• Nenhum resultado encontrado

Evaluation of mutagenicity and metabolism-mediated cytotoxicity of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin from Paepalanthus latipes

N/A
N/A
Protected

Academic year: 2017

Share "Evaluation of mutagenicity and metabolism-mediated cytotoxicity of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin from Paepalanthus latipes"

Copied!
6
0
0

Texto

(1)

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Evaluation

of

mutagenicity

and

metabolism-mediated

cytotoxicity

of

the

naphthoquinone

5-methoxy-3,4-dehydroxanthomegnin

from

Paepalanthus

latipes

Rodrigo

R.

Kitagawa

a,∗

,

Wagner

Vilegas

b

,

Eliana

A.

Varanda

c

,

Maria

S.G.

Raddi

d aDepartamentodeCiênciasFarmaceuticas,UniversidadeFederaldoEspíritoSanto,Vitória,ES,Brazil

bInstitutodeQuímicadeAraraquara,UniversidadeEstadualPaulista“JúliodeMesquitaFilho”,Araraquara,SP,Brazil

cDepartamentodeCiênciasBiologicas,FaculdadedeCiênciasFarmaceuticasdeAraraquara,UniversidadeEstadualPaulista“JúliodeMesquitaFilho”,Araraquara,SP,Brazil dDepartamentodeAnálisesClinicas,FaculdadedeCiênciasFarmaceuticaldeAraraquara,UniversidadeEstadualPaulista“JúliodeMesquitaFilho”,Araraquara,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received22April2014 Accepted19December2014 Availableonline12February2015

Keywords: Cytotoxicity

5-Methoxy-3,4-dehydroxanthomegnin Mutagenicity

a

b

s

t

r

a

c

t

Alargenumberofquinoneshavebeenassociatedwithantitumor,antibacterial,antimalarial,and anti-fungalactivities.Resultsofpreviousstudiesof5-methoxy-3,4-dehydroxanthomegnin,anaphthoquinone isolatedfromPaepalanthuslatipesSilveira,Eriocaulaceae,revealedantitumor,antibacterial, immunomod-ulatory,andantioxidantactivities.Inthisstudy,weassessedthemutagenicityandmetabolism-mediated cytotoxicityof5-methoxy-3,4-dehydroxanthomegninbyusingtheAmestestandamicroculture neu-tralredassayincorporatinganS9fraction(hepaticmicrosomalfractionandcofactors),respectively. WealsoevaluatedthemutagenicactivityinSalmonellatyphimuriumstrainsTA100,TA98,TA102,and TA97a,aswellasthecytotoxiceffectonMcCoycellswithandwithoutmetabolicactivationinboth tests.Resultsindicatedthatnaphthoquinonedoesnotcausemutationsbysubstitutionorbyaddition anddeletionofbasesinthedeoxyribonucleicacidsequencewithandwithoutmetabolicactivation.As previouslydemonstrated,theinvitrocytotoxicityof5-methoxy-3,4-dehydroxanthomegnintoMcCoy cellsshowedasignificantcytotoxicindex(CI50)of11.9␮g/ml.Thisindexwasnotalteredbyadditionof theS9fraction,indicatingthattheS9mixturefailedtometabolicallymodifythecompound.Ourresults, alliedwithmorespecificbiologicalassaysinthefuture,wouldcontributetothesafeuseof 5-methoxy-3,4-dehydroxanthomegnin,compoundthathasshowedinpreviousstudiesbeneficialpropertiesasa potentialanticancerdrug.

©2014SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

“For many centuries, plants have provided a rich source of

therapeutic agents and bases for synthetic drugs. Despite the

developmentof organic synthesis, 25% of thedrugs prescribed

worldwide are derived from plant sources, showing that plant

speciesarestillanimportantsourceofnewdrugs”(Sacomanetal.,

2008).Muchresearchhasbeenconducted onplants inpopular

use,withtheobjectiveofidentifyingnaturalproductswith

thera-peuticpotential(BalunasandKinghorn,2005;Gurib-Fakim,2006;

NewmanandCragg,2012).

Correspondingauthorat:DepartmentofPharmaceuticalSciences,Federal

Uni-versityofEspíritoSanto–UFES,AvenidaMarechalCampos1468,29043-900Vitória, ES,Brazil.

E-mail:rodrigo.kitagawa@ufes.br(R.R.Kitagawa).

TheEriocaulaceaefamily,commonlyfoundintheStatesofBahia

andMinasGerais,Brazil,hasbeenthesourceofseveral

biolog-ically active compounds. Paepalanthus,with about 500species,

isoneof itsprincipalgenus.Anumberof studieshave

demon-stratedthatalmostallspeciesofPaepalanthussubgenusPlatycaulon

possessnaphthopyranonederivatives,includingpaepalantineand

8,8′-paepalantinedimer isolatedfromPaepalanthusbromelioides

(Vilegas et al., 1990; Coelho et al., 2000), planifolin isolated fromPaepalanthusplanifolius(Santosetal.,2001;Varandaetal.,

2006), and 5-methoxy-3,4-dehydroxanthomegnin isolated from

PaepalanthuslatipesSilveira,Eriocaulaceae,(Kitagawaetal.,2004, 2008).

The compound 5-methoxy-3,4-dehydroxanthomegnin (1) is

a naphthoquinone with potentialtherapeutic applications.

Pre-vious studies have shown that this compound has

antitu-mor and immunomodulatory effects (Kitagawa et al., 2011),

as well as anti-Helicobacter pylori and antioxidant properties

http://dx.doi.org/10.1016/j.bjp.2014.12.001

(2)

(Kitagawa et al.,2012).Theantitumoreffect of

5-methoxy-3,4-dehydroxanthomegnin may be enhanced by association with

ascorbic acid as demonstrated by a significant cytotoxic index

(CI) for McCoy cells. The enhanced effect is probably due to

hydrogenperoxidegeneratedbyascorbate-driven

5-methoxy-3,4-dehydroxanthomegninredoxcycling(Kitagawaetal.,2008).

Currently, interest is focused on cytotoxic compounds that

appeartoexerta beneficialeffectonkey mechanismsinvolved

inthepathogenesisofcancerandinfectiondiseases.Manyactive

compoundsthatworkbyinterferingwiththefunctionofDNAseem

toplayadecisiveroleinantitumoractivity(Harvey,2008;Maand

Wang,2009;SudanandRupasinghe,2014).

Short-termteststhatdetectgeneticdamagehaveallowed

eval-uationofthecarcinogenicrisksofchemicalstohumans.TheAmes

assay, which is recommended for testing the mutagenicity of

chemicalcompoundswithpotentialpharmacologicalapplications

(Varandaetal.,2006;Resendeetal.,2012;Aardema,2013),was

usedinthepresentstudytoevaluateinvitrothemutageniceffect

of5-methoxy-3,4-dehydroxanthomegnin(1).

In vitro cytotoxicity tests simulate injury to cells from the

testedsubstances,whichmaybecausedbyanumberof

incom-pletemechanisms,duringperiodsofexposurethatarerealisticfor

acutetoxicity(Benbowetal.,2010).Thecentralpointregarding

in vitro/in vivo comparisons refers to xenobiotic-metabolizing

capacity. Bioactivationis an importantconsideration in invitro

cytotoxicity assays, since in vivo the test agent may be

bio-transformed. The incorporation of the S9 microsomal fraction

has been used in the study of metabolic activation of

chem-icals in a variety of cell culture models (Soares et al., 2006;

Ponsoni et al., 2013).The test is applicable to the analysis of

toxic ranges, for the detection of biotransformation of parent

compounds, and for the evaluation of the cytotoxic effects of

chemotherapeuticagents(BorenfreundandPuerner,1987).Inthis

study,weinvestigatedinvitrometabolism-mediatedcytotoxicity

of5-methoxy-3,4-dehydroxanthomegninusingtheS9system.For

comparison,weevaluatedcyclophosphamide,anindirect-acting

cytotoxicantemployedinantineoplastictherapy,asthecontrolof

biotransformationinductionbythehepaticS9fraction(Hilland

Hill,1984).

Materialandmethods

Plantmaterial

Paepalanthus latipes Silveira, Eriocaulaceae, was collected at

Serrado Cipóin theCadeiado Espinhac¸o, MinasGerais, Brazil,

andauthenticatedbyProfessorPauloTakeoSanofromthe

Insti-tuteofBiosciences,UniversityofSãoPaulo.Thevoucherspecimen

(CFSC, 13846) is on file at the Herbarium in the Department

of Botany, Institute of Biosciences, University of São Paulo,

Brazil.

Chemicalsandculturemedia

Eagle medium was purchased from Adolfo Lutz (São Paulo,

Brazil),andfetal bovineserumfromCultilab(Campinas,Brazil).

Dimethyl sulfoxide (DMSO), nicotinamide adeninedinucleotide

phosphatesodiumsalt(NADP),d-glucose-6-phosphatedisodium

salt, magnesium chloride (MgCl2), l-histidine monohydrate, d

-biotin, sodiumazide, 2-anthramine, and 2-aminofluorene were

purchasedfromSigmaChemicalCo.(St.Louis,MO,USA).Oxoid

NutrientBrothNo.2(Oxoid;Basingstoke,UK)andBactoAgar(BD

BactoTM;Sparks,MD,USA)wereusedasbacterialmedia.d-glucose,

magnesium sulfate, citric acidmonohydrate, anhydrousdibasic

potassiumphosphate,sodiumammoniumphosphate,monobasic

sodiumphosphate,dibasicsodiumphosphate,andsodium

chlo-ridewerepurchasedfromMerck(WhitehouseStation, NJ,USA).

Neutralred(NR)wasobtainedfromRiedel-de-HaënAG(Seelze,

Hannover,Germany).The5-methoxy-3,4-dehydroxanthomegnin,

isolated and characterized as previously described (Kitagawa

et al., 2004), was stored as stock solution at 10mg/ml in

DMSO.

Metabolicactivationsystem(S9mixture)

The S9 fraction, prepared from livers of Sprague-Dawley

ratstreated with thepolychlorinatedbiphenyl mixtureAroclor

1254(500mg/kg),waspurchasedfromMolecularToxicology,Inc.

(Boone,NC,USA).ThemetabolicactivationsystemconsistedofS9

fraction(4%),0.4MMgCl2 (1%),1.65MKCl (1%),1Md

-glucose-6-phosphatedisodium(0.5%),0.1MNADP(4%),0.2Mphosphate

buffer(50%),andsteriledistilledwater(39.5%)(MaronandAmes,

1983).

Salmonellamutagenicassay

MutagenicactivitywastestedbySalmonella/microsomeassay,

using the Salmonella typhimurium tester strains TA97a, TA98,

TA100, and TA102 (kindly provided by B.N. Ames; Berkeley,

CA, USA), with and without metabolization by the

preincuba-tion method(Maronand Ames, 1983).The strainsfrom frozen

cultures were grown overnight for 12–14h in Oxoid Nutrient

Broth No.2. The metabolicactivation mixture(S9) wasfreshly

preparedbeforeeachtest.Variousconcentrationsof

5-methoxy-3,4-dehydroxanthomegnindissolvedinDMSOweretested:62.5,

125.0,250.0,500.0,and750.0␮g/plateforstrainsTA98,TA97a,and

TA100;6.25,12.5,25.0,50.0,and75.0␮g/plateforstrainTA102.

Theseconcentrationswereselectedbasedonapreliminary

toxic-itytest.Inallsubsequentassays,theupperlimitofthedoserange

testedwaseitherthehighestnontoxic doseorthelowesttoxic

dosedeterminedinthispreliminaryassay.Toxicitywasapparent

asareductioninthenumberofHis+revertantsorasanalteration

intheauxotrophicbackground(i.e.,backgroundlawn).The

vari-ousconcentrationsof5-methoxy-3,4-dehydroxanthomegninwere

addedto0.5mlof0.2Mphosphatebuffer(pH7.4)orto0.5mlof

4%S9mixturecombinedwith0.1mlofbacterialcultureandthen

incubatedat37◦Cfor20–30min.Afterthistime,2mloftopagar

wasadded tothemixtureandpoured ontoaplate containing

minimalagar.Theplateswereincubatedat37◦Cfor48handthe

revertantcolonieswerecountedmanually.Allexperimentswere

analyzedintriplicate.TheresultswereanalyzedwiththeSalanal

statisticalsoftwarepackage,adoptingtheBernsteinetal.(1982)

model. Thedata(revertants/plate)were assessedbyanalysisof

variance(ANOVA),followedbylinearregression.Themutagenic

index(MI)wasalsocalculatedforeachconcentrationtested,this

beingtheaveragenumberof revertantsperplatewiththetest

compounddividedbytheaveragenumberofrevertantsperplate

withthenegative(solvent)control.Asamplewasconsidered

muta-genicwhenadose–responserelationshipwasdetectedanda2-fold

increaseinthenumberofmutants(MI≥2)wasobservedwithat

least1concentration(Santosetal.,2006).Thestandardmutagens

used as positive controls in experiments without the S9

(3)

Table1

Mutagenicactivityandmutagenicindex(MI)of5-methoxy-3,4-dehydroxanthomegnin(naphthoquinone)atvariousconcentrationsinstrainsTA100,TA98,andTA97aof Salmonellatyphimuriuminthepresence(+S9)andabsence(−S9)ofmetabolicactivation.

Naphthoquinone (␮g/plate)

Numberofrevertants/plateand(MI)

TA100 TA98 TA97a

−S9 +S9 −S9 +S9 −S9 +S9

0 147±22 121±13 22±3 26±1 218±2 343±6

62.5 151±9(1.08) 199±33(1.32) 21±4(1.2) 28±2(1.27) 304±28(1.2) 332±27(1.05) 125 151±8(1.08) 176±9(1.17) 18±3(1.05) 25±2(1.13) 277±12(1.1) 399±10(1.26) 250 154±12(1.10) 185±30(1.23) 17±2(1.0) 26±2(1.18) 309±22(1.25) 476±16(1.51) 500 131±14(0.94) 185±19(1.23) 17±3(1.0) 27±3(1.22) 301±10(1.21) 398±26(1.26) 750 124±10(0.88) 216±53(1.44) 19±2(1.1) 27±4(1.22) 294±16(1.19) 431±25(1.36)

Control+ 957±24 973±10 1492±28 2002±60 1484±32 1521±31

0=negativecontrol:75.0␮lDMSO.

Positivecontrols:+S9→2-anthramine(2.5␮g/plate)forTA100,TA98andTA97astrains.−S9→sodiumazide(1.25␮g/plate)forTA100;4nitro-o-phenylenediamine (10.0␮g/plate)forTA98andTA97a.Theresultsarereportedasmeans±SD.

*p<0.05(ANOVA)5-methoxy-3,4-dehydroxanthomegninconcentrationscomparedwithnegativecontrol.

andTA97a,sodiumazide(1.25␮g/plate)for TA100,and dauno-mycin(3.0␮g/plate)forTA102.Intheexperimentswithmetabolic activation,2-anthramine(2.5␮g/plate)wasusedwithTA98,TA97a, and TA100, and 2-aminofluorene (10.0␮g/plate) with TA102. DMSOservedasthenegative(solvent)control(75.0␮l/plate).

Cytotoxicityassay

McCoy cells (CCL1–ATCC/USA, from the cell culture section oftheAdolfoLutzInstitute,São Paulo,Brazil)weremaintained inEaglemediumwith7.5%fetalbovineserum.After trypsiniza-tion,0.2mlofmediumcontainingapproximately104cells/mlwere

seeded into 96-well microtiter tissue culture plates and incu-batedat 37◦C. After24h, theEagle mediumwasremoved and the cells were placed in unmodified medium (control) or in mediummodifiedwithvariousconcentrationsof 5-methoxy-3,4-dehydroxanthomegnin(5,10, 20,40, 50,80, and 100␮g/ml)or cyclophosphamide(25,50,100,150␮g/ml)withandwithoutthe S9mixtureat10%.Afterincubatingforanother24h,themedium was removed and the plates were prepared for the NR assay (BorenfreundandPuerner,1985).Afterbriefagitation,theplates

weretransferred toa microplate reader (Spectra and Rainbow

[Shell]Readers;Tecan, Austria)and the opticaldensity ofeach

wellwasmeasuredusinga540nmfilteranda620nmreference

wavelength.Allexperimentswereperformedatleastfourtimes,

usingthreewellsforeachconcentrationofcompoundtested.The

cytotoxicitydatawerestandardized bydeterminingabsorbance

andcalculatingthecorrespondingchemicalconcentrations.Linear

regressionanalysiswitha95%confidencelimitwasusedtodefine

dose–responsecurvesandtocomputetheconcentrationsof

chem-icalagentsneededtoreduceabsorbanceoftheNRby50%(IC50),

calledcytotoxicmidpoint(Barile,1994).

Results

Tables1and2showthemutagenicityresultsfor

5-methoxy-3,4-dehydroxanthomegninwhich demonstrate that this compound

doesnotpossessmutagenicactivityforthestrainsTA100,TA97a,

and TA98, with MI less than 2.0 at all tested concentrations

with or without metabolic activation. The TA102 strain was

foundto be more sensitiveto the toxic effects of

5-methoxy-3,4-dehydroxanthomegnin;thus,itwasnecessarytodecreasethe

concentrationsusedwithTA102relativetotheotherstrains. In

fact,thelowestconcentrationusedintheexperimentswithTA100,

TA97a,andTA98wasclosetothehighestconcentrationusedwith

Table2

Mutagenic activity and mutagenic index (MI) of 5-methoxy-3,4-dehydroxanthomegnin (naphthoquinone) at various concentrations in strain TA102ofSalmonellatyphimurium inthepresence(+S9)andabsence(−S9)of metabolicactivation.

Naphthoquinone(␮g/plate) Numberofrevertants/plateand(MI)

TA102

−S9 +S9

0 400±10 301±5

6.25 355±6(0,93) 292±17(0.92) 12.5 401±8(1.05) 295±38(0.93)

25 384±5(1.01) 307±8(0.96)

50 389±23(1.02) 288±15(0.90)

75 379±30(1.0) 282±22(0.88)

Control+ 1157±54 1348±66

0=negativecontrol:75.0␮lDMSO.

Positive controls: +S9→2-aminofluorene (10.0␮g/plate). −S9→daunomycin (3.0␮g/plate).Theresultsarereportedasmeans±SD.

* p<0.05 (ANOVA)5-methoxy-3,4-dehydroxanthomegnin concentrations com-paredwithnegativecontrol.

TA102.Nevertheless,theTA102straindidnotdisplaymutagenicity intheabsenceorpresenceofmetabolicactivation.

Theconcentration–responsecurveforcytotoxicitywas estab-lishedfor5-methoxy-3,4-dehydroxanthomegnininthepresence and absence of an S9 mixture as an external metabolizing system (Fig. 1). Table 3 shows the IC50 of

5-methoxy-3,4-dehydroxanthomegninandcyclophosphamide(control)forMcCoy

cellsinthepresenceandabsenceoftheS9system.TheIC50obtained

for5-methoxy-3,4-dehydroxanthomegnininthepresenceoftheS9

mixturedidnotdifferfromthatattainedwithoutthemetabolizing

system.ExposureoftheMcCoycellstocyclophosphamidewithand

withoutS9confirmstheefficacyofthehepaticmicrosomalfraction

forinvitrometabolicactivationassay.

Table3

Cytotoxic midpoint (␮g/ml) on McCoy cells for

5-methoxy-3,4-dehydroxanthomegninandcyclophosphamidewithoutandwiththeS9metabolic activation.

Compound WithoutS9a WithS9a

5-Methoxy-3,4-dehydroxanthomegnin 11.9±1.15 10.08±0.38 Cyclophosphamide >150 21.6±1.7

(4)

0 20 40 60 80 100 120 140 160 0.0

0.1 0.2 0.3 0.4

ABS

(540

/620

nm

)

Concentration (µg/ml)

0 5 10 15 20 25 30

0.0 0.1 0.2 0.3 0.4 0.5

ABS

(

540

/620

n

m)

Concentration (µg/ml)

A

B

Fig.1.Concentration-effectrelationshipof5-methoxy-3,4-dehydroxanthomegnin(A)andcyclophosphamide(B)onMcCoycellswith(redline)andwithouttheS9(black line)metabolicactivationsystem.Eachpointandbarrepresentsthemean±SDforatleastthreeindependentexperimentscarriedoutintriplicate.(Forinterpretationofthe referencestocolorinthistext,thereaderisreferredtothewebversionofthearticle.)

Discussion

During the past few decades, plant research has revealed

several chemical compounds with important pharmacological

activities. Some of these compounds have been incorporated

intodrugssuchasantineoplastics-vinblastineandvincristine

iso-latedfromCatharanthusroseus,camptothecinderivativesobtained

fromCamptothecaacuminata,derivativesofpodophyllotoxinfrom

the rhizomes of Podophyllum peltatum and P. hexandrum, and

taxolextractedfromTaxusbrevifolia(CraggandNewman,2005;

Srivastava et al., 2005; Basmadjian et al., 2014).However, the

literaturealsodescribesmanyplantscontainingmutagenic

com-pounds,suchasfurocoumarins,tannins,anthraquinones,alkaloids,

andflavonoids(Rietjensetal.,2005;Nesslanyetal.,2009;Guterres

etal.,2013;Minineletal.,2014).Thisevidencedrawsattentionto

theimportanceofstudyingthegeneticrisksofplantcompounds,

sincethepresenceofmutagensinmedicinescanbedangerousto

humanhealth.

Previousstudieshaveshownthatspeciesbelongingto

Paepalan-thussubgenusPlatycaulonpossessnaphthopyranonederivatives.

Thenaphthopyranone paepalantine isolatedfrom P.vellozioides

exhibited strong mutagenicityand cytotoxicity (Varanda et al.,

1997).Thegenotoxicpotentialofpaepalantinewasalso

demon-stratedbyTavaresetal.(1999)ininvivoassayswithbonemarrow

cellsofWistarrats.Themutagenicactivityofplanifolinisolated

from P. planifolius was tested through Salmonella/microsome

assays,withresultsindicatingthatthisnaphthopyranonedimer

caused mutationsbysubstitution and by additionand deletion

ofbasesintheDNAsequence.Moreover,itsmutagenicpotential

increasedinthepresenceofmetabolization.Theseresults,alliedto

thechemicalstructure,suggestthatplanifolinmayactasan

inter-calatingagentintheDNAmolecule(Varandaetal.,2006).Inthe

presentstudy,weassessedthemutagenicactivityof

5-methoxy-3,4-dehydroxanthomegnin(1)usingSalmonella/microsomeassays.

The compound 5-methoxy-3,4-dehydroxanthomegnin was not

mutagenictostrainTA98,whichisusedtodetectframeshift

muta-tions.SubstitutionofDNAbasesinstrainTA100andoxidativeDNA

damageinstrainTA102werenotdetected.Nomutagenicitywas

observedintheTA97astrain,whichdetectsframeshiftmutations

that are sensitive to heavy metal mutagens. The results were

alsonegativeforalltheS.typhimuriumstrainstestedwiththeS9

mixture.

However, data reported in the literature reveal that some

quinones,includingnaphthoquinones,presentmutagenicityafter

metabolization. Chesis et al. (1984) concluded that the

muta-genicityof quinoneswasmainlydue toone-electron reduction

of quinones to semiquinones via the formation of

superox-ide anion radical (O2• −)and, subsequently, hydrogen peroxide

(H2O2). Tikkanen et al. (1983) observed that naphthoquinones

with1or2hydroxyl and/ormethylsubstituents aremutagenic

withmetabolicactivation.Nevertheless,it seemsthat the

posi-tion of substituents, as well as the number of substituents, is

important for mutagenicity. This point seems to explain the

absenceofmutagenicityof5-methoxy-3,4-dehydroxanthomegnin,

which has hydroxyl and methyl substituents and did not

present mutagenicity in tests with or without

metaboliza-tion.

Considerableinteresthasbeenfocusedonshort-terminvitro

cytotoxicityassayswithculturedcellsforevaluationofacute

tox-icitiesofchemicalagentsandpilotstudiesindrugdevelopment.

Suchassayswouldnotonlycurtailtheuseofanimalsformedian

lethaldose(LD50)andsimilartests,butwouldserveasan

econom-icalapproachtotherapidscreeningofxenobiotics(Greeneetal.,

2010).

Cytotoxicityduetodirect-actingchemicalsisreadily

demon-strable in vitro. However, the toxicity of many chemicals is

dependent upon metabolic activation, usually catalyzed by the

microsomal cytochrome P-450-dependent monooxygenase

sys-tem, and the majority of cell lines currently used in in vitro

cytotoxicitytestspossesslittle intrinsicdrug-metabolicactivity.

Consequently,problems arisewhenmetabolism-mediated

cyto-toxic events are studied in vitro. One possible answer to this

problemisthecoincubationofculturedcells withmetabolically

activerodentliverfractions,inamannersimilartotheirusein

invitromutagenesisassays(Gonzalez,2005;Lietal.,2012;Cole etal.,2014).

In previous studies, 5-methoxy-3,4-dehydroxanthomegnin

showedsignificantinvitrocytotoxicitytoMcCoycellsintheNR

microculturetest comparedwithcis-diamminedichloroplatinum

(cisplatin),oneofthemostwidelyusedchemotherapeuticdrugs

(Kitagawaetal.,2004).Ourresultsindicatedthatcombined

treat-mentwith5-methoxy-3,4-dehydroxanthomegninandhepaticS9

microsomalfractiondidnotalterthecytotoxicityofthis

(5)

One hypothesis explaining the same cytotoxic potential of

5-methoxy-3,4-dehydroxanthomegnin withand without theS9

microsomalsystemisthatthiscompounddoesnotactasa

sub-stratefortheenzymaticsystem.Previousstudiesexploredredox

cycling of 5-methoxy-3,4-dehydroxanthomegnin in a

nonenzy-matic system.In this study, we usedthe NRassay toevaluate

the ability of ascorbic acid associated with

5-methoxy-3,4-dehydroxanthomegnin to cause cell death in the same cell

line. The synergic effect of ascorbic acid on

5-methoxy-3,4-dehydroxanthomegnin(1)resultedinaCIthatwasseventimes

lowerthan the index for 5-methoxy-3,4-dehydroxanthomegnin

aloneaddedtotheMcCoycellline.Theobservedsynergiceffect

wasmostprobablydue toH2O2 generated byascorbate-driven

5-methoxy-3,4-dehydroxanthomegnin redox cycling (Kitagawa

et al., 2008), indicating that the association of

5-methoxy-3,4-dehydroxanthomegninwithascorbicacidmaybepromisinginthe

treatmentofsolidtumorsthataredeficientinantioxidantdefenses.

The resultsof this study investigating the mutagenic

activ-ity and metabolism-mediated cytotoxicity of

5-methoxy-3,4-dehydroxanthomegnin, allied in the future with more specific

biologicalassays, willcontribute tothesafeuseof

5-methoxy-3,4-dehydroxanthomegnin,signifyingitsbeneficialpropertiesas

apotentialanticancerdrug.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Authors’contributions

R.R.K.contributedtorunningthelaboratoryworkinisolation

and identification of the 5-methoxy-3,4-dehydroxanthomegnin,

biologicalstudies,analysisofthedata,anddraftedthepaper.W.V.

supervisedthelaboratoryworkintheisolationandidentification

ofthe5-methoxy-3,4-dehydroxanthomegnin andcontributedto

criticalreading ofthemanuscript. E.A.V. supervisedthe

labora-toryworkinAmesTestandcontributedtocriticalreadingofthe

manuscript.M.S.G.R.designedthestudy,supervisedthelaboratory

workinthecytotoxicitytest,andcontributedtocriticalreadingof

themanuscript.Alltheauthorshavereadthefinalmanuscriptand

approvedthesubmission.

Acknowledgements

ThisstudywassupportedbyagrantofCNPqtoR.R.K.,toFAPESP

forfinancialaidtoW.V.andfinancialassistancefromthe

PADC-UNESP.

References

Aardema,M.J.,2013.Theholygrailingenetictoxicology:follow-upapproachesfor positiveresultsintheAmesassay.Environ.Mol.Mutagen.54,617–620. Balunas,M.A.,Kinghorn,A.D.,2005.Drugdiscoveryfrommedicinalplants.LifeSci.

78,431–441.

Barile,F.A.,1994.IntroductiontoInVitroCytotoxicology:MechanismsandMethods. CRCPress,Inc.,BocaRaton.

Basmadjian,C.,Zhao,Q.,Bentouhami,E.,Djehal,A.,Nebigil,C.G.,Johnson,R.A., Serova,M.,Gramont,A.,Faivre,S.,Raymond,E.,Désaubry,L.G.,2014.Cancer wars:naturalproductsstrikeback.Front.Chem.2,1–18.

Benbow,J.W.,Aubrecht,J.,Banker,M.J.,Nettleton,D.,Aleo,M.D.,2010.Predicting safetytolerationofpharmaceuticalchemicalleads:cytotoxicitycorrelationsto exploratorytoxicitystudies.Toxicol.Lett.197,175–182.

Bernstein,L.,Kaldor,J.,Mccann,J.,Pike,M.C.,1982.Anempiricalapproachtothe statisticalanalysisofmutagenesisdatafromtheSalmonellatest.Mutat.Res.97, 267–281.

Borenfreund,E.,Puerner,J.A.,1985.Toxicitydeterminedinvitrobymorphological alterationsandneutralredabsorption.Toxicol.Lett.24,119–124.

Borenfreund,E.,Puerner,J.A.,1987.Short-termquantitativeinvitrocytotoxicity assayinvolvinganS-9activatingsystem.CancerLett.34,243–248.

Chesis,P.L.,Levin,D.E.,Smith,M.T.,Emster,L.,Ames,B.N.,1984.Mutagenicityof quinones:pathwaysofmetabolicactivationanddetoxification.Proc.Natl.Acad. Sci.81,1696–1700.

Coelho, R.G., Vilegas, W., Devienne, K.F., Raddi, M.S.G., 2000. A new cyto-toxicnaphthopyronedimer fromPaepalanthusbromelioides. Fitoterapia71, 497–500.

Cole,S.D.,Madren-Whalley,J.S.,Li,A.P.,Dorsey,R.,Salem,H.,2014.Highcontent analysisofaninvitromodelformetabolictoxicity:resultswiththemodel toxi-cants4-aminophenolandcyclophosphamide.J.Biomol.Screen.19,1402–1408. Cragg, G.M., Newman,D.J., 2005. Plants asa source ofanti-cancer agents. J.

Ethnopharmacol.100,72–79.

Gonzalez,F.J.,2005.RoleofcytochromesP450inchemicaltoxicityandoxidative stress:studieswithCYP2E1.Mutat.Res.569,101–110.

Greene,N.,Aleo,M.D.,Louise-May,S.,Price,D.A.,Will,Y.,2010.Usinganinvitro cytotoxicityassaytoaidincompoundselectionforinvivosafetystudies.Bioorg. Med.Chem.Lett.20,5308–5312.

Gurib-Fakim,A.,2006.Medicinalplants:traditionsofyesterdayanddrugsof tomor-row.Mol.Asp.Med.27,1–93.

Guterres,Z.R.,daSilva,A.F.,Garcez,W.S.,Garcez,F.R.,Fernandes,C.A.,Garcez,F.R., 2013.MutagenicityandrecombinagenicityofOcoteaacutifolia(Lauraceae) apor-phinoidalkaloids.Mutat.Res.757,91–96.

Harvey,A.L.,2008.Naturalproductsindrugdiscovery.DrugDiscov.Today13, 894–901.

Hill,H.Z.,Hill,G.L.,1984.Invitroactivationofcyclophosphamideforaninvitro chemosensitivityassay.J.Surg.Oncol.26,225–229.

Kitagawa, R.R., Raddi, M.S.G., Santos, L.C., Vilegas, W., 2004. A new cyto-toxic naphthoquinone from Paepalanthus latipes. Chem. Pharm. Bull. 52, 1487–1488.

Kitagawa,R.R.,Fonseca,L.M.,Ximenes,V.F.,Khalil,N.M.,Vilegas,W.,Raddi,M.S.G., 2008.Ascorbicacidpotentiatesthecytotoxicityofthenaphthoquinone 5-methoxy-3,4-dehydroxanthomegnin.Phytochemistry69,2205–2208. Kitagawa, R.R., Vilegas, W., Carlos, I.Z., Raddi, M.S.G., 2011. Antitumor and

immunomodulatory effects of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin.Braz.J.Pharmacogn.21,1084–1088.

Kitagawa,R.R.,Bonacorsi,C.,Fonseca,L.M.,Vilegas,W.,Raddi,M.S.G.,2012. Anti-Helicobacterpyloriactivityandoxidativeburstinhibitionbythenaphthoquinone 5-methoxy-3,4-dehydroxanthomegninfromPaepalanthuslatipes.Braz.J. Phar-macogn.22,53–59.

Li,A.P.,Uzgare,A.,LaForge,Y.S.,2012.Definitionofmetabolism-dependent xenobio-tictoxicitywithco-culturesofhumanhepatocytesandmouse3T3fibroblasts inthenovelintegrateddiscretemultipleorganco-culture(IdMOC) experimen-talsystem:resultswithmodeltoxicantsaflatoxinB1,cyclophosphamideand tamoxifen.Chem.Biol.Interact.199,1–8.

Ma,X.,Wang,Z.,2009.Anticancerdrugdiscoveryinthefuture:anevolutionary perspective.DrugDiscov.Today14,1136–1142.

Maron,D.M.,Ames,B.N.,1983.RevisedmethodsfortheSalmonellamutagenicity test.Mutat.Res.113,173–225.

Mininel,F.J.,Junior,C.S.L.,Espanha,L.G.,Resende,F.A.,Varanda,E.A.,Leite,C.Q.F., Vilegas,W.,Santos,L.C.,2014.Characterizationandquantificationofcompounds inthehydroalcoholicextractoftheleavesfromTerminaliacatappaLinn (Com-bretaceae)andtheirmutagenicactivity.Evid.BasedCompl.Alt.,1–11. Nesslany,F.,Simar-Meintières, S.,Ficheux,H.,Marzin,D.,2009.

Aloe-emodin-inducedDNAfragmentationinthemouseinvivocometassay.Mutat.Res.678, 13–19.

Newman,D.J.,Cragg,G.M.,2012.Naturalproductsassourcesofnewdrugsoverthe 30yearsfrom1981to2010.J.Nat.Prod.75,311–335.

Ponsoni,K.,Raddi,M.S.G.,Almeida,D.V.,Almeida,A.E.,Alécio,A.C.,2013.Effectsof liverS9enzymesonsomalargineandsolasodinecytotoxicityandmass spectro-metricfragmentation.Eur.FoodRes.Technol.237,179–184.

Resende, F.A., Vilegas, W., Santos, L.C., Varanda, E.A., 2012. Mutagenicity of flavonoidsassayedbybacterialreversemutation(Ames)test.Molecules17, 5255–5268.

Rietjens,I.M.C.M.,Boersma,M.G.,Vanderwoude,H.,Jeurissen,S.M.F.,Schutte,E.M., Alink,G.M.,2005.Flavonoidsandakenylbenzenes:mechanismsofmutagenic actionandcarcinogenicrisk.Mutat.Res.574,124–138.

Sacoman,J.L.,Monteiro,K.M.,Possenti,A.,Figueira,G.M.,Foglio,M.A.,Carvalho,.J.E., 2008.Cytotoxicityandantitumoralactivityofdichloromethaneextractandits fractionsfromPothomorpheumbellata.Braz.J.Med.Biol.Res.41,411–415. Santos,L.C.,Piacente,S.,Pizza,C.,Albert,K.,Dachtler,M.,Vilegas,W.,2001.Planifolin,

anewnaphthopyranonedimerandXavonoidsfromPaepalanthusplanifolius.J. Nat.Prod.64,122–124.

Santos,F.V.,Colus,I.M.S.,Silva,M.A.,Vilegas,W.,Varanda,E.A.,2006.Assessment ofDNAdamageinducedbyextractsandfractionsofStrychnospseudoquina,a Brazilianmedicinalplantwithantiulcerogenicactivity.FoodChem.Toxicol.44, 1585–1589.

Soares,V.C.,Varanda,E.A.,Raddi, M.S.G.,2006.Invitrobasaland metabolism-mediatedcytotoxicityofflavonoids.FoodChem.Toxicol.44,835–838. Srivastava,V.,Negi,A.S.,Kumar,J.K.,Gupta,M.M.,Khanuja,S.P.S.,2005.Plant-based

anticancermolecules:achemicalandbiologicalprofileofsomeimportantleads. Bioorg.Med.Chem.13,5892–5908.

Sudan,S.,Rupasinghe,H.P.,2014.Quercetin-3-O-glucosideinduceshumanDNA topoisomeraseIIinhibition,cellcyclearrestandapoptosisinhepatocellular carcinomacells.AnticancerRes.34,1691–1699.

(6)

Referências

Documentos relacionados

In addition, decompositions of the racial hourly earnings gap in 2010 using the aggregated classification provided by the 2010 Census with 8 groups, instead of the one adopted in

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

From the roots of Deguelia hatschbachii, the known flavonoids scandenin ( 1 ), methyl robustate ( 2 ) and 4’,5- dihydroxy-6-(3,3-dimethylalyll)-7-methoxy flavanone ( 3 )

Two 1,3-diarylpropanes, 1-(4’-hydroxy-2’-methoxyphenyl)-3-(3”-methoxy-4”- hydroxyphenyl)-propane and

Compound 3 was evaluated for its cytotoxicity, mutagenic activity and genotoxicity using the MTT test, the Ames test and the cytokinesis-block micronucleus assay (CBMN),

The goal of this study was to analyze cytotoxicity, genotoxicity and mutagenicity to bone marrow cells of mice of nature identical synthetic flavorings, passion fruit and

paniculatum ethanolic leaf extract nor its ethanolic fruit extract exhibited mutagenic ef fect in mice bone marrow; however, at higher doses, both extracts presented cytotoxic

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from