• Nenhum resultado encontrado

Granule cell dispersion is associated with memory impairment in right mesial temporal lobe epilepsy

N/A
N/A
Protected

Academic year: 2017

Share "Granule cell dispersion is associated with memory impairment in right mesial temporal lobe epilepsy"

Copied!
6
0
0

Texto

(1)

Granule

cell

dispersion

is

associated

with

memory

impairment

in

right

mesial

temporal

lobe

epilepsy

Rafael

Scarpa

da

Costa

Neves

a,

*

,

Ivanda

de

Souza

Silva

Tudesco

a,b

,

Anaclara

Prada

Jardim

a

,

Luı´s

Ota´vio

Sales

Ferreira

Caboclo

a

,

Carmen

Lancellotti

c,d

,

Taı´ssa

Ferrari-Marinho

a

,

Ana

Paula

Hamad

a

,

Murilo

Marinho

a

,

Ricardo

Silva

Centeno

a

,

Esper

Abra˜o

Cavalheiro

e

,

Carla

Alessandra

Scorza

e

,

Elza

Ma´rcia

Targas

Yacubian

a

aDepartmentofNeurologyandNeurosurgery,UniversidadeFederaldeSa˜oPaulo,EscolaPaulistadeMedicina,Sa˜oPauloSP,Brazil bDepartmentofPsychobiologyUniversidadeFederaldeSa˜oPaulo,EscolaPaulistadeMedicina,Sa˜oPauloSP,Brazil

cDepartmentofPathology,SantaCasadeSa˜oPaulo,Sa˜oPauloSP,Brazil

dDepartmentofPathology,Associac¸a˜oFundodeIncentivoa` Pesquisa(AFIP),MedicalDiagnosis,Sa˜oPauloSP,Brazil

eDepartmentofNeurologyandNeuroscience,ExperimentalNeurology,UniversidadeFederaldeSa˜oPaulo,EscolaPaulistadeMedicina,Sa˜oPauloSP,Brazil

1. Introduction

Mesialtemporalsclerosis(MTS)isthemostcommontypeof lesion abnormality observed in mesial temporal lobe epilepsy (MTLE).1Otherthan segmentalneuronallosswithin the

hippo-campal subfields, different patterns of pathology are often described in the dentate gyrus (DG), including granule cell dispersion (GCD), bilaminar DG, granule cell loss, and ectopic granulecellsinthemolecularlayeroftheDG.2

GCDisacommonphenomenonthatoccursinapproximately 50%ofallMTSspecimens.3Thecriteriafordeterminingdispersion

varyfromsubjectivequalitativeimpressionsofthewidthofthe molecular layer toobjective quantitative measuresof width.4,5

Little is known about the pathogenic mechanisms and clinical significance of GCD. Seizures that occur earlyin the maturing hippocampus6,7 and developmental abnormalities have been

hypothesized to cause GCD.8 Previous studies have failed to correlate GCD with seizure outcome following surgery for MTLE.2,9,10 The associationbetween GCD and clinicaldata also

remainscontroversial.6,7,11

Thehippocampusplaysacrucialroleinlearningandmemory. Explicit episodic memory is strongly associated with mesial temporalstructures12,13andisthemoststrikingcognitivedeficit

inMTLEpatients.14,15Verbalmemorydeficitsaremorecommonly

associated with the left mesial epileptogenic zone, whereas nonverbalmemoryimpairmentsaremorefrequentlyassociated with non-dominant MTLE.16,17 Seizure frequency, duration of

epilepsy, the use of antiepileptic drugs (AEDs), and interictal epileptiform discharges have been implicated in memory dysfunction observed in MTLE patients.18–20 Histopathological investigation of surgical specimens may help to understand memoryimpairmentinthesepatients.2,21

ARTICLE INFO

Articlehistory: Received15May2012

Receivedinrevisedform13July2012 Accepted14July2012

Keywords:

Mesialtemporallobeepilepsy Mesialtemporalsclerosis Dentategyrus

Granulecelldispersion Memory

ABSTRACT

Purpose:We analyzedthe associationof granulecell dispersion(GCD)withmemoryperformance,

clinicaldataandsurgicaloutcomeinaseriesofpatientswithmesialtemporallobeepilepsy(MTLE)and mesialtemporalsclerosis(MTS).

Method: Hippocampalspecimensfrom54patientswithMTLE(27patientswithrightMTLEand27with

leftMTLE)andunilateralMTS,whowereseparatedintoGCDandno-GCDgroupsandthirteencontrols werestudied.Quantitativeneuropathologicalevaluationwasperformedusinghippocampalsections stainedwithNeuN.Patients’ neuropsychological measures,clinicaldata,type ofMTSandsurgical outcomewerereviewed.

Results:GCDoccurredin28(51.9%)patients.NocorrelationbetweenGCDandMTSpattern,clinicaldata

orsurgicaloutcomewasfound.ThepresenceofGCDwascorrelatedwithworsevisuospatialmemory performanceinrightMTLE,butnotwithmemoryperformanceinleftMTLE.

Conclusion:GCDmayberelatedtomemoryimpairmentinrightMTLE-MTSpatients.However,therole

ofGCDinmemoryfunctionisnotpreciselydefined.

ß2012BritishEpilepsyAssociation.PublishedbyElsevierLtd.Allrightsreserved.

*Correspondingauthorat:UnidadedePesquisaeTratamentodasEpilepsias,Rua Napolea˜odeBarros737,138andar,04024-002Sa˜oPauloSP,Brazil.

Tel.:+551155764136.

E-mailaddress:rafaelscarpa@uol.com.br(R.S.d.C.Neves).

ContentslistsavailableatSciVerseScienceDirect

Seizure

j o urn a lhom e pa g e :ww w . e l se v i e r. c om / l oca t e / y se i z

(2)

Humanstudiesandanimalmodelshavecorrelatedthedegree ofcelllossinthehippocampusandDGwithmemorydecline.22,23

Neurogenesis of DG cells may play a role in behavior and the acquisitionofnewmemoriesinrodents.24,25Similarmechanisms

arelikelytooccurinhumans.21

The influence of GCD in the formation of memory remains unclear.Toaddressthisissue,westudiedtheoccurrenceofGCDin thehippocampiofrefractoryMTLE-MTSpatientsandinvestigated the relationship between this abnormality and memory perfor-mance,clinicalcharacteristics,MTSpatterns,andsurgicaloutcome.

2. Materialsandmethods

2.1. Subjects

Fifty-four patients (27 men), who were identified as right-handed using the Handedness Inventory26, with medically

refractoryMTLE and unilateral MTS (27 rightMTS and 27 left MTS)visualizedviaMRIwereincludedinthepresentstudy.These patientsarepartofapreviouslypublishedseriesofstudies.27The

meanagewas38.510.48yearsfortherightMTLEpatientgroup and36.710.84yearsfortheleftMTLEgroup.RightandleftMTLE patientswere dividedinto GCDandno-GCD groups.Diagnosisof MTLEwasestablishedaccordingtopreviouslyreportedclinicaland electrographiccharacteristics.28Patientsweredefinedasmedically

refractoryifseizurewasnotcontrolledusingatleasttwofirst-line AEDs,inmonoorpolytherapyuptotoxiclevels.

This retrospective study is based on review of previously collected tissue samples. This study was approved by the institutionalEthicsCommittee,andallparticipantsgaveinformed consent.

Clinical features were reviewed using a specific protocol developedforthisstudythatfocused onsixvariables. Presence and age of the initialprecipitant insult (IPI) were assessed as definedbyMathernetal.29Thepatientageatonsetofhabitual

seizures, which was defined as the age at which habitual and recurrentseizuresdeveloped,wasrecorded.Similarly,theduration ofepilepsy,whichwasdefinedastheintervalbetweentheageat onsetofhabitualseizuresandthetimeofsurgery,wasnoted.We also examined the average frequency of preoperative complex partial seizures (CPS) per month, as well as the approximate numberof generalized tonic–clonicseizures (GTCS)throughout life,whichwascategorizedas>or<20.

Allpatients completedanextensive preoperativeevaluation, whichincludedhigh-resolutionMRIand prolongednoninvasive video-EEGrecording.VisualinspectionoftheMRIimagesrevealed thatallpatientshadclearevidenceofMTS,whichincludesvarying degreesofhippocampalsclerosis(e.g.,atrophy,increasedT2-and decreasedT1-weightedsignal,anddisruptedinternalstructureof thehippocampus)aswellasatrophyandsignalalterationofthe amygdalaandtemporalpole.PatientswithunilateralMTSthatwas associatedwithstructuralabnormalitiesotherthanbrainatrophy wereexcluded.

Surgicalresectionwasperformedwhenthisevaluationyielded evidenceofMTLEwithMTS.Thissurgeryconsistedofresectionof 3.5cmofthetemporalneocortexfromthetemporalpoleofthe dominant hemisphere and 4.5cm from the non-dominant hemisphere.Thissurgicalresectionyielded3.5cmofhippocampus andapproximatelytwo-thirdsoftheamygdala.Allpatientswere followedforseizurecontrolaccordingtoEngel’sclassification30for

atleastsixmonthsfollowingthesurgery.

2.2. Neuropsychologicalmeasures

Astandardclinicalmeasureofintelligencewasused(estimated fullscaleIQfromtheWechslerAdultIntelligenceScale-Revised

[WAIS-R]).31TheLogicalMemoryIandIIsubtests32(immediate

anddelayedrecall)wereusedtoassessverbalmemory,andthe VisualReproduction IandIIsubtests32(immediateand delayed

recall)wereusedtoassessvisualmemory.Inaddition,theRey– OsterriethComplexFigureTest33(immediateanddelayedrecall)

wasusedto assessvisuospatialmemory, and theReyAuditory VerbalLearningTest(RAVLT)33wasusedtoassesverballearning.

2.3. Tissuepreparation

Thehippocampiofallpatientswerecollectedfromthearchives of neuropathology from the years 2005 to 2011. Samples containinglessthanthreehippocampalsubfieldsorlackinglayers CA1and/orCA4wereexcluded.

Thehippocampuswasdissectedintofive-mm-thickslicesalong the anterior–posterior axis, fixed overnight in a 4% formalin solutionandthenprocessedinliquidparaffin.Asingleblockof tissuecorrespondingtothemid-hippocampalbodywasselected fromeachcaseforhistopathologicalexamination.34Blockswere

cutto7

mm

(Leica,Germany),expandedinhotwater,mountedon slidescoatedwithsalineandair-driedovernightinanincubatorat 568C.Twoslidesfromeachcaseweredeparaffinizedinxylolanda descending alcohol concentration. One slide was stained with hematoxylinandeosin(HE)forpathologicaldiagnosisofMTS,and theotherslidewassubmittedtoanautomatedstainingapparatus (AutostainerLink48,Dako,USA)forNeuNimmunohistochemistry (Chemicon,Temecula,USA,dilution1:1000,pre-treatedinPTLink equipment, Dako, USA) and hematoxylin counterstaining. Two independent observers(AJand RN) completedquantitativeand qualitative analysesof alltissuesamples,whichincludedslides stainedwithNeuNandHE.

Specimenscollectedatautopsyfromthehippocampiofthirteen neurologicallyhealthyindividuals,withoutahistoryofepilepsy, served as controls (mean age 57.614.34 years). Postmortem tissue samples were stained with HE and NeuN. As reported in previous studies5,9 there was no difference in accuracy between

controls’HE-andNeuN-stainedsections.

2.4. Morphologicanalysisandneuronalcellcounts

MicroscopicimageswereobtainedusinganE600microscope equippedwithaMoticam2300camera(Nikon,Japan). Measure-mentsofgranulecelllayer(GCL)widthandneuronalcellcounts were performed with ImageJ software (National Institutes of Health,NIH,USA).Immunohistochemicallystainedneuronalcell bodieswerevisualizedonacomputerscreen(MoticImagesPlus software).

2.4.1. Granulecelldispersion

GCD was considered present when three conditions wereobservedconcurrently:(a)straightportionsoftheGCLwere greaterthan120

mm

inwidth;(b)granulecellswerenotinclose opposition to each other; and (c) the boundary between themolecularlayerandtheGCLwasnolongerclearlydefined.4

SectionsstainedwithNeuNwereusedtocalculatetheaverage widthoftheGCLineachsurgicalcase.Thedistancefromtheinner borderoftheGCLtotheouterborderofthemostdistalgranulecell wasdeterminedintheinternalaswellasintheexternallimbsand midportionoftheDG.EightregionsofmaximalGCDalongtheGCL weremeasured9tocalculatethemeanandstandarddeviationof

eachcase.Curvedregionswerenotconsidered.

2.4.2. Neuronalcellcounts

AlltissuesamplescollectedfromMTLEpatientsandcontrols wereanalyzedaccordingtoBlumckeetal.5Hippocampalsubfields

(3)

regions of 0.0625mm2 in areas were outlined in each sector (CA1–CA4).AllNeuN-positiveneurons,despiteanydifferencesin sizeormorphology,werecountedintheselectedfieldsunder20

magnification. For each subfield, neuronal cell density was calculatedinneurons10 4/mm2.

2.5. Statisticalanalysis

Neuronal cell counts from each hippocampal subfield were transformed into z-scores. z-Score is the number of standard deviationsfromthemeanexpectedvalue,whichinthiscaseisthe meanneuronaldensityinthecontrols’hippocampalsubfields.z -Scores for neuronal density were calculated according to the following formula: z=(observed density score mean control density score)/standard deviation of the control density score. Neuronalcellcountsgreaterthantwostandarddeviationsaway fromthemeanwereconsideredabnormal;onlynegativez-scores wererelevant.FivedifferentpatternsofHSweredefined bythe followingcriteria:noMTS(z-score<2inallhippocampalsubfields);

MTStype1a(z-score<2inCA2but>2inallothersectors);MTStype

1b(z-score>2inallsubfields);MTStype2(z-score>2inCA1and<2

inCA4);andMTStype3(z-score>2inCA4).9

StatisticalanalysiswascompletedwithSPSS10.0forWindows, Version10.01.Student’st-testwasusedtocompareclinicaldata betweendifferentgroups.Theresults(meansSD)obtainedfrom allofthememorytestsadministeredtopatientswithrightandleft MTLE with MTS, including those with and without GCD, were comparedandtransformedintoz-scores.Forthiscomparison,a one-wayanalysisofvariance(ANOVA)wasperformed.Whenappropriate, theposthocBonferroniprocedurewasperformed;Pvalues<0.05

wereconsideredstatisticallysignificant.

Toinvestigatewhethermemoryimpairmentcouldbe second-arytovariablesotherthanthepresenceofGCD,suchasdurationof epilepsy,ageatsurgery,monthlyseizurefrequency,MTStypeand postoperativeoutcome,weperformed ananalysisofcovariance (ANCOVA)inrightandleftMTLE-MTSgroups.

3. Results

GCDwasobservedin28cases(51.9%):14inrightMTLEand14 in left MTLE(Fig. 1). Clinical variables, including age at onset, presenceandtypeofIPI,durationofthelatencyperiod,durationof epilepsyandageatsurgeryweresimilarbetweentheGCDand no-GCD groups in both right MTLE and left MTLE.No statistically significantdifferencewasfoundbetweenrightMTLEandleftMTLE patientsintermsoftheiryearsofeducationandIQ(Table1).MTS patternwasnotassociatedwithGCDinMTLE-MTSpatients(Table 2).MonthlyseizurefrequencyandestimatedlifetimeGTCSwere similarinbothgroups.

PostoperativeoutcomesweresimilarinrightMTLE-MTSand leftMTLE-MTSpatientsaswellasintheGCDandno-GCDgroups. AmongtherightMTLEpatients,85.7%withGCDand76.9%without GCDwereseizure-freeafterthesurgery.OftheleftMTLEpatients, 78.6% with GCD and 69.2% without GCD were seizure-free followingthesurgery.

In rightMTLEpatients, theGCDgroupobtained significantly lowerscoresontheimmediaterecallportionoftheRey–Osterrieth Complex FigureTest.Thisfindingmaysuggestthatvisuospatial memoryismoregreatlyaffectedbyGCDinrightMTLE.However, in the left MTLE-MTS group, the presence of GCD was not associatedwithmemoryperformance.Table3illustratesthemean adjustedz-scoresforthesegroups.

Ananalysisofcovariancewasusedtocontrolrelevantvariables that might influence memory impairment. The results of the ANCOVAshowedthatthesevariableshadnoimpactonmemory performance;thus,GCDappearstobetheonlyvariableaffecting memoryperformanceinthissampleofMTLEpatients.

4. Discussion

HouserfirstdescribedGCDinpatientswithTLE.8Hippocampal

specimenscollectedfromthesepatientslackedadistinctboundary between the granule cell and molecular layers, and numerous Fig.1.HistopathologicalfindingsinthedentategyrusofcontrolsandMTLEpatients(NeuN-stainedsections).(A)Control;(B)No-GCD:granulecellsaredenselypackedand haveadistinctborderwiththeML;(C)GCD:granulecellsaredispersedandspreadintotheML;widthofGCLexceeded120mm.Scalebars,100mm.GCD:granulecell dispersion,GCL:granulecelllayer,ML:molecularlayer,MTLE:mesialtemporallobeepilepsy.

Table1

Clinicaldata(meanSD)ofMTLEpatientsinGCDandno-GCDgroups.

RightMTLEpatients LeftMTLEpatients

No-GCD(N=13) GCD(N=14) No-GCD(N=13) GCD(N=14)

Sex(M/F) 7/6 4/10 P=0.252 6/7 10/4 P=0.252

Education(years) 9.34.61 8.33.47 P=0.519 6.84.80 6.94.22 P=0.960

IQ 80.69.20 83.411.72 P=0.496 84.411.51 81.113.85 P=0.507

IPIPercentage(N) 38.5%(5) 50.0%(7) P=0.704 53.8%(7) 64.3%(9) P=0.704

FSPercentage(N) 60.0%(3) 28.6%(2) P=0.667 57.1%(4) 44.4%(4) P=1.000

Latency(years) 13.85.72 10.45.06 P=0.305 16.08.14 13.46.77 P=0.504

Epilepsyonset(years) 16.78.40 17.69.34 P=0.783 14.58.65 11.99.12 P=0.461

Epilepsyduration(years) 17.38.63 24.512.80 P=0.102 24.710.77 23.215.72 P=0.780

Ageatsurgery(years) 34.611.33 42.18.48 P=0.060 38.78.31 34.912.79 P=0.368

(4)

granule cellsomata extendedinto themolecular layer. Further studiesdemonstratedthatGCDisnotexclusivetopatientswith HS.Inapostmortemstudy,GCDwasobservedinpatientswhohad widespreadcorticalmalformationswithouthippocampalcellloss, suggestinganeurodevelopmentaldisorder.35

In ourstudyof pure unilateral MTLE-MTS, GCD occurred in 51.9% of all cases, which is consistent with data previously reportedintheliterature.5,9TheassociationofGCDwithclinical

characteristicssuchas historyof IPIand seizure frequency has beendiscussedpreviously.6,7,11Wefoundnocorrelationbetween

theseclinicalvariablesandGCD.Consideringthatthepresenceof GCDwasnotcorrelatedwithclinicalfactors,GCDmaybemore closelylinkedtothepathologicalmechanismofMTSratherthan beingamanifestationofsevereTLE.11

Ourdataareconsistentwithpreviousstudiesthatsuggestthat thereis no correlationbetween GCD and seizureoutcome.5,9,10

ClassicpatternsofMTSexpressionweremostfrequentlyobserved inoursampleofMTLEpatients,includingboththeGCDand no-GCD group. This finding is consistent with previous reports5;

however,therewasnostatisticallysignificantdifferenceinMTS patternexpressionobservedinthesegroupsofpatients.

Quantitativehistologicalanalysisof thetissueresectedfrom thehippocampalsubfieldsandDGhasbeenassociatedwith pre-andpost-operativememorydeficits.36,37Inahuman

electrophys-iological study,Grunwald et al.38 reported that limbic P300 (a

memoryrelatedcomponent)recordedfromelectrodesplacedata intrahippocampal depth correlated significantly with neuronal density of the DG, but not with pyramidal cell density in hippocampal subfields CA1 through CA4. Animal studies con-firmedthis finding.23,39 Blumckeet al.2 collected data from 26 patients; the authors observed significantly better memory performance in patients without dentate granule cell loss or dispersion.Thesamegroup21foundthatneuronalcelllosswithin

theinternallimbofthedentategyrus,adevelopmentallydistinct subregionofthehippocampalformationknowntogeneratenew neuronsthroughout life,wasa highlyaccuratepredictorof the abilitytolearnandrecallmemories.

Although previous studies have proposed a relationship betweengranulecellabnormalityandmemoryfunctionduring intracarotidamobarbitalprocedure(IAP),2,21IAPwasnotusedin

our study of pure unilateral MTLE-MTS we tested memory function using a number of neuropsychological assessments, which are commonly administered in other epilepsy centers. Despite its diagnostic value, IAP is an invasive procedure; complicationshavebeen reportedinupto11.6%ofpatients.40

Although IAP has often been cited as the gold standard in assessmentoflanguagelateralization,ithasnotbeenestablished asapredictorofpostoperativememorydecline.Rather, postop-erative memory decline can generally be measured using noninvasive methods. Baxendale et al.41 suggested that it is

inappropriate to conduct an invasive procedure, such as IAP, solelytogainprognosticdata regardingpostoperativememory decline.

WedidnotfindasignificantrelationshipbetweenGCDand memoryperformanceinleftMTLE-MTSpatients.However,GCD wasassociatedwith visuospatialmemory impairment inright MTLE-MTSpatientsontheimmediate,butnotthedelayedrecall portionoftheRey–OsterriethComplexFigureTest.Retentionof visuospatial learningprocesses may not beas greatlyaffected possiblybecausememoryofnovelstimuliiswidelyrepresented in the entire brain.42 Instruments used to assess nonverbal

memoryfunctionsareconsideredtobenotassensitiveasthose used to assess verbal memory.43 IAP results have been most

predictiveofverbalmemorychangesinpatientswithdominant temporallobeepilepsy.However, IAPresultshavenot faredas wellasapredictorofnonverbalmemorychangesafterresection ofareasofthenon-dominanthemisphere.44,45Previousstudies havealsofailedtoconfirmthattheextentofrighthippocampal pathology is related to performance on test of non-verbal memory.22,46Thefindingsofthisstudymayincreaseknowledge

and understanding of the clinical role of GCD in memory impairmentin MTLEpatients.

TheDGgeneratesneuronsthroughoutlife47andmayplayarole

in the acquisition of new memories.24 Animal studies have

describedthefunctionalintegrationofnewlygeneratedneurons anditsimpactonmemoryacquisition.24,48Thesedataindicatethat

new granule cells are not only affected by the formation of hippocampal–dependentmemorybutalsoparticipateinit.These granule cells mayalso increase witheffortstolearn and recall memories. Coras et al.49 studied neural stem cells from 23 surgically sampledhumanhippocampiand assessedthe neuro-genic potential of DG cells. Patients with high proliferation capacitystemcellsperformednormallyonassessmentsofmemory prior toepilepsysurgery, whereasthose withlow proliferation capacityshowedseverelearningandmemoryimpairments.The authorsconcludedthatencodingnewmemorieswasrelatedtothe regenerativecapacityofthehippocampusinthehumanbrain.In Table2

DistributionofMTSpatternsinGCDandno-GCDMTLEpatientsgroups.

RightMTLEpatients LeftMTLEpatients

No-GCD (N=13)

GCD (N=14)

No-GCD (N=13)

GCD (N=14)

NoMTS 7.7%(1) 0.0%(0) 15.4%(2) 0.0%(0)

MTStype1a 38.5%(5) 21.4%(3) 23.1%(3) 42.9%(6)

MTStype1b 53.8%(7) 78.6%(11) 46.2%(6) 50.0%(7)

MTStype2 0.0%(0) 0.0%(0) 15.4%(2) 7.1%(1)

P=0.298 P=0.448

GCD:granulecelldispersion;N:numberofpatients.

Table3

Visualandverbalmemorytestresults(z-scoreSD)obtainedfromrightandleftMTLEpatientsinGCDandno-GCDgroups.

RightMTLE LeftMTLE Bonferroniposthocanalysis(Pvalue)

No-GCD(N=13) GCD(N=14) No-GCD(N=13) GCD(N=14) BetweenR-MTLE

GCDandno-GCD

BetweenL-MTLE GCDandno-GCD

VisualReproductionI 0.43(0.847) 0.84(0.714) 0.58(0.881) 0.81(1.084) NS NS

VisualReproductionII 0.72(0.799) 1.37(0.916) 0.72(0.950) 0.94(1.228) NS NS

ReyComplexFigureII 1.49(1.293) 2.84(0.912) 1.31(1.290) 1.13(1.538) 0.05 NS

ReyComplexFigureIII 0.92(0.944) 1.52(0.544) 0.94(0.699) 0.68(0.991) NS NS

LogicalMemoryI 0.80(1.054) 0.76(0.772) 0.99(0.968) 1.07(0.853) NS NS

LogicalMemoryII 1.08(0.869) 0.94(0.772) 1.18(0.838) 1.29(0.816) NS NS

RAVLT–Total 0.62(0.841) 1.14(1.385) 0.57(1.302) 1.27(1.117) NS NS

RAVLT–30min 0.76(0.511) 1.09(1.219) 1.04(1.135) 1.61(1.282) NS NS

RAVLT–Recognition 0.22(0.590) 0.68(1.598) 0.05(0.813) 0.31(1.445) NS NS

(5)

our study, neurogenesis was not examined; studies involving newly generated neurons and memory function are therefore highlyencouraged.

Itshouldbenotedthatthehippocampuscontralateraltothe resected side in MTLE patients may play a role in memory functions that would otherwise be attributed to the resected hippocampus.Thisprocess,knowasmemoryplasticity,maybe presentinearlyonsetcasesinparticularandmayhaveimpacted theresultsofouranalyses,thusrepresentingalimitationofour study.

In conclusion, the occurrence of GCD was associated with visuospatialmemorydeficitinrightMTLEpatients.However,the presenceofGCDwasnotassociatedwithmemoryperformancein leftMTLE patients.Thepresentfindingsemphasizethe impor-tanceofperformingahistopathologicalevaluationaspartofthe epilepsy surgery protocol as well as the contribution of histopathology tounderstanding memory performance in TLE patients.However,theroleofGCDinmemoryisnotyetprecisely defined.

Conflictofinterest

Theauthorshavenoconflictsofinteresttodeclare.

Acknowledgement

ThisworkwasfundedinpartbytheFundac¸a˜o deAmparoa` Pesquisado Estadode Sa˜oPaulo(FAPESP), theCoordenac¸a˜o de Aperfeic¸oamento de Pessoal de Nı´vel Superior (CAPES), the ConselhoNacional deDesenvolvimentoCientı´fico eTecnolo´gico (CNPQ)andtheInstitutoNacionaldeNeurocieˆnciaTranslacional (INNT),Brazil.

References

1.BabbTL,BrownWJ.Pathologicalfindingsinepilepsy.In:EngelJJ,editor.Surgical treatmentoftheepilepsies.NewYork:RavenPress;1987.p.511–40. 2.BlumckeI,KistnerI,ClusmannH,SchrammJ,BeckerAJ,ElgerCE,etal.Towards

aclinico-pathologicalclassificationofgranulecelldispersioninhumanmesial temporallobeepilepsies.ActaNeuropathologica2009;117:535–44.

3.WieserHG. ILAECommissionReport. Mesialtemporal lobeepilepsywith hippocampalsclerosis.Epilepsia2004;45:695–14.

4.ElBahhB,LespinetV,LurtonD,CoussemacqM,LeGalLaSalleG,RougierA. Correlations betweengranule cell dispersion, mossy fiber sprouting, and hippocampal cell loss in temporal lobe epilepsy. Epilepsia 1999;40: 1393–401.

5.BlumckeI,PauliE,ClusmannH,SchrammJ,BeckerA,ElgerC,etal.Anew clinico-pathologicalclassificationsystemformesialtemporalsclerosis.Acta Neuropathologica2007;113:235–44.

6.Lurton D, El Bahh B, Sundstrom L, Rougier A. Granule cell dispersionis correlatedwithearlyepilepticeventsinhumantemporallobeepilepsy.Journal oftheNeurologicalSciences1998;154:133–6.

7.ThomM,MartinianL,WilliamsG,StoeberK,SisodiyaSM.Cellproliferationand granulecelldispersioninhumanhippocampalsclerosis.Journalof Neuropa-thologyandExperimentalNeurology2005;64:194–201.

8.HouserCR. Granule celldispersionin thedentate gyrusof humanswith temporallobeepilepsy.BrainResearch1990;535:195–204.

9.ThomM,LiagkourasI,ElliotKJ,MartinianL,HarknessW,McEvoyA,etal. Reliabilityofpatternsofhippocampalsclerosisaspredictorsofpostsurgical outcome.Epilepsia2010;51:1801–8.

10.NevesRSC,JardimAP,CabocloLO,LancellottiC,Ferrari-MarinhoT,HamadAP etal.Granulecelldispersionisnotapredictorofsurgicaloutcomeintemporal lobe epilepsy with mesial temporal sclerosis. Clinical Neuropathology; inpress.

11.ThomM,SisodiyaSM,BeckettA,MartinianL,LinWR,HarknessW,etal. Cytoarchitecturalabnormalitiesinhippocampalsclerosis.Journalof Neuropa-thologyandExperimentalNeurology2002;61:510–9.

12.SquireLR,Zola-MorganS.Themedialtemporallobememorysystem.Science 1991;253:1380–6.

13.OliveiraMGM,BuenoOFA.Neuropsicologiadamemo´riahumana.PsicologiaUSP 1993;4:117–38.

14.HermannBP,SeidenbergM,SchoenfeldJ,DaviesK.Neuropsychological char-acteristics ofthe syndromeofmesial temporal lobeepilepsy. Archivesof Neurology1997;54:369–76.

15.AlessioA,BonilhaL,RordenC,KobayashiE,MinLL,DamascenoBP,etal. Memoryandlanguageimpairmentsandtheirrelationshipstohippocampaland perirhinalcortexdamageinpatientswithtemporallobeepilepsy.Epilepsy& Behavior2006;8:593–600.

16.Jones-GotmanM,HarnadekMCS,KubuCS.Neuropsychologicalassessmentfor temporal lobe epilepsy surgery. Canadian Journal of Neurological Sciences 2000;27(Suppl.1):S39–43.

17.TudescoISS,VazLJ,MantoanMAS,BelzuncesE,NoffsMH,CabocloLOSF,etal. Assessmentofworkingmemoryinpatientswithmesialtemporallobeepilepsy associated with unilateral hippocampal sclerosis. Epilepsy & Behavior 2010;18:223–8.

18.AldenkampAP,ArendsJ.EffectsofepileptiformEEGdischargesoncognitive function:istheconceptof‘‘transientcognitiveimpairment’’stillvalid?Epilepsy &Behavior2004;5(Suppl.1):S25–34.

19.HoppeC,ElgerCE,HelmstaedterC.Long-termmemoryimpairmentinpatients withfocalepilepsy.Epilepsia2007;48(Suppl.9):S26–9.

20.HolmesGL,Lenck-SantiniPP.Roleofinterictalepileptiformabnormalitiesin cognitiveimpairment.Epilepsy&Behavior2006;8:504–15.

21.PauliE,HildebrandtM,RomstockJ,StefanH,BlumckeI.Deficientmemory acquisitionintemporallobeepilepsyispredictedbyhippocampalgranulecell loss.Neurology2006;67:1383–9.

22.RauschR, Babb TL.Hippocampal neuronloss andmemory scores before and after temporal lobe surgery for epilepsy. Archives of Neurology 1993;50:812–7.

23.BartesaghiR.Effectofearlyisolationonthesynapticfunctioninthedentate gyrusandfieldCA1oftheguineapig.Hippocampus2004;14:482–98. 24.ShorsTJ,MiesegaesG,BeylinA,ZhaoM,RydelT,GouldE.Neurogenesisinthe

adultisinvolvedintheformationoftracememories.Nature2001;410:372–6. 25.DrapeauE,MayoW,AurousseauC,LeMoalM,PiazzaPV,AbrousDN.Spatial memoryperformancesofagedratsinthewatermazepredictlevelsof hippo-campalneurogenesis.ProceedingsoftheNationalAcademyofSciencesofthe UnitedStatesofAmerica2003;100:14385–90.

26.LezakMD.Neuropsychologicalassessment.4thed. NewYork:Oxford Univ. Press;2004.

27.JardimCA,NevesRSC,CabocloLOS,LancellottiCLP,MarinhoMM,CentenoRS, etal.Temporallobeepilepsywithmesialtemporalsclerosis:hippocampal neuronallossasapredictorofsurgicaloutcome.ArquivosdeNeuropsiquiatria 2012;70(5):319–24.

28.Proposalforclassificationofepilepsiesandepilepticsyndromes.Commission onClassificationTerminologyoftheInternationalLeagueAgainstEpilepsy. Epilepsia1989;30:389–99.

29.MathernGW,BabbTL,VickreyBG,MelendezM,PretoriusJK.The clinical-pathogenicmechanismsofhippocampalneuronlossandsurgicaloutcomesin temporallobeepilepsy.Brain1995;118:105–18.

30.EngelJJ,VanNessP,RasmussenTB,OjemannLM.Outcomewithrespectto epilepticseizures.In:EngelJJ,editor.Surgicaltreatmentoftheepilepsies.New York:RavenPress;1993.p.609–21.

31.WechslerD.WechslerAdultIntelligenceScale–Revised.NewYork: Psychologi-calCorp.;1981.

32.WechslerD.ManualforWechslerMemoryScale–Revised.NewYork: Psycho-logicalCorp.;1987.

33.StraussE,ShermanEMS,SpreenO.Acompendiumofneuropsychologicaltests: administrationnormsandcommentary.3rded.NewYork:OxfordUniv.Press; 2006.

34.DuvernoyHM.Thehumanhippocampus.Functionalanatomyvascularizationand serialsectionswithMRI.Heidelberg:Springer;2005.

35.Harding B, Thom M. Bilateral hippocampal granule cell dispersion: autopsy study of 3 infants. Neuropathology and Applied Neurobiology 2001;27:245–51.

36.O’Rourke DM,Saykin AJ,Gilhool JJ, Harley R, O‘ConnorMJ, SperlingMR. Unilateralhemisphericmemoryandhippocampalneuronaldensityintemporal lobeepilepsy.Neurosurgery1993;32:574–80.

37.RauschR,BabbTL,EngelJ,CrandallPH.Memoryfollowingintracarotid amo-barbitalinjectioncontralateraltohippocampaldamage.ArchivesofNeurology 1993;50:812–7.

38.GrunwaldT,BeckH,LehnertzK,BlumckeI,PezerN,HutasM,etal.Limbic P300sintemporallobeepilepsywithandwithoutAmmon’shornsclerosis. EuropeanJournalofNeuroscience1999;11:1899–906.

39.LeeI,HunsakerMR,KesnerRP.Theroleofhippocampalsubregionsindetecting spatialnovelty.BehavioralNeuroscience2005;119:145–53.

40.LoddenkemperT,ModdelG,MorrisH.Complicationsduringtheintracarotid amobarbitaltest.Neurology2004;62:A248–9.

41.BaxendaleS,ThompsonP,HarknessW,DuncanJ.Theroleoftheintracarotid amobarbitalprocedureinpredictingverbalmemorydeclineaftertemporal loberesection.Epilepsia2007;48(3):546–52.

42.Jones-GotmanM,ZatorreRJ,OlivierA,AndermannF,CendesF,StauntonH, et al. Learning and retention of words and designs following excision frommedialorlateraltemporal-lobestructures.Neuropsychologia1997;35: 963–73.

43.Baxendale SA,VanPaesschen W,ThompsonPJ, DuncanJS,Harkness WF, ShorvonSD.Hippocampalcelllossandgliosis:relationshiptopreoperative and postoperative memoryfunction. Neuropsychiatry Neuropsychologyand BehavioralNeurology1998;11:12–21.

(6)

45.ChiaravallotiND,GlosserG.Material-specificmemorychangesafteranterior temporallobectomyaspredictedbytheintracarotidamobarbitaltest.Epilepsia 2001;42(7):902–11.

46.Sass KJ,Sass A,Westerveld M,LenczT,RosewaterKM,NovellyRA,etal. Russell’sadaptationoftheWechslerMemoryScaleasanindexofhippocampal pathology.JournalofEpilepsy1992;5:24–30.

47.VanPraagH,SchinderAF,ChristieBR,ToniN,PalmerTD,GageFH.Functional neurogenesisintheadulthippocampus.Nature2002;415:1030–4.

48.LeunerB,Mendolia-LoffredoS,KozorovitskiyY,SamburgD,GouldE,ShorsTJ. Learningenhancesthesurvivalofnewneuronsbeyondthetimewhenthe hippocampus is required for memory. Journal of Neuroscience 2004;24: 7477–81.

Referências

Documentos relacionados

that psychiatric symptoms presage temporal lobe tumors and that presence of mesial temporal sclerosis is protec- tive against schizophrenia-like psychosis in patients with

Patients with an abnormal T2 or T1 hip- pocampal signal had significantly smaller ipsilateral hippocampal volumes compared to patients with a normal T2 and T1 hippo- campal

In the present study we analyzed the possible role of verbal memory and visual memory as separate predictors of seizure prognosis in patients with temporal lobe epilepsy associated

Cognitive and surgical outcome in mesial temporal lobe epilepsy associated with hippocampal sclerosis plus neurocysticercosis: a cohort study. Bianchin MM, Velasco TR, Wichert-Ana

We investigate whether self-reported sleepiness is associated with cognitive performance in patients with refractory mesial temporal lobe epilepsy with hippocampal

Longer epilepsy duration and multiple lobe involvement predict worse seizure outcomes for patients with refractory temporal lobe epilepsy associated with neurocysticercosis..

Patterns of seizure control in patients with mesial temporal lobe epilepsy with and without hippocampus sclerosis. Fischer RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross

Selective amygdalohippocampectomy versus standard temporal lobectomy in patients with mesial temporal lobe epilepsy and unilateral hippocampal sclerosis. Tanriverdi T, Dudley