• Nenhum resultado encontrado

Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum

N/A
N/A
Protected

Academic year: 2021

Share "Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum"

Copied!
9
0
0

Texto

(1)

Contents lists available atScienceDirect

Microbiological

Research

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / m i c r e s

Antagonistic

activity

of

fungi

of

Olea

europaea

L.

against

Colletotrichum

acutatum

Miguel

C.

Landum

a

,

Maria

do

Rosário

Félix

b

,

Joana

Alho

a

,

Raquel

Garcia

a

,

Maria

João

Cabrita

b

,

Fernando

Rei

b

,

Carla

M.R.

Varanda

a,∗

aInstitutodeCiênciasAgráriaseAmbientaisMediterrânicas,InstitutodeInvestigac¸ãoeFormac¸ãoAvanc¸ada,UniversidadedeÉvora,NúcleodaMitra,Ap. 94,7006-554Évora,Portugal

bDepartamentodeFitotecnia,EscoladeCiênciaseTecnologia,InstitutodeCiênciasAgráriaseAmbientaisMediterrânicas,UniversidadedeÉvora,Núcleo daMitra,Ap.94,7006-554Évora,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29October2015

Receivedinrevisedform1December2015 Accepted4December2015

Availableonline12December2015 Keywords: Anthracnosis Biocontrol Olive Volatiles

a

b

s

t

r

a

c

t

Funginaturallypresentinolivetreeswereidentifiedandtestedfortheirantagonisticpotentialagainst

Colletotrichumacutatum.Atotalof14isolateswereidentified,12belongedtogeneraAlternaria,

Epicoc-cum,Fusarium,Aspergillus,Anthrinium,Chaetomium,Diaporthe,Nigrospora,onetofamilyXylariaceaeand

onewasunclassified.AllfungalisolatesshowedsomeinhibitoryactionoverthegrowthofC.acutatum

duringdualculturegrowth,however,whenagar-diffusibletestswereperformedonlyfivefungalisolates

causedC.acutatumgrowthinhibition:Alternariasp.isolate2(26.8%),thefungusfromXylariaceaefamily

(14.3%),Alternariasp.isolate1(10.7%);Diaporthesp.(10.7%),Nigrosporaoryzae(3.5%).Volatilesubstances

producedbytheseisolateswereidentifiedthroughgas-chromatographytechniques,asphenylethyl

alco-hol,4-methylquinazoline,benzothiazole,benzylalcohol,lilial,galaxolide,amongothers.Theseinhibitory

volatilescouldplayasignificantroleinreductionofC.acutatumexpansioninoliveandtheirstudyas

potentialbiocontrolagentsshouldbefurtherexplored.

©2015ElsevierGmbH.Allrightsreserved.

1. Introduction

ColletotrichumisagenusofAscomycotafungithatcontainsome

ofthemostsuccessfulplantpathogenicfungalspeciescausinghigh

economiclossestoawiderangeofwoodyandherbaceouscrops,

especiallyfruits,vegetablesandornamentalsbothintropicaland

temperateregionsworldwide(Baileyetal.,1992;Zivkovicetal.,

2010;Baroncellietal.,2014).

Duetotheirscientificandeconomicimportance,speciesfrom

thegenusColletotrichumhaverecentlybeenrankedinthetopten

fungalpathogens(Deanetal.,2012).Oneofthemostpathogenic

speciesofthisgenusisColletotrichumacutatumSimmonds,which

causesanthracnose andblightinimportanthosts suchasolive,

almond, peach, citrus, strawberry, among others (Förster and

Adaskaveg,1999;MartínandGarcía-Figueres,1999;Timmerand Brown,2000;Zaitlinetal.,2000;Curryetal.,2002).Colletotrichum

acutatumcanaffectmostpartsoftheplantandsymptomsrange

fromshoot and leaf spots to fruitrot. Symptoms onfruits are

extremelyimportantduetotheeconomiclossestheycause,not

∗ Correspondingauthor.Fax:+351266760822.

E-mailaddress:carlavaranda@uevora.pt(C.M.R.Varanda).

onlyinthefield(pre-harvest)butalsoduringstorage(post-harvest)

(Baileyetal.,1992;Xiaetal.,2011;Menezesetal.,2014;Zhong etal.,2014).

At present most effective control measures against

Col-letotrichum diseases rely on cultural control, using resistant

cultivars,chemicalcontroland/orbiologicalcontrolusing

antago-nisticorganisms.Measuresofculturalcontrolareextremelyhelpful

todecreaseinoculalevelsandtoworsenfungioptimal

develop-mentconditions;however,theyarenotsufficientandtocombatC.

acutatumtheyshouldbeusedaspartofanintegratedcontrol.In

addition,resistant/tolerantvarietiesarenotavailableforallcrops,

costsassociatedwithreplacinganestablishedcropwitha

resis-tantareveryhighandproducersusuallyselectcultivarsbasedon

othercriteriathandiseaseresistance.Duetothis,themostcommon

strategytocontrolColletotrichumistheuseofchemicalfungicides.

Althoughfungicidesreducetheseverityofthedisease,eradication

isdifficulttoattainandrepeatedapplicationsareoftennecessary

tomaintainprotection.Inaddition,theneedtorespectfungicide

securityperiodsbeforeharvesting mayresultin an incomplete

protectionofthefruitsinadevelopmentalstageofveryhigh

sus-ceptibilityindiseasesasoliveanthracnose(Cacciolaetal.,2012).

Negativeeffectsoftheuseoffungicidesareevident;theabusein

theemploymentofchemicalcompoundshasfavoredthe

deteri-http://dx.doi.org/10.1016/j.micres.2015.12.001 0944-5013/©2015ElsevierGmbH.Allrightsreserved.

(2)

orationofhumanhealth,environmentalcontaminationandthe

developmentofpathogensresistanttofungicides(Prapagdeeetal.,

2008).

Biologicalcontrolassumesthereforeagreatimportance.Inthe

lastthreedecadestherehasbeenanincreasedinterestintheuse

ofbiologicalagentsforfungalplantpathogenscontroland

numer-ousmicroorganismshavebeenidentifiedaspotentialbio-control

agents(Alabouvetteetal.,2006).Planthostshavebeenthebest

placestoobtaingoodantagonistsagainstpathogensattackingthose

hosts.Plantsusuallyhaveseveralfungipresenteitherontheir

sur-faces(epiphytes)orinsidetissues(endophytes)thatdonotcause

anyvisibledamage. Thesefungiarevery diverseand theirrole

lacksstudy.Onthecategoryofpotentialbio-controlagents,

endo-phytic microorganismshave gained a considerableimportance.

Somestudies have shown thatendophytic fungiproduce

com-poundsthatinhibitthegrowthofotherfungibothinthefieldandin

storage(MercierandJiménez,2004;Rodriguezetal.,2009;Wang

etal.,2013).

The aim of this study focuses on assessing the ability of

severalfungiisolatedfromolivetoinhibitthegrowthofthe

phy-topathogenicfungusC.acutatumthroughtheirantagonisticactivity

andeffectofsecondarymetabolites.

2. Materialsandmethods

2.1. Isolationofpathogen

Thephytopathogenic fungusC.acutatumbelongs tothe

col-lection of the Mycology Laboratory, Institute of Mediterranean

Agricultural andEnvironmental Sciences(ICAAM), University of

Évora,Portugal.Itwasoriginallyisolatedfromfruitsfromanolive

treecv.GalegavulgargrowinginElvas,Portugal.StocksofC.

acu-tatumisolatesweregrownonpotatodextroseagar(PDA)(Oxoid)

plates,atroomtemperature(25–28◦C)andstoredat4◦Cforlater

use.

2.2. Samplecollectionandisolationoffungalisolates

Samplesofsymptomlessleaveswerecollectedfrom50

asymp-tomaticolivetreesfromcv.Galegavulgarfromanorchardlocated

intheSouthofPortugal(Évora).Tosearchforepiphytesand

endo-phytes,halfof thecollectedleaveswasnot disinfectedandthe

otherhalfwassurfacesterilizedbytreatmentwithethanol70%

(v/v)for2min,3%sodiumhypochloritefor3min,ethanol70%(v/v)

for1min,andafinalwashrepeatedthreetimesinsteriledistilled

waterfor1mineach(Vermaetal.,2007).Treatedanduntreated

leaveswereplacedonPetridishes(9cm)containingPDA.Plates

wereincubatedforsevendaysatroomtemperature(25±3◦C).

Fungiwerefurtherpurifiedbytransferringthemyceliafromthe

marginofthegrowingfungalcoloniestoindividualPetridishes

(5cm)containingfreshPDAandincubatedatroomtemperature

(25±3◦C)forsevendays.

2.3. Fungalidentification

DNAwasextractedfromfungalculturesgrowinginPDAplates

forsevendays,usingtheDNeasyPlantMiniKit(Qiagen),in

accor-dance to manufacturer’s instructions. The internal transcribed

spacer (ITS) region of nuclear rDNA was PCR amplified from

genomicDNAbyusingITS1andITS4primers(Whiteetal.,1990).

The PCR reactions consisted of 30–80ng of genomic DNA,

10mMTris–HCl(pH8.6),50mMKCl,1.5mMMgCl2,0.2mMdNTPs

(Fermentas),1␮Mofeachprimerand2.5UofDreamTaqDNA

poly-merase(Fermentas)inatotalvolumeof50␮L.Amplificationwas

carriedoutinaThermalCycler(Bio-Rad)at95◦Cfor2minfollowed

by40cyclesof95◦Cfor30s,50◦Cfor50s,and72◦Cfor60sanda

finalextensionat72◦Cfor10min.

PCRproductswerepurifiedusingGFXGelDNAPurificationKit

(GEHealthcareBiosciences)andsequencedinforwardandreverse

directionsbyMacrogen(TheNetherlands).Sequenceanalysisofthe

ITSsequenceswascarriedoutusingBioEditSequenceAlignment

Editorv.7.2.3(Hall,1999).Thesearchforhomologoussequences

wasdoneusingBasicLocalAlignmentSearchToolsattheNational

CenterforBiotechnologyInformationandonFungalBarcode

web-site(http://www.fungalbarcoding.org).

2.4. Antagonistictests

2.4.1. Directinhibitiontest

Fungalisolatesweretestedinvitrofortheirantagonisticactivity

againstC.acutatumusingthedirectoppositionmethod(Dennisand

Webster,1971).Briefly,a5mmmyceliadiscfromthemarginof

activelygrowingcolonyofC.acutatumwasplacedatabout1cm

fromthewallofa9cmPDAplateandattheoppositeside,asimilar

sizeddiscofthefungalisolatewasplaced.Plateswereincubated

at25±2◦Candthreereplicateswereusedforeachfungustested.

ControltestswerealsocarriedoutusingC.acutatumalone.Forthe

estimationofthegrowthinhibitionpercentage,theradialgrowth

ofC.acutatumwitheachoftheisolatedfungiandcontrolplateswas

measuredwithavernercaliperandrecordedconsecutivelyforfive

daysandonthedayseven,tenand15.Theinhibitionpercentage

wascalculatedusingthefollowingformula(RoyseandRies,1977):

I[inhibitionpercentage] =



R1[colonyradiusincontrol]−R2[colonyradiusintest] R1



×100

Theinteractiontypebetweenthetwofungiwasassessedusing

a scale from Ato D(Dharmaputra, 2003; Demici et al., 2012):

A=growthinhibitionofC.acutatumoncontactwithinteracting

fun-gus;B=mutualinterminglingofC.acutatumandinteractingfungus

butbothgrowslowlyandatdifferentrate;C=mutualinhibition

withaspacedistance<0.2cm;D=mutualinhibitionat distance

>0.2cm.

Microscopic observations were made to the margins of C.

acutatumexposedtofungalisolates.Theseweremountedon

micro-scopicslides andstainedwithlactophenolblue.A non-exposed

C.acutatumwasusedascontrol.Slides wereexaminedundera

microscope(OlympusBX41).

2.4.2. Volatilecompoundstest

Toevaluatethepossibleproductionofvolatilecompoundsthat

couldhavesomeactivityonthegrowthofC.acutatum,asimple

trialwasconducted(RahmansyahandRahmansyah,2013).

IsolatedfungiwereincubatedonPDAPetridishes(9cm)for

fivedays.Insmall(5cm)PDAplatesC.acutatumincubatedfor48h.

Afterthoseperiods,thesmallplatescontainingthephytopatogenic

funguswereplacedinvertedontopofeachoftheisolatedfungus.

Thetopwassealedwithparafilmand adhesivetapetoprevent

diffusionofvolatiles.ThegrowthofC.acutatumineachoftheplates

containingadifferentfunguswascomparedwithacontrolplaced

invertedinaplatecontainingonlyPDAmedium.Threereplicates

wereused.

Afterfivedaysofincubationat25±3◦C,thediametersofthe

pathogencoloniesweremeasuredandthepercentageofinhibition

wascalculatedusingthesameformulaaspreviouslydescribed.

2.4.3. Non-volatilecompoundstest

Erlenmeyer’sflaskseach containing15mlofpotato dextrose

(3)

themarginsofactivelygrowingcoloniesoffungalisolatesand

incu-batedfor 12 daysat 25±2◦C. Afterthat periodsolutions were

filteredusingfilterpapers150mm(Whatman)toremovespores

andotherfungalstructures.

75␮l,100␮land200␮lofthedifferentculturefiltrateswere

placedina1cmcircularholemadedirectlyinthemediuminthe

oppositesidewhereC.acutatumwasgrowingfortwodaysina9cm

PDAplate.Threereplicatesforeachfilteredsolutionwereusedas

wellasacontrolwheretheholewasfilledwith75␮lofPDBalone.

2.5. Extractionandchromatographicanalysisofvolatiles

Extractionswereperformedasdescribedpreviously(Vilanova

etal.,2012).Briefly,toa10mltube,8mlofPDBwhereineach

fun-gusgrewandamagneticstirbar(22.2mm×4.8mm)wereadded.

3-Octanolwasusedasinternalstandard.Extractionwasdoneby

stirringthesamplewith500␮lofdichloromethane(Merck,

Darm-stadt,Germany) for15min.Aftercoolingat0◦Cfor10min,the

magneticstirbarwasremovedandtheorganicphasewasobtained

Fig.1.Illustrationofsomeofthefungiusedinthedirectinhibitiontestandthedifferenttypeofinteractionsobserved7daysafterinoculation.Topleft:C.acutatum(control plate);topright:interactiontypeCshownbetweenNigrosporaoryzaeandC.acutatum;bottomleft:interactiontypeAshownbyAspergillusnigerandC.acutatum;bottom right:interactiontypeDshownbyAlternariasp.isolate2andC.acutatum.

Fig.2. Colletotrichumacutatumradialmycelialgrowth(cm)overtimeregisteredindirectinhibitiontestsusingfungiisolatedfrom(A)non-disinfectedand(B)disinfected leaves.

(4)

Fig.3. Inhibitionpercentagevaluesobserved7daysafterinoculationofbothfungiinPDAplatesduringdirectinhibitiontest.

Fig.4. Inhibitionpercentagevaluesobserved7daysafterinoculationofbothfungiduringvolatilecompoundtest.

Table1

Classification oftheinteraction typebetweenthe antagonisticfungiand Col-letotrichumacutatum.

Fungus Typeofinteraction

Aspergillusniger;unclassifiedendophytic fungus

A

Nigrosporaoryzae C

Alternariasp.isolate1and2;Arthriniumsp.;Chaetomium sp.;Diaporthesp.;Epicoccumnigrumisolate1,2and3; Fusariumsp.isolate1and2;Xylariaceae

D

bycentrifugation (2948×g, 5min,4◦C),withthe extractbeing recovered in a vial using a Pasteur pipette. Then thearomatic extractwasdriedwithanhydroussodiumsulfate(Merck, Darm-stadt,Germany)andcollectedagaininanewvial.

AThermoFinniganTraceGCgaschromatograph(Thermo Finni-gan, Austin, TX), equipped with a Thermo Finnigan Polaris Q

mass selectivedetectorwasused. Samples(1␮l)wereinjected inthesplitlessmodeandvolatileswereseparatedusingafused silica capillarycolumn, ZB-Wax30m, 0.25mm i.dand 0.25␮m filmthickness (ZebronCapillaryGC column;PhenomenexUSA) under the following column temperature program:40◦C (held 1min)heatedat4◦C/minto100◦Candthenheatedat8◦C/minto 250◦C(heldfor10min);andaRtx-5(Crossbond5%diphenil—95% dimetilpolysiloxane)30m,0.25mmi.dand0.25␮mfilmthickness (RESTEK,USA)usingthefollowingcolumntemperatureprogram: 40◦C(held1min)heatedat5◦C/minto250◦C(held5min)and thenheatedat5◦C/minto300◦C(held1min).

Carriergaswasgradeheliumataflowrate(constantflow)of 1.0ml/min;theinjectiontemperaturewas250◦C,insplitlessmode withasplitflowof50ml/min.Detectionwascarriedoutbypositive ionelectronimpact(EI)massspectrometryinthefullscanmode, usinganionizationenergyof70eVandatransferlinetemperature of250◦C.

(5)

Fig.5.Inhibitionpercentagevaluesobserved7daysafterinoculationduringnon-volatilecompoundstest.

Table2

Compoundsidentifiedinatleastonesample,andsomecompoundsbelongingtodifferentchemicalfamilies.

Compounds MW MSions N.oryzae Alternariasp.isolate2 Alternariasp.isolate1 Xylariaceae Diaporthesp.

Phenylethylalcohol 122 91,92,122,65 x x – x x 4-Methylquinazoline 144 144,103,117,129 – – – x – Benzothiazole 135 135,108,69,82 – – – x – Benzylalcohol 108 79,108,107,77 – x – – – Lilial 204 189,147,131,117 x x – x x Galaxolide 258 243,213,244,258 x x – x x Chemicalfamilies

Propanoicacidderivatives 71,43,89 x x x x x

Pyrazinecompounds 154,85 x x x x x Benzaldehydederivatives 92 x – – – – Ketonescompounds 55,43,83,111,126 x – – – – Aminesderivatives 72,44 x x – x x Phenol,bis-dimethylethyl 191,57,206 x – – x x Table3

(6)

Themassacquisitionrangewasm/z30–450andthescanning rate3scans−1.Chromatographicpeakswereidentifiedby com-paringtheirmassspectrawiththosereportedintheliteratureand incommerciallibrariesNISTMSSearch2.0andWiley7.Thelinear retentionindexvalueswerecalculatedinbothcolumnsdescribed. Foreachcompound,thelinearretentionindexescalculatedwere comparedwiththesereportedbyotherauthorsandNISTlibrary inordertohaveanothertooltohelpontheidentificationof com-pounds.Allsampleswereanalyzedinduplicate.

2.6. Statisticalanalysis

Analysisof variance (ANOVA) was conductedregarding dif-ferencesamongantagonisticfungiineachperiod,usingtheIBM SPSSstatistical package v.20. Multiplemean comparisonswere madeusingTukeyHSDtestwhenstatisticaldifferenceswerefound betweendatasets(P<0.05).

3. Results

Atotalof14differentfungiisolateswererecoveredfrom disin-fectedandnon-disinfectedleavesof50treesofOleaeuropaeacv. GalegavulgarfromanorchardlocatedinÉvora(Portugal).

Sequencingresultsconfirmed thepresence of sevendistinct fungiinnon-disinfectedleaves:Alternariasp.isolate1;Aspergillus niger;Epicoccumnigrumisolate1andisolate2;Fusariumsp.isolate 1;Anthriniumsp.andafungusoftheXylariaceaefamilywhichwas notpossibletodeterminatethespecies;andsevenspeciesin dis-infectedleaves:Alternariasp.isolate2;Chaetomiumsp.;Diaporthe sp.;E.nigrumisolate3;Fusariumsp.isolate2;Nigrosporaoryzaeand anundeterminatedendophyticfungus.

Mostpredominantspecies wereE.nigrum;Alternariasp.and Fusariumsp.,totallingsevenofthe14fungalspeciesdetected.

All14fungalisolateswerescreenedfortheirantagonistic activ-ityagainstthephytopatogenicfungusC.acutatum.

C.acutatumthroughout thedirect inhibition testswas char-acterizedbyacontinuousincreasinggrowth(Table4)exceptin

thepresenceofA.niger,N.oryzaeandtheunclassifiedendophytic

fungus(Fig.2AandB).A.niger(Fig.1bottomleft)andthe

unclassi-fiedendophyticfungiinhibitedthegrowthofC.acutatumthrough

contact(interaction typeA)whereasN.oryzae(Fig.1 topright)

inhibitedthegrowthofC.acutatumwithaspacedistanceofless

than0.2cm(interactiontypeC)(Table1).Alltheotherfungal

iso-latesshowedsomemutualinhibitionandtheirgrowthpresented

distancesofmorethan0.2cmbetweenantagonistandpathogenic

fungi(interactiontypeD)(Fig.1bottomright).

Theinhibitionpercentagescalculatedforfungalisolatesranged

from11.8%to86.3%(Fig.3),showingthatallfungalisolateshad

someinhibitoryactionoverthegrowthofC.acutatum.Asexpected

fromtheinteractiontypesfound,A.niger,N.oryzaeandthe

unclas-sifiedendophytewerethosethatdemonstratedgreaterabilityto

inhibitthegrowthofC.acutatuminthedirectinhibitiontest,with

percentagesof86.3%,66.7%and68.6%,respectively.

MicroscopicobservationsoftheinteractionsbetweenC.

acuta-tumandtheantagonisticfungididnotshowanyalterationsinthe

pathogenhyphae(datanotshown).

Allthe14fungalisolatestestedproducedvolatilesthatcaused

someinhibition onthegrowthof C. acutatum.Although

differ-encesbetweenisolateswerenotsignificant,themosteffectivewere

Alternariasp.isolate2,E.nigrumisolate3andFusariumsp.isolate

2withaninhibitionofgrowthof48%andthelesseffectivewere

Diaporthesp.andN.oryzaepresenting28%(Fig.4;Table5).

Asfortheagardiffusibletests,onlyfivefungalisolates,fourof

theseisolatedfromdisinfectedleaves,producedsubstances

capa-ble of diminishingthe radialgrowth of C.acutatum presenting Table

4 Mean (± Std. error) of radial mycelial growth (cm) of Colletotrichum acutatum over time during the direct inhibition test. Day Control Alternaria sp. isolate 1 Alternaria sp. isolate 2 Arthrinium sp. Aspergillus Chaetomium sp. Diaporthe sp. Epicoccum nigrum isolate 1 Epicoccum isolate 2 Epicoccum isolate 3 Fusarium sp. isolate 1 Fusarium sp. isolate 2 Nigrospora

Unclassified endophytic fungus

Xylariaceae 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2 0.47 ± 0.03 0.37 ± 0.09 0.33 ± 0.07 0.20 ± 0.06 0.20 ± 0.00 0.30 ± 0.00 0.23 ± 0.07 0.23 ± 0.03 0.40 ± 0.00 0.23 ± 0.03 0.33 ± 0.07 0.33 ± 0.07 0.37 ± 0.03 0.33 ± 0.03 0.27 ± 0.03 3 0.53 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.20 ± 0.06 0.23 ± 0.03 0.33 ± 0.07 0.40 ± 0.00 0.33 ± 0.03 0.43 ± 0.03 0.33 ± 0.03 0.47 ± 0.03 0.47 ± 0.03 0.37 ± 0.03 0.37 ± 0.07 0.40 ± 0.06 4 0.57 ± 0.03 0.57 ± 0.03 0.57 ± 0.03 0.20 ± 0.06 0.23 ± 0.03 0.40 ± 0.00 0.37 ± 0.09 0.40 ± 0.00 0.43 ± 0.03 0.33 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.40 ± 0.00 0.37 ± 0.07 0.47 ± 0.03 5 0.67 ± 0.03 0.57 ± 0.03 0.57 ± 0.03 0.43 ± 0.03 0.23 ± 0.03 0.43 ± 0.03 0.50 ± 0.00 0.57 ± 0.03 0.50 ± 0.00 0.50 ± 0.00 0.57 ± 0.03 0.53 ± 0.03 0.47 ± 0.03 0.37 ± 0.07 0.53 ± 0.03 7 1.70 ± 0.00 1.07 ± 0.07 1.23 ± 0.09 1.27 ± 0.09 0.23 ± 0.03 1.33 ± 0.07 1.50 ± 0.06 1.43 ± 0.03 1.30 ± 0.15 1.27 ± 0.03 1.17 ± 0.12 1.43 ± 0.03 0.57 ± 0.03 0.37 ± 0.07 1.13 ± 0.03 10 2,07 ± 0.03 1.63 ± 0.09 1.50 ± 0.15 1.83 ± 0.09 0.23 ± 0.03 1.77 ± 0.18 1.67 ± 0.12 1.90 ± 0.10 1.77 ± 0.09 1.53 ± 0.03 1.90 ± 0.06 2,03 ± 0.07 0.57 ± 0.03 0.53 ± 0.03 1.93 ± 0.12 15 3,97 ± 0.03 1.63 ± 0.09 1.50 ± 0.15 1.83 ± 0.09 0.23 ± 0.03 1.77 ± 0.18 1.67 ± 0.12 1.90 ± 0.10 1.77 ± 0.09 1.53 ± 0.03 1. 90 ± 0.06 2,03 ± 0.07 0.57 ± 0.03 0.53 ± 0.03 1.93 ± 0.12

(7)

Table 5 Mean (± Std. error) of radial mycelial growth (cm) of Colletotrichum acutatum over time during the volatile test. Day Control Alternaria sp. isolate 1 Alternaria sp. isolate 2 Arthrinium sp. Aspergillus niger Chaetomium sp. Diaporthe sp. Epicoccum Epicoccum isolate 2 Epicoccum isolate 3 Fusarium sp. isolate 1 Fusarium sp. isolate 2 Nigrospora oryzae Unclassified endophytic fungus

Xylariaceae 1 0.50 ± 0.00 0.47 ± 0.03 0.43 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.40 ± 0.00 0.43 ± 0.03 0.43 ± 0.03 0.40 ± 0.00 0.43 ± 0.03 0.50 ± 0.00 0.50 ± 0.00 2 0.63 ± 0.03 0.47 ± 0.03 0.43 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.60 ± 0.00 0.47 ± 0.03 0.40 ± 0.00 0.43 ± 0.03 0.43 ± 0.03 0.40 ± 0.00 0.47 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 3 0.67 ± 0.03 0.47 ± 0.03 0.43 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.60 ± 0.00 0.47 ± 0.03 0.40 ± 0.00 0.43 ± 0.03 0.43 ± 0.03 0.43 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.50 ± 0.00 4 0.67 ± 0.03 0.47 ± 0.03 0.43 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.60 ± 0.00 0.47 ± 0.03 0.40 ± 0.00 0.43 ± 0.03 0.43 ± 0.03 0.43 ± 0.03 0.50 ± 0.03 0.50 ± 0.00 0.50 ± 0.00 5 0.73 ± 0.03 0.47 ± 0.03 0.43 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.60 ± 0.00 0.47 ± 0.03 0.47 ± 0.03 0.43 ± 0.03 0.50 ± 0.00 0.43 ± 0.03 0.60 ± 0.00 0.50 ± 0.00 0.53 ± 0.03 6 0.80 ± 0.00 0.47 ± 0.03 0.43 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.60 ± 0.00 0.47 ± 0.03 0.47 ± 0.03 0.43 ± 0.03 0.50 ± 0.00 0.43 ± 0.03 0.60 ± 0.00 0.50 ± 0.00 0.53 ± 0.03 7 0.83 ± 0.03 0.47 ± 0.03 0.43 ± 0.03 0.47 ± 0.03 0.50 ± 0.00 0.47 ± 0.03 0.60 ± 0.00 0.47 ± 0.0.03 0.47 ± 0.03 0.43 ± 0.03 0.50 ± 0.00 0.43 ± 0.03 0.60 ± 0.00 0.50 ± 0.00 0.53 ± 0.03

someinhibitionvalues:Alternariasp.isolate2 (26.8%),the fun-gusfromXylariaceaefamily(14.3%),Alternariasp.isolate1(10.7%); Diaporthesp.(10.7%),N.oryzae(3.5%)(Fig.5).

Althoughonlya fewvolatilecompoundswereidentified,the

fivesamplesunderstudypresentedsomedifferentcharacteristics

(Table2).Remarkably,thesampleofAlternariasp.isolate1was

thepoorestoneintermsofvolatilecompounds.Somecompounds

seemtobecharacteristicofsomesamples,namelyXylariaceae

(4-methylquinazolineand benzothiazole) andAlternaria sp. isolate

2(benzylalcohol).Phenylethylalcoholispresentinallsamples,

exceptinsampleofAlternariasp.isolate1,althoughindifferent

concentrations.InsamplesDiaporthesp.andN.oryzae,itwasthe

largestpeakwhileinXylariaceaesamplethepeakareaisverysmall.

DespiteAlternariasp.isolate1peakhasasimilarrelativeareatothat

presentedinDiaporthesp.andN.oryzae,thereisahugepeakthat

showsafragmentationpatternthatcanbeascribedasanesterof

anorganicacid,probablycontainingafluoratom.

Pyrazinecompoundsandpropanoicacidderivatives,two

chem-ical families, were detected in all the fungal samples tested

(Table 3). Compoundspresenting fragmentation ionstypical of

pyrazinecompounds,m/z154andm/z85,appearseveraltimesin

thechromatogram,whichseemstoindicatethepresenceofatleast

fourpyrazinederivatives.Regardingpropanoicacidderivativesall

samplesseemstohavetwodifferentcompoundsbelongingtothis

family.

4. Discussion

Plantsare often colonizedby many fungithat do not cause

anydiseasesymptoms.Manyofthesemayhavebeneficialeffects

on plant growth by providing essential nutrients to the plant

(Harrison,2005),indirectlymakingitlesssusceptibletopathogens,

or directly protecting them through an antagonistic effect on

pathogens(Wangetal.,2013).

Inthisstudy,14fungalisolateswereobtainedfrom50olive

trees.Fiveoftheseisolateswereidentifiedtospecieslevel,seven

togenuslevel,oneatfamilylevelandonewasunidentified.Most

predominantfungiwereisolatesofE.nigrum,Alternariasp.and

Fusariumsp.totallinghalfofthefungiisolated.Isolatesbelonging

tothesespecies/generawerefoundinbothdisinfectedand

non-disinfectedleaves.Fungalisolatesobtainedfromdisinfectedleaves

are endophytesand fungal isolates obtainedin non-disinfected

leavesmaybeeitherendophytesorepiphytes.However,allfungal

isolatesobtainedinthisstudyarecommonlyfoundasendophytes

inawiderangeofplantsandnotexclusiveofolive.

Resultsofdirectinhibitiontestsrevealedthatallfungalisolates

inhibitedmycelial growthof C.acutatum.Thehighestpathogen

growthinhibitionpercentages86.3%,66.7%and68.6%,were

pro-ducedbyA.niger,N.oryzaeandanunclassifiedendophytefungus,

respectively.

Althoughinitiallyallfungiwereplacedonoppositesidesofthe

Petridishes,fromdaytenforward,antagonistmycelialgrowthled

toadirectcontactofthepathogenwithA.nigerortoadistance

oflessthan0.2cmwithN.oryzaeandtheunidentifiedendophyte

fungus.This couldbe anindication of theimportance thatthe

physicalproximitybetweenfungicouldhaveontheirantagonistic

capability,sincecompetitionforspaceandfoodcanbean

impor-tantlimitingfactorfortheestablishmentofanyfungus,factwell

establishedforotherantagonists(Alabouvetteetal.,2006;Howell,

2003).

On the otherhand, thepathogen growth inhibition starting

fromdaytwoinsomeisolates,especiallyAnthriniumsp.,A.niger,

Diaporthe sp.; E. nigrum isolates 1 and 3 and the unidentified

Xylariaceaemember,wouldsuggestthattheymightreduceC.

(8)

competitionorparasitism.Infact,theantagonisticpropertiesof

microorganismsthatactasbiocontrolagentsarebasedonthe

acti-vation ofmultiple mechanisms.Theycan controlpathogens by

competingfornutrientsandspace,bymycoparasitism,antibiosis

ormetaboliteproduction(HeydariandPessarakli,2010)eitherby

affectingthepathogenofbypromotingplantgrowthanddefence

mechanisms.

All fungal isolates identified in this study are ascomycetes,

which areknown tobeactiveproducers ofantimicrobial

com-pounds (Zhi-Lin et al., 2012). Some species of Aspergillus and

Fusarium,havealreadybeenprofiledfortheirorganiccompounds

and some antifungal components were isolated (Morath et al.,

2012; Siddiqueeet al.,2015).Alternaria sp.,A. niger, Epicoccum

sp.and membersof theXylariaceaefamily have alsoshownto

producecompoundsmostlyunidentified(Newcombeetal.,2009;

Wanietal.,2010;Zhi-Linet al.,2012).Thevolatilecompounds

testshowedthatallisolatesproducedvolatilesthat,atsomelevel,

diminishedthegrowthofC.acutatum.Differencesingrowthwere

significantfromdayfiveonwardsforallfungalisolatesandslightly

moreaccentuatedinAlternariasp.isolate2,E.nigrumisolate3,

Fusariumsp.isolate2(Table5).

Asfortheagardiffusiblecompoundstest,greaterdifferences

wereobserved,fromthe14isolatestested,onlyfiveisolates

pro-ducedcompoundscapableofinhibitingthegrowthofC.acutatum.

AmongthesearethetwoisolatesofAlternariasp.thatreached

inhi-bitionpercentagesof26.8%and10.7%whenthehighestsolution

volume(200␮l)wasused.Thisobservationisinlinewithrecent

studiesthathighlighttheabilityofsomeAlternariasp.isolatesto

producebioactivemetaboliteswithantifungalactivities(Louetal.,

2013).Otherisolatesthatproducedcompoundscapableof

reduc-ingC.acutatumgrowth,includedDiaporthesp.,N.oryzaeandthe

unidentifiedXylariaceae.Thelackofresultsontherestofthe

iso-latestestedmaybeduetolackofproductionofsubstanceswith

antifungalactivityingeneralorinparticularagainstC.acutatum

orininsufficientconcentrationstoproduceapositiveinhibitory

result.Agardiffusiblesubstancesproducedbytheseisolateswere

identified throughgaschromatography techniques.The highest

varietyofcompounds(nine)wasdetectedinN.oryzaeandinthe

Xylariaceaememberandthelowest(two)inAlternariasp.isolate

1.

Allcompoundsdetectedareknowntohavesomeantifungal

properties(Carter etal.,1958;Morath etal.,2012;Yadavetal.,

2011).Thebenzylalcohol,detectedonlyinAlternariasp.isolate2,

mayberesponsibleforthehighestinhibitionofC.acutatumgrowth

causedbythisisolate,eitherbyitselforinassociationwiththeother

compounds.Thecompounds4-methylquinazolineand

benzothia-zole,onlyfoundintheXylariaceaemember,mayberesponsiblefor

thesecondhighestinhibitionofC.acutatum.

Twofamiliesofcompounds,pyrazineandpropanoicacid

deriva-tives, already known as substances with antifungal properties

(Morathetal.,2012),weredetectedinallthefungitested.

IdenticalcompoundsweredetectedinsamplesfromN.oryzae

andDiaporthesp.withtheexceptionofbenzaldehydederivatives

andketonescompoundsthatwereonlydetectedinN.oryzae.These

benzaldehydederivativesandketonescompoundshoweverdonot

seemtoenhanceN.oryzaeantifungalactivityagainstC.acutatum.

Itisofgreatinteresttotestthesefungalcompounds

individu-ally,namelybenzylalcoholproducedbyAlternariasp.isolate2,or

combinedandathigherdosestodeterminetheirpossibleuseas

controlsubstancesofC.acutatum.

Interestingly, fungi that produced more antagonistic

com-poundsagainstC.acutatumusuallypresentedthelowestinhibition

percentage values in the direct inhibition test, suggesting that,

althoughfungimayhavedifferentcompetitionstrategiestheymay

havea predominant one,which maydependontheconditions

and/orpathogen.Forexample,someisolatesofA.nigerhaveshown

toproduceinhibitorycompoundsagainstavarietyoffungi(

Zhi-Lin etal.,2012),howevertheisolateusedinthis studydidnot

standoutintheproduction ofcompoundscapableofinhibiting

C.acutatumgrowth,andA.nigerwasmoresuccessfulininhibiting

C.acutatumgrowththrougharapidgrowthandcompetitionfor

space/nutrients.

Inagriculture,thereisanincreasedinterestintheuseof

biolog-icalcontrolagents.Manyspeciesoforganismshavebeenstudied

asantagonistsasawiderangeofpathogens,howeverthestudy

ofantagonistsagainstC.acutatum,islimited.Theoutcomeofthis

studyisparticularlyusefulintheidentificationoflikelyfungal

iso-lates,orsubstances,candidatesforC.acutatumbiocontrolaswell

in understandingthemechanisms theyusetoreducepathogen

growth.

Thisstudyincreasestheknowledgeoffungalcommunitiesand

thesubstancestheyproducethatmaybeusedinbiological

con-trolofC.acutatum,thecausalagentofthemostimportantfungal

diseaseofolivefruitsworldwide,oliveanthracnose.Current

con-trolmeasuresarebasedonpreventiveuseofchemicaltreatments,

selectionofresistantcultivarsandearlyharvesting(Cacciolaetal.,

2012).Thisstudycontributestothedevelopmentand

implementa-tionofenvironmentalfriendlymanagementstrategiesbyreducing

theexcessoffungicideoncropplants,whichisoneofthemain

concernsofpublichealth.

Acknowledgments

This work was supported by Inalentejo

ALENT-07-0324-FEDER-001747, OPERAC¸ÃO: Gestão Integrada da Protec¸ão do

Olival Alentejano. Contributos para o seu desenvolvimento e

implementac¸ão. Carla Marisa R. Varanda is recipient of a PhD

fellowship from Fundac¸ão para a Ciência ea Tecnologia (FCT),

SFRH/BPD/76194/2011, financed by QREN – POPH – Typology

4.1—co-financedbyMESnationalfundingandtheEuropeanSocial

Fund.ThisworkhasbeensupportedbyFEDERandNationalfunds,

through the Programa Operacional Regional do Alentejo

(InA-lentejo)OperationALENT-07-0262-FEDER-001871/Laboratóriode

BiotecnologiaAplicadaeTecnologiasAgro-Ambientais.

References

Alabouvette,C.,Olivain,C.,Steinberg,C.,2006.Biologicalcontrolofplantdiseases: theEuropeansituation.Eur.J.PlantPathol.114,329–341.

Bailey,J.,O’Connell,R.,Pring,R.,Nash,C.,1992.Infectionstrategiesof

Colletotrichumspecies.In:Bailey,A.J.,Jegar,M.J.(Eds.),Colletotrichum:Biology, PathologyandControl:Oxford.BritishSocietyforPlantPathology,pp.88–120. Baroncelli,R.,Sreenivasaprasad,S.,Sukno,S.,Thon,M.,Holub,E.,2014.Draft

genomesequenceofColletotrichumacutatumsensulato(Colletotrichum fioriniae).GenomeAnnounc.2(2),e00112–e00114.

Cacciola,S.,Faedda,R.,Sinatra,F.,Agosteo,G.,Schena,L.,Frisullo,S.,Magnanodi SanLio,G.,2012.Oliveanthracnose.J.PlantPathol.94,29–44.

Carter,D.,Charlton,P.,Fenton,A.,Housley,J.,Lessel,B.,1958.Thepreparationand theantibacterialandantifungalpropertiesofsomesubstitutedbenzyl alcohols.J.Pharm.Pharmacol.10,149T–159T.

Curry,K.,Abril,M.,Avant,J.,Smith,B.,2002.Strawberryanthracnose: histopathologyofColletotrichumacutatumandColletotrichumfragariae. Phytopathology92,1055–1063.

Dean,R.,VanKan,J.,Pretorius,Z.,Hammond-Kosack,K.,DiPietro,A.,Spanu,P., Rudd,J.,Dickman,M.,Kahmann,R.,Ellis,J.,Foster,G.,2012.Thetop10fungal pathogensinmolecularplantpathology.Mol.PlantPathol.13,414–430. Demici,E.,ElifDane,E.,Eken,C.,2012.Invitroantagonisticactivityoffungi

isolatedfromsclerotiaonpotatotubersagainstRhizoctoniasolani.Turk.J.Biol. 35,457–462.

Dennis,C.,Webster,J.,1971.Antagonisticpropertiesofspeciesgroupsof TrichodermaIII.hyphalinteraction.Trans.Br.Mycol.Soc.57,363–369. Dharmaputra,O.,2003.Antagonisticeffectofthreefungalisolatesto

aflatoxin-producingspergiY/HS/JavHS.Biotropia21,19–31.

Förster,H.,Adaskaveg,J.,1999.IdentificationofsubpopulationsofColletotrichum acutatumandepidemiologyofalmondanthracnoseinCalifornia.

Phytopathology89,1056–1065.

Hall,T.,1999.BioEditauser-friendlybiologicalsequencealignmenteditorand analysisprogramforwindows95/98/NT.NucleicAcidsSymp.Ser.41,95–98.

(9)

Harrison,M.,2005.Signalinginthearbuscularmycorrhizalsymbiosis.Annu.Rev. Microbiol.59,19–42.

Lou,J.,Fu,L.,Peng,Y.,Zhou,L.,2013.MetabolitesfromAlternariafungiandtheir bioactivities.Molecules18,5891–5935.

Martín,M.,García-Figueres,F.,1999.ColletotrichumacutatumandC.

gloeosporioidescausedanthracnoseonolives.Eur.J.PlantPathol.105,733–745. Menezes,H.,Pereira,A.,Brancini,G.,deLeão,H.,MassolaJúnior,N.,Bachmann,L.,

Wainwright,M.,Bastos,J.,Braga,G.,2014.Furocoumarinsandcoumarins photoinactivateColletotrichumacutatumandAspergillusnidulansfungiunder solarradiation.J.Photochem.Photobiol.B:Biol.131,74–83.

Mercier,J.,Jiménez,J.,2004.Controloffungaldecayofapplesandpeachesbythe biofumigantfungusMuscodoralbus.PostharvestBiol.Technol.31,1–8. Morath,S.,Hung,R.,Bennett,J.,2012.Fungalvolatileorganiccompounds:areview

withemphasisontheirbiotechnologicalpotential.FungalBiol.Rev.26,73–83. Newcombe,G.,Shipunov,A.,Eigenbrode,S.,Raghavendra,A.,Ding,H.,Anderson,

C.,Menjivar,R.,Crawford,M.,Schwarzländer,M.,2009.Endophytesinfluence protectionandgrowthofaninvasiveplant.Commun.Integr.Biol.2,29–31. Prapagdee,B.,Kuekulvong,C.,Mongkolsuk,S.,2008.Antifungalpotentialof

extracellularmetabolitesproducedbyStreptomyceshygroscopicusagainst phytopathogenicfungi.Int.J.Biol.Sci.4(5),330–337.

Rahmansyah,S.,Rahmansyah,M.,2013.Endophyticfungiisolatedfrommangrove plantandhaveantagonismroleagainstfusariumwilt.J.Agric.Biol.Sci.8(3), 251–257.

Rodriguez,R.,White,J.,Arnold,A.,Redman,R.,2009.Fungalendophytes:diversity andfunctionalroles.NewPhytol.182(2),314–330.

Royse,D.,Ries,S.,1977.Theinfluenceoffungiisolatedfrompeachtwigsonthe pathogenicityofCytosporacincta.Pyhtopathology68,603–607.

Siddiquee,S.,Azad,S.,Bakar,F.,Naher,L.,Kumar,S.,2015.Separationand identificationofhydrocarbonsandothervolatilecompoundsfromculturesof AspergillusnigerbyGC–MSusingtwodifferentcapillarycolumnsandsolvents. J.SaudiChem.Soc.19,243–256.

Timmer,L.,Brown,G.,2000.Biologyandcontrolofanthracnosediseasesofcitrus. In:Prusky,D.,Freeman,S.,Dickman,M.B.(Eds.),Colletotrichum:Host Specificity,Pathology,andHost-PathogenInteraction.TheAmerican PhytopathologicalSociety,St.PaulMN,pp.300–316.

Verma,V.,Gond,S.,Kumar,A.,Kharwar,R.,Strobel,G.,2007.Theendophytic mycofloraofbark,leaf,andstemtissuesofAzadirachtaindicaA.Juss.(neem) fromVaranasi(India).Microb.Ecol.54(1),119–125.

Vilanova,M.,Diago,M.,Genisheva,Z.,Oliveira,J.,Tardaguila,J.,2012.Earlyleaf removalimpactonvolatilecompositionofTempranillowines.J.Sci.FoodAgric. 92,935–942.

Wang,X.,Radwan,M.,Tarawneh,A.,Gao,J.,Wedge,D.,Rosa,L.,Cutler,H.,Cutler, S.,2013.Antifungalactivityagainstplantpathogensofmetabolitesfromthe endophyticfungusCladosporiumcladosporioides.J.Agric.FoodChem.61, 4551–4555.

Wani,M.,Sanjana,K.,Kumar,D.,Lal,D.,2010.GC-MSanalysisrevealsproduction of2-phenylethanolfromAspergillusnigerendophyticinrose.J.Basic Microbiol.50,110–114.

White,T.,Bruns,T.,Lee,S.,Taylor,J.,1990.Amplificationanddirectsequencingof fungalribosomalRNAgenesforphylogenetics.In:Innis,M.A.G.D.H.,Sninsky, J.J.,White,T.J.(Eds.),PcrProtocols:AGuidetoMethodsandApplications. AcademicPress,Inc.,NewYork,pp.315–322.

Xia,H.,Wang,X.,Zhu,H.,Gao,B.,2011.Firstreportofanthracnosecausedby GlomerellaacutataonchilipepperinChina.PlantDis.95,219.

Yadav,P.,Devprakash,Senthilkumar,G.,2011.Benzothiazole:differentmethodsof synthesisanddiversebiologicalactivities.Int.J.Pharm.Sci.DrugRes.3,1–7. Zaitlin,B.,Zehr,E.,Dean,R.,2000.Latentinfectiononpeachcausedby

ColletotrichumgloeosporioidesandbyColletotrichumacutatum.Can.J.Botany 22,224–228.

Zhi-Lin,Y.,Yi-Cun,C.,Bai-Ge,X.,Chu-Long,Z.,2012.Currentperspectivesonthe volatile-producingfungalendophytes.Crit.Rev.Biotechnol.32,363–373. Zhong,J.,Chen,D.,Lei,X.,Zhu,H.,Zhu,J.,DaGao,B.,2014.Detectionand

characterizationofanovelGammapartitivirusinthephytopathogenicfungus ColletotrichumacutatumstrainHNZJ001.VirusRes.190,104–109.

Zivkovic,S.,Stojanovi,S.,Ivanovi,Z.,Gavrilovic,V.,Popovic,T.,Balaz,J.,2010. ScreeningofantagonisticactivityofmicroorganismsagainstColletotrichum acutatumandColletotrichumgloeosporioides.Arch.Biol.Sci.62(3),611–623.

Referências

Documentos relacionados

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

The aim of the current study was to investigate the antifungal activity and the metabolism of thymol and carvacrol by Colletotrichum acutatum and Botryodiplodia theobromae..

The focus of this study is the establishment of a protocol for callogenesis in leaf, nodal and internodal explants of Jalapeño plants, evaluating the effects of different

Portanto, ser fiel é definido como negação (não ser infiel). No entanto, também aí encontrámos um vazio, uma vez que não sabemos que valores são esses – a fidelidade em

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados