• Nenhum resultado encontrado

Surface electroelastic shear waves in a system of piezoactive layer and half-space

N/A
N/A
Protected

Academic year: 2017

Share "Surface electroelastic shear waves in a system of piezoactive layer and half-space"

Copied!
6
0
0

Texto

(1)

Ա Ա Ա Ի Ի ՒԹ Ւ ԻԱ Ա Ի Ա Ա ԻԱ Ի Ղ Ա Ի

А А А А А А

60, №3, 2007

539.3

А

( 6mm)- А ( 43m)

ч . .

чевые в : , , , , .

Key words: electroelastic, shear, wave, layer, half-space.

. . Խ

և (6mm

)-(43m )

`(43m )

(6mm ): և

, :

և և

:

և

:

V.M. Khachatryan

Surface electroelastic shear waves in a system of piezoactive layer and half-space

A piezoactive half-space with a piezoactive layer on its surface is considered. Material of the layer is piezoelectric of class 6mm and material of the space is piezoelectric of class 43m. The layer and the half-space are in a condition of the sliding contact, where shear mechanical stresses are taken to be zero. Interaction between shear waves in the layer and the half-space is due to continuity of electrical field on their boundary. Features of existence of surface electroelastic shear waves are analyzed.

( 43m)

( 6mm). ,

.

. .

1.

- ,

, ( ., [1,2]). ,

, [3-5]. [6]

,

, . [7]

.

6mm

. .

.

, ,

,

,

43m , –

(2)

6mm

43m .

.

( , , )

x y z

x

−∞ < < ∞

,

0

≤ < ∞

y

,

−∞ < < ∞

z

, –

x

−∞ < < ∞

,

− ≤ <

h

y

0

,

−∞ < < ∞

z

.

−∞ < < ∞

x

,

y h

−∞ < < − ,

−∞ < < ∞

z

.

( )

[8]:

(1) 2 2

2 14 1 1

1 1 2

1

2

e

W

a

W

x y

t

∂ ϕ

+

=

ρ ∂ ∂

,

2 (1) 1 11

1 (1) 14

2

W

x y

e

ε

=

∆ϕ

∂ ∂

(1.1)

( )

[9,10]:

2

2 2

2 2 2

W

a

W

t

=

,

( )

(2) 11 2 2 2

15

W

e

ε

=

∆ϕ

(1.2)

(1.1) (1.2) (1) 2 44 1

1

c

a

=

ρ

,

(2) 2 44 2 2

2

(1

)

c

a

=

+ χ

ρ

,

(2) 2 15 2 (2) (2)

11 44

[

e

]

c

χ =

ε

(1.3)

1

W

W

2 – ,

ϕ

1

ϕ

2 – ,

, ,

c

44(1)

(2) 44

c

,

χ

2

,

e

14(1)

e

15(2) – , ,

.

:

(1) 23

0

σ =

,

σ =

(2)23

0

,

ϕ = ϕ

1 2

,

D

2(1)

=

D

2(2)

y

=

0

(1.4) (1)

23

σ

σ

(2)23 – ,

(1) 2

D

D

2(2) –

.

y

= −

h

(2) 23

0

σ =

,

ϕ =

2

0

(1.5)

2

0

ϕ =

.

.

(1.1) (1.2),

(1.4), (1.5) :

1

lim

0

y→∞

W

=

,

lim

y→∞

ϕ =

1

0

(1.6)

(1.1) ,

(1.6), :

1

[

1

exp(

1

)

1

exp(

2

)]exp (

)

(3)

(1) 44

1 (1) 1 1 1 1 2 2

1 2

14

1 1

[ ( ) exp( ) ( ) exp( )]exp ( ) 2

c

A p kp y B p kp y i t kx

p p

ie

− η − η

ϕ = − − + − − ω −

0

< η <

1

. (1.8)

(1.7)

2 2

1 1 1 1

1

2 4 8 (2 ) 16 2

p = − η + χ + η + χ − η + χ

2 2

2 1 1 1

1

2

4

8 (2

) 16

2

p

=

− η + χ − η + χ

− η + χ

2

2 2 1

k a

ω

η =

,

(1) 2 14 1 (1) (1)

11 44

[

e

]

c

χ =

ε

.

(1.2) :

2

[

2

exp(

1

)

2

exp(

1

)]exp (

)

W

=

A

k

− θη +

y

B

k

− θη

y

i

ω −

t

kx

(1.9)

(2) 15

2 (2) 2 2

11

[ exp(C ky) Dexp( ky) e [A exp(k 1 y) B exp( k 1 y)]]exp (i t kx)

ϕ = + − + − θη + − − θη ω −

ε 2

1 2 2

a

a

ϑ =

.

(1.7)-(1.9)

A

1,

A

2,

B

1,

B

2, C,

D

– .

2.

, , (1.4)

(1.5) :

(1) 1 (1) 1 (2) 2 (2) 2

44 14 44 15

(1) 1 (1) 1 (2) 2 (2) 2

1 2 14 11 15 11

0,

0

,

W

W

c

e

c

e

y

x

y

y

W

W

e

e

x

y

y

y

∂ϕ

∂ϕ

+

=

+

=

∂ϕ

∂ϕ

ϕ = ϕ

− ε

=

− ε

,

y

=

0

(2.1)

c

44(2)

W

2

e

15(2) 2

0

y

y

∂ϕ

+

=

,

ϕ =

2

0

y

= −

h

(2.2)

(1.7), (1.9) (2.1), (2.2)

( ,

B

1

1

A

,

A

1, ,

A

2,

B

2,

C

,

D

):

(2) (2)

44 44

2 2 (2) 2 2 2 (2) 2

15 15

(1

)

c

(1

)

c

0

C

D

A

B

e

e

− + − χ γ

− + χ γ

=

(2.3)

(2) (2)

15 15

2 2 2 2

(2) (2)

11 11

exp(

−ζ

)

C

+

exp( )

ζ

D

+

e

exp(

−γ ζ

)

A

+

e

exp(

γ ζ

)

B

=

0

ε

ε

(2.4)

(2) (2)

44 44

2 2 (2) 2 2 2 2 (2) 2 2

15 15

exp( )C exp( )D (1 ) c exp( )A (1 ) c exp( )B 0

e e

(4)

(2) (2)

(2) (2) 15 15

11 11 (2) 2 (2) 2

11 11

(

L

+ ε

)

C

+

(

L

− ε

)

D

+

L

e

A

+

L

e

B

=

0

ε

ε

(2.6)

(1) 2 3 3

11 2 2 1

1 1 1

2

2 1 1 2 1

(

1

)

[1 (2

)(1

)

]

2 (

)

p

p

p

L

p

p

p

ε

+ − η

=

+ χ − η − γ +

γ

γ

+ γ

,

1

1

γ =

− η

,

γ =

2

1

− ϑη

,

ζ =

kh

(2.7)

(2.4) (2.5)

C

D

A

2

B

2

: (2)

15 2 2

2 2 2 2 2 2

(2)

2 2

11 (2)

15 2 2

2 2 2 2 2 2

(2)

2 2

11

1

1

[(1

) exp(

)

(1

) exp(

)

]

2

1

1

[(1

) exp(

)

(1

) exp(

)

]

2

e

C

A

B

e

e

D

A

B

e

−ζ

ζ

+ χ

+ χ

= −

+ γ

−γ ζ

+ − γ

γ ζ

χ

χ

ε

+ χ

+ χ

= −

− γ

−γ ζ

+ + γ

γ ζ

χ

χ

ε

(2.8)

(2.8) (2.3) (2.6) 2

A

B

2:

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2

(1 ) (1 )

[[ ]exp( ) (1 )]

2 2

(1 ) (1 )

[[ ]exp( ) (1 )] 0

2 2 A e e B e e ζ −ζ ζ −ζ

χ − γ + χ χ + γ + χ

− −γ ζ + γ + χ +

χ + γ + χ χ − γ + χ

+ − γ ζ − γ + χ =

(2) (2)

11 2 2 2 11 2 2 2

2 2

2 2

(2) (2)

11 2 2 2 11 2 2 2

2 2

2 2

( )( (1 )) ( )( (1 ))

[[ ]exp( ) ]

2 2

( )( (1 )) ( )( (1 ))

[[ ]exp( ) ] 0

2 2 L L L A e e L L L B e e ζ −ζ ζ −ζ

− ε χ − γ + χ + + ε χ + γ + χ −γ ζ − +

χ χ

− ε χ + γ + χ + ε χ − γ + χ

+ + γ ζ − =

χ χ

(2.9)

(2.9)

:

2 2 2

1 2 2 2 2 2 2 2 2 2 2 2 2

( , , , ) L[2 (1 ) ( (1 ) ) sh( ) sh( ) 2 (1 ) ch( ) ch( )]

Γ η ζ χ χ ≡ χ + χ γ + χ + γ + χ ζγ ζ − χ + χ γ ζγ ζ +

(2)

11

(1

2

) [

2 2

ch(

2

) sh( )

2

(1

2

) sh(

2

) ch( )]

0

+ χ γ χ

ζγ

ζ − γ

+ χ

ζγ

ζ =

(2.10)

3. (2.10) , η = 1

ϑ ,

.

(ζ <<1)

(2.10) :

2

(1

)

1

ϑη + χ =

2 1 (1 ) η =

ϑ + χ (3.1)

(1.8),

(1

)

1

(5)

.

(2.10) ζ → ∞( –

,

) :

(2)

1

( , ,

1

,

2

)

L

[

2

(1

2

) 1

]

11

(1

2

) 1

0

Γ η ∞ χ χ ≡ χ − + χ

− ϑη + ε

+ χ

− ϑη =

(3.2)

2

( , ,

2

)

2

(1

2

) 1

0

Γ η ∞ χ ≡ χ − + χ

− ϑη =

(3.3)

(3.3) :

2

1 2

2 2

[1

]

(1

)

χ

η = ϑ

+ χ

2 2

2 2

1

(1

)

χ

< ϑ

+ χ

.

4. 43m

GaAs

(

c

44

=

5.94 10

×

10 / 2,

3

5.307 10

ρ =

×

/ 3,

e

14

= −

0.16

/ 2,

ε =

11

9.73 10

×

−11 / )

6mm

ZnO

(

c

44

=

4.25 10

×

10 / 2,

ρ =

5.68 10

×

3 / 3,

e

15

= −

0.59

/ 2, 11

11

7.38 10

ε =

×

/ ).

1

ζ

η

1

η

2

η

3

1

ζ <<

0.669221 - -

0.001 0.669222 - -

0.05 0.669281 - -

0.1 0.66947 - -

0.3 0.672117 - -

0.5 0.170154 0.680539 -

1.0 0.602692 0.768529 -

5.0 0.664186 0.818872 -

10 0.676513 0.752176 0.875203

. 1 (2.10) (2.7)

( )

ζ. ,

(3.1).

(3.2). (3.2)

2 2 2 1

0

a

a

< η <

η =1 0.677445.

(3.3) η =2 0.736075.

(2.10). , ζ =100 2

2 2 1

0

a

a

< η <

,

1

(6)

1. . ., . .

.

// . . . 1995. .48.

3. .43-52.

2. . ., . . Э . : .

, 2006. 492 .

3. Maerfeld C., Tournois P. Pure shear elastic surface wave guided by the interface of two semi-infinite media. //Appl. Phys. Lett. 1971. V.19.

4. P.117-121

4. . ., . Э

. // . .

. 1994. .47. 3-4.

.31-36.

5. Li. Sh. The electromagneto-acoustic surface wave in a piezoelectric medium: the Bleustein–Gulyaev mode. //J. Appl. Phys. 1996. V.80. №9. P.5264-5267.

6. Zakharenko A. Love-type waves in layered systems consisting of two cubic piezoelectric crystals. //Journal of sound and vibration. 2005. V.285. P.877-886.

7. . ., . .

- . //

. . 2006.

3. .25-30.

8. Cheng N.C., Sun C.T. Wave propagation in twolayered piezoelectric plates. //J. Acoust. Soc. Amer., 1975. V57. №3. P.632-639.

9. . ., . . . : ,

1982. 239 .

10. . ., . ., . .

. .: . 2003. 336 .

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

This paper focu- ses specifi cally on component-based middleware, i.e., the software layer that offers, to application developers, a platform, a programming model and a standard set

This paper focu- ses specifi cally on component-based middleware, i.e., the software layer that offers, to application developers, a platform, a programming model and a standard set

In this paper, peeling and shear stress distribution in the middle of the adhesive layer and peel- ing stress field between adhesive and adherends in a single strap joint and

However, when the swirl velocity proile develops into a Rankine-vortex type inside the difuser, the wall shear stresses are low due to separation of boundary layer, and the

The gravitational convective instability and the secondary shear instability that are restricted to a stratified mixing layer are caused by the streamwise density

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

In more complex geometries, as compound cross-section, the additional interaction between main channel and floodplain flow creates a shear layer (see Fig. 1) that difficults