• Nenhum resultado encontrado

J. Braz. Soc. Mech. Sci. & Eng. vol.29 número1

N/A
N/A
Protected

Academic year: 2018

Share "J. Braz. Soc. Mech. Sci. & Eng. vol.29 número1"

Copied!
9
0
0

Texto

(1)

!" #! $ % &

' (

)% * + & %

& *

!

"

The aim of this work is to propose a methodology to estimate the fatigue limit of cylindrical contacts under a partial slip regime. Taylor’s point stress method, usually applied to estimate fatigue limit for notched structures, was associated with the Modified Wöhler Curves to define the fretting crack initiation threshold methodology. Twenty nine tests on cylindrical contacts were selected from the literature and considered to evaluate the quality of the estimates. The results agree well for twenty three experimental data. As the fatigue limit under fully reversed bending is the fatigue parameter usually available for most metallic alloys, it was also showed how the second fatigue limit needed to calibrate the proposed procedure could be estimated by taking full advantage from other standard predictive methodologies previously devised to estimate the mean stress effect under uniaxial fatigue loading.

Keywords: fretting fatigue, notch fatigue, multiaxial fatigue, short cracks, critical distance, size effect.

Introduction

! "#$$#%

& !

! " " # $ % &# ' ! & (

' (

)

! "* #$$+ #$$,- . #$$+%

.

"#$$+% * /$/0 ,

1 2

!

"

% *

"*

3 444% 5

2

*

6 7 "1 #$$+- 444%

"1

#$$8- 1 #$$+% 2

(2)

) # ( & * ( * ( + ( Nomenclature

a9Contact semi width.

a09Maximum non propagating crack length a0= Specimen width

c = Stich zone half width at the instant of maximum or minimum shear load.

d = Stick zone half width at an intermediate load step.

e = Stick zone offset from the centre of the contact at the instant of maximum or minimum shear load.

e’9Stick zone offset from the centre of the contact at an intermediate load step.

E = Young’s modulus

F = Geometrical correction factor for the stress intensity factor m1,λ= Constants depending on the material fatigue strength l9Specimen thickness

L = Characteristic material length constant (:= 1) P = Normal load.

p0 = Peak pressure. Q = Shear load.

Qmax= Amplitude of the shear load.

:= Load or stress ratio. R = Pad radius

t9Time instant. w = Load frequency.

Kth= Range of the threshold value of the stress intensity factor

ρ= Stress ratio on the plane of maximum shear stress amplitude

σ1= Range of the linear elastic maximum principal stress

σ−1= Fully reversed uniaxial plane fatigue limit ( range)

σ1 =Fully reversed uniaxial plane fatigue limit (amplitude)

σ0 =Uniaxial fatigue limit under zero to tension (repeated) loading.

σa=Amplitude of normal stress.

σB(t) = Bulk stress at time instant t. σBmax= Amplitude of the bulk stress.

σm= Mean normal stress. σ

σ σ

σn9Stress tensor due to the normal load

σn,max= Maximum stress normal to the critical plane σ

σ σ

σt = Stress tensor due to the tangential load

σys = Yield stress.

σus = Ultimate tensile strength.

σ′f = Fatigue strength coefficient.

fB

σ

= True fracture stress.

τa= Maximum shear stress amplitude among the material planes

Fatigue Damage and Structural Volume

; <= 6 ; ";<6;%

6 7 " 67%

!

! "1 #$$+%

!

" %

":9 % >

!

' (

?@ ; F 2

?@ ;

;

2 )

"

% !

*

: 2 *

;<6; 67

#

σ

σ":9 %

1 .

?A#

" %

" %

! " # $ % & $ ' ( )

* + $ $ ) ) " # , - ) . & ' /' ) *

6 B

) !

? @

; "?@ ;%

)

#

      =

− σ π

th K

L " %

2 σ

Kth

" : 2 % *

L L

" 444%

>

(3)

0

!

L

#7 87 "1

#$$+% " %

A

"* #$$ %

<

"; 448% >

2 "D E 4F/%)

#

$ 

     =

− σ

π F

K

a th "#%

?@ ;

" #$$$%

*

! !

L 2 '<

! G(

7

"1 #$$8- ; #$$+- 1

#$$+ % >

A

1 "; 448%

!

1 2 LA#

1 1 #

L < LA#

;

"1 # %

The theory of critical distances (TCD) and the modified Wöhler curve method (MWCM)

" 444% 67

"H ; H;%

"? ; ?;%

"* ; *;% 67

#$I "1

#$$+ % "#$$ %

?;

2L 5

67

67 H;

" # % *

2 L/2 2 σ1 "

444% " # %)

$

#

#

L

r

σ

θ

σ

=

=

=

"8%

L @2 " %

67 L

: " 444- 1 #$$8%

β

σ

σ

7

θ

" %

" %

" # 1 ) * ' ( ) * + $

$ ) 2 " # ''%3 ' 4 ) 5 )

(4)

) # ( & * ( * ( + (

;<6;

;

! ;<6;

"1 ? !! #$$#%)

$

= −

+

λ

τ

σ

τ

a n

a m "+%

2

a

τ

" % σ

λ m1

σ

σ

$

":9 % ":9$%

)

$

$ #

#

m σ σ

σ λ σ

− =

= −

"0%

σ0

1 " 4/$% " 2 ,%

J " 4 4% " 2 / % ; " 4,F% " 2 F 4%%

$

#

#

σ = σ ",%

$ $

us

σ σ σ

σ

=

"/%

$ $

fB

σ σ σ

σ

=  − 

 

"F%

$

$ K

f

σ σ σ

σ

=  − 

 

"4%

E σus σ′f

fB

σ

@2 "+%

;<6;

)

;<6;

"1 #$$0- ; #$$+%

!

2 ",% "4%

) ;<6;

2 "+%

"1 #$$8% )

− −

=

a max , n a

m SU

τ σ λ

τ " $%

* SU

-SU=$ :

"1 ? !! #$$#%

"? !! 1 - #$$8%

! ";

4,F-? !! 1 - #$$8- 1 #$$0 % !

"1 ? !! #$$#- ? !! 1

-#$$8- 1 #$$0%

;<6;

67 1 "#$$8%

;<6; H; 2

;<6;

*

! H;

;

1 *

τa σn,max"1 #$$+%

The Procedure to Apply the MWCM in Terms of the TCD for Fretting Fatigue

*

"P Q% "σB%

" 8%

!

;<6; 67

" σ1 Kth%

(5)

7

" % !

! @2 "+%

"1 #$$+- 1 ? !! #$$#- ? !! 1

-#$$8- 1 #$$0%

*

" % P

1

!

2

"& 3 44+%

. ) $ 8 *' . 3

!

& <

"y/a=L/2a%

"H 44F% 5

2 "+%

8

2

@

@

2

Available Experimental Data for Cylindrical Contacts

" + % "*

#$$+- 3 & 4F/%

+ * P

*

B(t) ' ( " %

σB(t) = σBmaxsin(wt) " % Q(t) = Qmax sin(wt) σBmax Qmax

w 2

t

Q<fP f 9$ /0 !

" %

" +%

. $ ! + * $ * ' ) $ '

1 p0";H % QmaxAP σBmax";H % acrit" % 0/ $ +0 4# / $ #FL$ 8F

# +8 $ +0 4# / $ FL$ #/

8 +8 $ +0 // # $ 8,L$ 0+

+ #$ $ +0 , F $ 0/L$ /

<

*

(6)

) # ( & * ( * ( + (

!

" %

$/ " %

!

! acrit acrit

H

# 0 1 0

H * +I6 "D C

E9 /+JH σys9 +,0;H

σus9 0$$;H %

!

" %

" %

0 " # * $ ) $ ' )

) " # $ ) 4

6 * ) * ' '

. $ 3 ) ) + 4 ) ) $ 8

*' 3 $ ' ' ! )

Series 1 Data and Error Index

R

" %

a

" % 6

" $,% SU1 SU2 SU3 SU4

# 0 $ $ $ $ $,00 $ $/8$ $ $F$ $ $/0F #0 $ 4 $ $ 0$+ $ 0+$ $ 0/+ $ 008 8/ 0 $ #F $ $ #4,/ $ 8$84 $ 8 $F $ 8$,, 0$ $ 8F #4 $ +$F/ $ + /# $ +#00 $ +#$+ /0 $ 0/ $ ,/ $ 00 $ $ 00F0 $ 0,0, $ 0, # $$ $ /, $ F0 $ ,8F+ $ ,+0/ $ ,0#/ $ ,+F+ #0 $ 40 $ /8 $ ,4,+ $ /$+/ $ / #, $ /$// 0$ + $ ,/ $ /0 4 $ /0/ $ /,# $ /04

. $ 3 ) ) + 4 ) ) $ 8

*' 3 $ ' ' )

Series 2 Data and Error Index

R

" %

a

" % 6

" $,% SU1 SU2 SU3 SU4

# 0 $ $4 $ $ ,8 $ #84 $ 8 $ $ #,/ #0 $ F $ $ $#8 $ $#8 $ $#8 $ $#8 8/ 0 $ #/ + $+ $ #+#0 $ #+,, $ #0$0 $ #+F

0$ $ 8, 0$ $ 88FF $ 8++/ $ 80$+ $ 8+,4 /0 $ 0+ $ F$ $ +/$8 $ +/0F $ +F$4 $ +//F $$ $ /# $ , $ 00 + $ 00,4 $ 0,#8 $ 004$ #0 $ 4$ #+ $ ,$0 $ , F $ , F# $ , +8 0$ $F $ ,4 $ ,0,/ $ ,,$/ $ ,,++ $ ,,#

. $ 0 3 ) ) + 4 ) ) $ 8

*' 3 $ ' ' )

Series 3 Data and Error Index

R

" %

a

" % 6

" $,% SU1 SU2 SU3 SU4

# 0 $ $4 $ $ #8+8 $ #+$4 $ #+/ $ #+88 #0 $ F $ $ $#F+ $ $#08 $ $##+ $ $#+# 0$ $ 8, $ $ #$/8 $ # +, $ ## , $ # /8 /0 $ 0+ #$ $ 884 $ 8+0$ $ 80$, $ 8+/

$$ $ /# +# $ +$4# $ + F# $ +#,4 $ +# , #0 $ 4$ $# $ +/,# $ +F 4 $ +F/+ $ +F+$

. $ 6 3 ) ) + 4 ) ) $ 8

*' 3 $ ' ' 0 )

Series 4 Data and Error Index

R

" %

a

" % 6

" $,% SU1 SU2 SU3 SU4

#0 $ + $ $ #F$, $ #/48 $ #/F$ $ #/FF 8/ 0 $ # $ $ ,00 $ , # $ 0/ $ 04, 0$ $ #F $ $ $F8/ $ $//, $ $/ F $ $/0+ /0 $ +# $ $ $8 4 $ $8// $ $+8# $ $84F

$$ $ 0/ $ $ # $ ,+ $ # 8 $ F8

#0 $ / 0/ $ , 8 $ ,,/ $ / 4 $ ,F/ 0$ $ F0 #8 $ 4/# $ #$80 $ #$4+ $ #$0F

& ! " 4F#%

; " 4+4% ; C

(7)

A )

(

)

( )

$ $ $ $ p t fp c y c a c f fp a y a x f p a y a x p t x y B t t n o e x σ σ σ σ σ +                                     ±                   = − " % M L 7 )

(

)

( ) ( )

( )

o B t t t n o p t fp c y c a c f fp t d y t d a t d f fp a y a x f p a y a x p t x y e x t e x σ σ σ σ σ σ +                   ±                                     ±                   = − ′ − $ $ $ $ % " % " # " #% 2

2 ",% L M L & po c

e !

*

d e’ !

n t

σB(t)

σxx 2

! H @

c, e, d, e’,σσσσ n σσσσ t

& 3 " 44+%

Results

;<6;

&

L 1

"#$$+% L9$ * +I6

" σ19#+F;H % 3

LA#9$ $0 *

! " % x/a9

2 " % " #%

SU " 2 $%

2

R9 R9$

7 "#$$+%

1 " 4/$%

*

R &

J ;

J " 2 /% ; "

σ

fB9,80 ;H " 2 F%

σ

f9 $ 0;H " 2 4%% F/ / 44 + 8$ / $ 0 ;H

;<6; 67;

SU1 SU2 SU3 SU4

1 # 0

R a $/ ! * SU ,

. $ 7 9 ) + ' $ ' ' ' - ) 4 * ) $

) - ) 1 R " % a " % 6

" $,% SU1 SU2 SU3 SU4

#0 $ 4 $ $ 0$+ $ 0+$ $ 0/+ $ 008

8/ 0 $ #F $ $ #4,/ $ 8$84 $ 8 $F $ 8$,,

# #0 $ F $ $ $#8 $ $#8 $ $#8 $ $#8

8 0$ $ 8, $ $ #$/8 $ # +, $ ## , $ # /8

/0 $ +# $ $ $8 4 $ $8// $ $+8# $ $84F +

$$ $ 0/ $ $ # $ ,+ $ # 8 $ F8

"SU1 SU2 SU3 SU4%

* + !

a9$ 0/ SU19 $ #

SU2 SU3 SU4 *

* +

a9$ +# SU1 9 $ $8 4 " 0%

! SU2 SU3

SU4 SU1

*

τaxσn,max/τa

SU1 SU2 SU3 SU4

, * " ," %% # "

," %% 8 " ," %% +" ," %%

SU1

τa "σn,max/τa

N % *

(8)

) # ( & * ( * ( + (

7;ττττ σσσσ ττττ ' '' ' $ ' ' !< < ) 0 ) )

$ $ ' ' ) ' =!< = < = < ) =0

Conclusions

*

; <=

6 ; 1 H 6

6

"* #$$,%

&

!

2

>

! 1<

! ;

*

! A

References

* D B B & #$$ ;

@ ; 1 . #+ F / F8

* O P * . 2 : 6 E * 1 ; @ 3 #$$, *

P 1

* . + 3 0 8,8 8,F

* O P * 3 7 444 * !

P . # 3 4 4+/ 40,

* O P * 3 7 . 2 : 6 #$$+

@ ;

1 . #/ 4,/ 4/F

7 3 #$$+ ; 1 @ 1 ? 1 ?

# 1*@ E 6 1Q H ##

#8 P

1 @ B 1 J #$$# H

P 1 *

. 8/ 3 , 0+4 0,+

J P 4 4 ; * @ ?

J 6 ? ,8 ,8,

& ! & FF# R E S B= P

: ; . 4# 0, /

& 7 * 3 7 ; B

* 7 44+

? !! H 1 ? #$$8 * 1 E ; H

? ; ? ) @

; 1 . #, / F/

; J 1 ? : #$$+ &

(9)

: 1

; B P 448 )

@ ; 1 . , 48 484

; : 7 4+4 6 P *

; . , #04 #,F

; P 4,+ ' H ; ( 1 8 #

7 & H 3 *@ + 1 * @

< H* 4,F 1 8 #

7 + 1*@ 1 6 3 +

; 3 408 1 E H ;

@ 3 J =

3 7 & 7 * 4F/ ; P ; 1 . #4 800

H . 44F 6 H * & 6

) 7 * ; . 1

1 * 6 H @ ; 1

. # #,4 #F0

1 B 3 < H & 4/$ * 1 1 ; P ; . 0 3 + /,/ //F 1 ? #$$+ *

@ ; 1 . #/ 84 +

1 ? * ! E ; J #$$+ ;

@ ; 1 . #/ 0

1 ? ? !! H #$$# * <=

@ ; 1

. #0 ,8 /F

@ ; 1 . #,

F# F88

1 ? 7 #$$+ 7 H 1

6 ) P 1 * @ 6 . 8F0

++8 +0#

1 ? 7 #$$+ 3

1 ) @ ; 1

1 ? 7 : #$$8 6

) * 6 ? H

"@ % 6 6 H H

1 ? : ? !! H #$$0

P . #/ 4#F 4+8

& H 6 H - : J #$$$ 1 * 6

L & H @ H E 1 @ 5B

"8 @ %

7 444 J )

P . # + 8 +#$

7 #$$ *

@ ; 1 . #+ # 0L##+

. 6 7 ! P 3 * #$$+ H

@ * .

/#/ /8,

D P : E P : 4F/ H

) @ ; 1 . $

Referências

Documentos relacionados

The process whereby the numerical error is quantified has recently been given the name of verification (Roache, 1998; AIAA, 1998). The objective of verification is to determine

[2005] in silicon chips found on the diamond tool rake face which reported besides a6Si and c6Si, Si6III (a body6centered cubic structure), Si6IV (hexagonal diamond structure)

According to IRG (International Research Group) diagram, which roughly indicates the transition among lubrication regimes based on load and velocity values (Gee, Begelinger, and

By considering the length scale of nonhomogeneity, this paper presents the weak patch test (rather than the standard one) of the graded element for nonhomogeneous materials to

driven by the heat flux coming from the gas phase. The energetic state for the case of the initial droplet temperature of 300 K is such that the Methanol mass fraction at the

The influence of the electrical current in the actuator coils, the air-gap between actuator and rotative system, the type of surface of the actuator poles (flat or curved) as well

From the engine design parameters’ point of view, the use of central spark location, lower compression ratios, retarded spark advance and higher engine speeds lead to lower

higher temperatures, the support reaction changes the direction of applied force lowering bending moments and increasing tensile stresses until reaching plastic collapse at a