

(

)

2 2 2

1 2 2

1

1

( )

2

2

x y

w

w

w

w

w

w

w

L w

k

k

x

x

x

y

x y

x

y

∂ ∂

+ µ ∂

− µ ∂ ∂

= −

+ µ

+

+

+

∂ ∂

(

)

2 2 2

2 2 2

1 1

( )

2 2

x y

w w w w w w w

L w k k

y y y x x y y x

∂ ∂ ∂ + µ ∂ ∂ − µ ∂ ∂

= − µ + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

(

)

(

)

(

)

(

)

3 2

2 2

2 2

( , , )

1

1

2

2

2

x y x y

x y y x

x y x y

Eh

u

v

L u v w

R

k

k

k

k

x

y

k

k

w

k

k

w

k

k

k k

w

x

y

= −

+ µ

− µ +

+

− µ ⎩

+ µ

+ µ ⎛

+

+

+ µ

(3)

(

)

(

)

(

)

(

)

(

)

(

)

2

2

1

1

1

1

1

2

1

1

1

2

x y

x y

Eh

w

u

v

R

k

k

w

x

x

x

y

w

u

v

Eh

w

u

R

R

y

y

x

y

y

x

v

w

u

v

k

k

w

R

y

x

y

x

∗ ∗

∂ ∂

+ µ

+ µ

+

− µ

− µ ∂

∂ ∂

+

+

µ

+

− µ

− µ ∂

+

− µ +

+

+

⎠⎭

2 2

1

...

w

w

w

q

B

BV

B V

t

x

x

= −

– ,

;

(

)

,

4

1

,

1 2

∞ ∞

=

+

=

V

p

B

V

p

B

χ

χ

χ

χ

;

p

,

V

.

(1)

. :

=0, = w=0; v=0; Nx=0; Mx=0; y=0, y=b w=0; u=0; Ny=0; My=0.

,

:

u(x,y,0)=ϕ 1(x,y), u x y( , , 0 ) 1( , )x y

= ψ (2)

v(x,y,0)=ϕ 2(x,y),

v x y

( , , 0)

2

( , )

x y

= ψ

(3)

w(x,y,0)=ϕ 3(x,y),

w x y

( , , 0)

1

( , )

x y

= ψ

(4)

u(x,y,t), v(x,y,t), w(x,y,t)

ϕnm(x,y), ψnm(x,y), θnm(x,y),

:

1 1

1 1

1 1

( , , )

( , )

( , , )

( , )

( , , )

( , )

N M

nm nm

n m

N M

nm nm

n m

N L

nm nm

n m

u x y t

u

x y

v x y t

v

x y

w x y t

w

x y

= =

= =

= =

=

ϕ

=

ψ

=

θ

∑ ∑

∑ ∑

∑ ∑

(5)

u

nm

=u

nm

(t) v

nm

=v

nm

(t)

w

nm

=w

nm

(t)

– ;

ϕ

nm

(x,y),

(4)

(5) (1) - , unm(t), vnm(t), wnm(t) :

(

)

1 ln 1 ln 1 ln

1 1 1 1

1 ln 1 ln , 1 , 1

1

(1

*)

2

(

)

0

N M N M

nm

k m k m nm k m nm

n m n m

N M

x y k m kl k mir nm ir

n i m r

N

u

R

A

u

B

v

k

k C

w

D

w w

••

= = = =

= =

+ µ

− Ω −

+

+ µ

+

=

∑∑

∑∑

∑ ∑

(6)

2 ln 2 ln 2 ln

1 1 1 1

2 ln 2 ln , 1 , 1

1

(1

*)

2

(

)

0

N M N M

nm

k m k m nm k m nm

n m n m

N M

y x k m kl k mir nm ir

n i m r

N

v

R

A

u

B

v

k

k C

w

D

w w

••

= = = =

= =

+ µ

− Ω −

+

+ µ

+

=

∑∑

∑∑

∑ ∑

(7)

×

⎟⎟

+

+

+

⎛ +

+

+

∑ ∑

∑∑

∑∑

= = = = = = • • • = = N i n M r m nm ir nm M r m mir k N i n nm m k nm m k nm N n M m t k nm nm N n M m m k

w

w

w

P

w

C

v

B

u

A

R

w

M

w

N

1 , , 1 1 , ln 1 , ln 3 ln 3 1 1 ln 3 1 1 ln 3

2

1

*)

1

(

µ

λ

(

){

}

2

4 ln 4 ln 4 ln

1 ln

1 , 1 , 1

1

*

1

0

4

k mir ir k mir ir k mir ir

N N M

p k m nm kenmir nm ir

n n i m r

R

A

u

B

v

C

w

M

M

w

M

w w

= = =

× −

+

+ +

Ω +

χ +

λ

γ

+

Γ

=

∑ ∑

(8)

(

1 1 1 1

1 ln 2 ln

0 0 0 0

1 1 2

1 ln , ,

0 0 1 1

2 ln , 1

0 0

,

(1

)

2

,

,

k m nm l k m nm kl

k m nm xx nm yy kl

k m nm xy kl

N

dxdy

N

dxdy

A

dxdy

a

a

A

dxdy

b

h

=

ϕ ϕ

=

ψ ψ

λ

− µ

′′

=

ϕ

+

ϕ

ϕ

′′

=

λϕ

ψ

λ =

λ =

∫∫

∫∫

∫∫

∫∫

1 1 1 1

1 ln , 1 ln 1 1 ,

0 0 0 0

1 1

2

2 ln , ,

0 0 1 1

2 ln 1 1 , 2

0 0

,

1

2

,

1

k m nm xy kl k m nm x kl

k m nm xx nm yy kl

E

k m nm y kl

B

dxdy

C

dxdy

B

dxdy

M

C

dxdy

′′

=

λψ

ϕ

=

β λ θ

ϕ

− µ

′′

′′

=

ψ

+ λ ψ

ψ

=

β λ λθ

ψ

Ω =

− µ

∫∫

∫∫

∫∫

(5)

(

)

2

1 1 2

1 ln , , , , , ,

1 0 0 1 1

2

2 ln , , , , , ,

1 0 0

1

1

(1

)

2

2

1

1

2

2

k mir nm x ir xx nm x ir yy nm y ir xy kl

k mir nm y ir yy nm x ir xy nm y ir xx kl

D

dxdy

D

dxdy

′′

λ

− µ

′′

λ

+ µ

′′

=

θ

θ

+

θ

θ

+

θ

θ

ϕ

λ

λ

′′

+ µ

′′

− µ

′′

=

λ θ

θ

+

θ

θ

+

θ

θ

ψ

λ

∫∫

∫∫

(

)

(

)

(

)

1 1 1 1

3 ln 3 ln 1 1 ,

0 0 0 0

1 1 1 1

2 2 2

3 ln 1 , 3 ln

0 0 0 0

,

,

2

k m nm kl k m x y nm x kl

k m y x nm y kl k m x y x y

N

dxdy

A

k

k

dxdy

B

k

k

dxdy

C

k

k

k k

=

θ θ

= −

+ µ

λ β ϕ

θ

= −

+ µ

λ β ψ

θ

=

+

+ µ

×

∫∫

∫∫

∫∫

∫∫

{

,

}

2 2 2 4

1 1 2 , ,

1

ln 1 1 ln 1 2 ln

1

2

12

2

2

nm yyyy

IV IV IV

nm nm xxxx nm xxyy kl

x y y x

k mir k mir k mir

dxdy

k

k

k

k

P

K

K

×λ β θ +

θ

+ λ θ

+ λ θ

θ

λ

+ µ

+ µ

=

β ⋅

+

β λ

1 1 1 1

1 ln , , 2 ln , ,

0 0 0 0

,

k mir nm x ir x kl k mir nm y ir y kl

K

=

∫∫

θ

θ θ

dxdy

K

=

∫∫

θ

θ θ

dxdy

(

)

1 1

4 ln , , , , , , , ,

1 0 0

, , , , , ,

1

1

1

1

2

1

1

2

k mir nm xx ir x nm x ir xx nm y ir xy nm yy ir x

nm y ir xy nm xy ir y nm x ir yy kl

A

dxdy

− µ

′′

′′

′′

=

θ

ϕ

+ θ

ϕ

+

θ

ϕ

+ λµθ

ϕ

+

λ

λ

λ

− µ

′′

′′

′′

+λµθ

ϕ

+ λ − µ θ

ϕ

+ λ

θ

ϕ

θ

∫∫

(

1 1

4 ln , , , , , , , ,

1 0 0

2 '

, , , , , ,

1

1

2

1

(1

)

2

k mir nm xx ir y nm x ir xy nm y ir xx nm yy ir y

nm y ir yy nm xy ir x nm x ir xy kl

B

dxdy

− µ

′′

′′

′′

′′

=

µθ

ϕ

+ µθ

ψ

+

θ

ψ

+ λθ

ψ

+

λ

− µ

′′

′′

′′

+λ θ

⋅ ψ

+ − µ θ

ψ

+

θ

ψ

θ

∫∫

(

)

1 1

4 ln 1 , , ,

0 0

1 1

, , , ln ,

0 0 1 1

' ' ln , ,

0 0

,

x y

k mir nm xx ir nm x ir x y x

nm yy ir nm y ir y ke k m nm x kl

k mir nm x ir x kl

k

k

C

k

k

dxdy

dxdy

dxdy

+ µ

′′

= −β

θ

θ + θ

θ

+ λ

+ µ

×

λ

′′

× θ

θ + θ

θ

θ

γ

=

θ

θ

Γ

=

θ

θ θ

∫∫

∫∫

∫∫

,

,

( )

,

( )

( )

( )

( )

,

( )

1,

;

1 ,

onm

nm onm nm onm

onm nm onm onm

u

o

u

u o

u

v

o

v

v o

v

w

o

w

w o

w

n

N

m

M

• •

• • • •

=

=

=

=

=

=

=

=

(6)

2.

. . [13-15] .

.

, . . [8, 10].

. .

. (6)–(8).

. t=ti,, ti=ih, i=1,2,… (h=const)

unm = unm(t), vnm = vnm(t), wnm= wnm(t), :

1 ln 1 ln 0

1 1 1 1

1

1 ln

0 1 1 0

(

)

(

)

exp(

)

N M N M

onm

k m pnm k m nm p

n m n m

p N M j

j p j k m jnm s s j snm

j n m s

N

u

N

u

u

t

A

A t

t

A

u

B

t u

= = = =

= = = =

=

+

−Ω

−β

+

α

∑∑

∑∑

∑∑

1 ln

0

1 ln

0

1 ln

, 1 , 1 0

1

exp(

)

2

(

)

exp(

)

exp(

)

j

k m jnm s s j skl

s j

x y k m jnm s s j snm

s

j

N M

k mir jnm jir s s j snm j sir

n i m r s

A

B

v

B

t v

A

k

k

С

w

B

t w

A

D

w

w

B

t w

w

− =

− =

− −

= = =

+ µ

+

−β

α

+ µ

−β

+

α

⎦ ⎠

+

−β

α

⎠⎭

∑ ∑

(9)

1 2 ln 2 ln 0

1 1 1 1 0

2 ln

1 1 0

(

)

(

)

1

exp(

)

2

p

N M N M

onm

k m pnm k m nm p j p j

n m n m j

j

N M

k m jnm s s j snm

n m s

N

v

N

v

v

t

A t

t

A

A

u

B

t u

− •

= = = = =

= = =

=

+

− Ω

×

+ µ

×

−β

+

α

∑∑

∑∑

∑∑

2 ln

0

exp(

)

j

k m jnm s s j skl

s j

A

B

v

B

t v

=

+

−β

α

(7)

2 ln

, 1 , 1 0

exp(

)

j

N M

k mir jnm jir s s j snm j sir

n i m r s

A

D

w

w

B

t w

w

= = =

+

−β

α

⎠⎭

∑ ∑

(10)

(

)

⎢⎣

+

+

+

×

×

+

=

∑∑

∑∑

∑∑

∑∑

= = ∗ − = = = • = = = = N n jnm m k M m p j p p j jnm N n M m m k j p nm nm nm N n M m m k p pnm N n M m m k

w

M

M

t

t

w

N

M

A

t

w

M

w

w

N

M

A

w

N

1 ln 1 1 1

0 1 1

ln 3 0 0 0 1 1 ln 3 1 1 ln 3

1

1

γ

λ

χ

λ λ λ 2 * ln , 1 , 1

3 ln

1 1 0

3 ln

1 1 0

1

4

1

exp(

)

2

exp(

)

N M

k mir jnm jir n i m r

j

N M

k m jnm s s j snm

n m s

j

N M

k m jnm s s j snm

n m s

M

Г

w

w

A

A

u

B

t u

A

B

v

B

t v

= = − = = = − = = =

χ +

+

+

+ µ

+

−β

+

α

+Ω

−β

+

α

∑ ∑

∑∑

∑ ∑

3 ln

1 1 0

ln

, 1 , 1 0

exp(

)

exp(

)

j

N M

k m jnm s s j snm

n m s

j

N M

k mir jnm jir s s j snm j sir

n i m r s

A

C

w

B

t w

A

p

w

w

B

t w

w

− = = = − − = = =

+Ω

−β

α

−Ω

−β

α

∑ ∑

∑ ∑

4 ln

, 1 , 1 0

exp(

)

j

N M

jnm k mir jir s s j sir

n i m r s

A

w

A

u

B

t u

= = =

−Ω

−β

+

α

∑ ∑

4 ln 0 4 ln 0

exp(

)

exp(

)

j

k mir jir s s j sir

s

j

k mir jir s s j sir

s

A

B

v

B

t v

A

C

w

B

t w

− = − =

+

−β

+

α

+

−β

⎥ ⎬

α

⎦ ⎠⎭

(11) M l N k

p = 1,2,...; = 1, ; = 1,

Aj , Bs –

(8)

0

/ 2,

,

1,

1,

/ 2,

0

/ 2,

(

(

1) ) / 2,

;

((

1)

(

1) ) / 2

j i

j s

A

h

A

h

j

i

A

h

B

h

B

h

j

j

s

j B

h

s

s

α

α α α α α α

=

=

=

=

=

=

=

=

+

− −

«Delphi».

3.

, Vp,

, [16].

,

χ=1,4; V∞=3,4*104

/ ; µ=0,32; E=7*105 / 2; ∞= 1,014 / 2.

-

A α β λ λ1 β1 V

0 0,001

0,01 0,1

0,25 0,05 6 100 0,01 1528 1497 1386 871 0,1

0,1 0,3 0,5

0,05 6 100 0,01 575 918 1281

0,1 0,25 0,1

0,3 6 100 0,01

869 867 0,1 0,25 0,05

3,5 4 4,5 5,5

100 0,01 964 1251 1143 1658 0,1 0,25 0,05 6

50 75 100

0,01

1184 988 871 0,1 0,25 0,05 6 100

0,005 0,008 0,015

723 807 1324

(9)

,

.

. .

[17] . . [18].

(

. α = 0,1; 0,3 ,

(9-11), 575 918

59,6 %. ,

.

β V

. β=0,1 β=0,3.

, β

.

, (1

, λ β1,

V p , . .

.

, β

α ,

,

.

1. . ., . .

. - .: . , 1997. 272 .

2. . .

// . - 1956.

. . - B .6. - .733-755.

3. . ., . .

, // . . .

(10)

4. . ., . .

-, // .

. . . 1961. №5. . 96-99.

5. . .

// . . - . .

1961. . XIV. №5. . 21-30.

6. . ., . . ,

// . . 1.

, . - 1994. - №4. - . 40-44.

7. . ., . .

// . . 1994. . 58. . 3. . 167-171.

8. . ., X., .

,

// . 1987. . 51. №5. . 867-871.

9. . . .: . 1965. 200 .

10. .

: . . : 18.05.13. , 1991. 337 .

11. . . . .: ,

1972. 432 .

12. . . . .: , 1963. 880 .

13. . . . : .

1979. 304 .

14. . .

. : , 1966. 391 .

15. . . // .

. . . . 1996. – .102. .4-18.

16. . .

// . . . 2004. .57. №1. . 59-62.

17. . . //

. 1974. №4. . 95-100.

18. . . - // .

(11)

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

O conhecimento dos processos que regulam a estabilização da matéria orgânica do solo (MOS) é necessário para predizer as alterações nos estoques de C com

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,