• Nenhum resultado encontrado

Defect centers in a-SiNx: electronic and structural properties

N/A
N/A
Protected

Academic year: 2022

Share "Defect centers in a-SiNx: electronic and structural properties"

Copied!
3
0
0

Texto

(1)

Defect Centers in a-SiN

x :

Electronic and Structural Properties

F. de BritoMota,

InstitutodeFsicadaUFBa,CEP40210-340,Salvador,BA,Brazil

J.F. Justo and A. Fazzio

InstitutodeFsicadaUniversidadede S~aoPaulo,CP66318, CEP05315-970, S~aoPaulo,SP,Brazil

Receivedon23April,2001

Bycombiningabinitiomethodsandinteratomicpotentials,weinvestigatedtheelectronicandthe

structuralproperties of amorphous silicon nitride. Ourresults showthe trendsonthe electronic

bandstructureofSiNx(0:5<x<1:8)asthenitrogencontentchanges,andareingoodagreement

withtheexperimental data. Hydrogenationof thesystemswas foundto considerablyreduce the

numberofenergylevelsinthe gap. Theenergylevels whichappearedinthematerials bandgap

werecomparedtotheelectricallyactivecenters,whichhavebeenidentiedbyelectron-paramagnetic

resonanceexperiments.

Amorphous silicon nitride (a-SiN) is a material of

unique electronic properties, such as large electronic

gap, and high dielectric constant. Due to these supe-

riorelectronicproperties,ithasbeenusedinmicroelec-

tronicdevicesasagatedielectricinthinlmtransistors

oras a charge storage medium in non-volatile memo-

ries. Although considerable eort has been spent in

studying silicon nitride, anumber of issues related to

itsmicroscopicpropertiesremainunadressed.

Overthelast decade,SiNhasbeeninvestigatedby

several theoretical methods [2, 3, 4, 5]. Those inves-

tigationsusedparameter-dependentmodels, providing

only a qualitative description of the physical proper-

ties of the systems. Tight-bindingmodels [5], for ex-

ample, introduced unphysical shifts in the electronic

energy levels, in order to reproduce the experimental

electronic band structure. Amorphous silicon nitride

havenotbeeninvestigated by parameter-freeab initio

methods sofar. Here wecombinedinteratomic poten-

tials[2,4]withabinitiomethodstoinvestigatetheelec-

tronicpropertiesofunhydrogenatedandhydrogenated

amorphous silicon nitride in a wide range of nitrogen

contents. The results were compared to available ex-

perimental data.

Atomistic simulations based on ab initio methods

have been a formidable task, specially in the case of

disorderedsystems. Inordertoovercomesuchcompu-

tationaldiÆculties,weusedinteratomicpotentials[2,4]

togeneratetheinitialamorphouscongurations. These

were usedasinputcongurationstotheab initiosim-

ulations,whenfullrelaxation,basedontheHellmann-

Feynman forces, could be performed. This procedure

tional cost in nding the equilibrium congurations

[6,7, 8]. However,thisprocedurewouldonlyspeedup

thesimulationsiftheinteratomic potentialsaretrans-

ferable, i.e., theycanprovide arealisticdescriptionof

the amorphous systems. We have recently developed

aninteratomicpotentialwhichdescribesaccuratelythe

structural properties of silicon nitridein awide range

of nitrogen contents[2, 4]. Theamorphouscongura-

tions were generated using that interatomic potential

combinedwithMonteCarlosimulationsinasimulated

annealingprocedure. Therelaxationofboththeatomic

positionsand thecellvolume were allowedin thesim-

ulatedannealing.

Theabinitiocalculations[9]wereperformedwithin

the local density approximation. The Kohn-Sham

equationsweresolved usingtheCar-Parrinelloscheme

withseparablepseudopotentials[10]. Thebasissetwas

expandedin plane-waves,with kineticenergyupto65

R y. Thenuclearpositions were fullyrelaxedin theab

initio calculations until the Hellmann-Feynman forces

weredownto 10 3

a.u. Thelargeunit cell comprised

66 atomsfor allnitrogen and hydrogencontents. The

Brillouin zone was sampled by the -point. Our in-

vestigations considered only one atomic conguration

for each nitrogen content (a-SiN

x

, x = 0.5, 1.0, 1.33,

1.5, and 1.8). Still we expected to provide a reason-

ably good sampling of an amorphous silicon nitride.

Tocertify that wein fact generated realisticsamples,

wecomputed thepaircorrelation functionand theav-

eragecoordinationnumbers. Forallnitrogencontents,

arst peak appears around1.75

A whichcorresponds

toSi-Nbonds,whileasecondpeakappearsaround2.5

(2)

mentwiththeexperimental data[11]. Fortheaverage

coordinationnumberat Si andN sites [2], ourresults

agreeverywellwiththeexperimentaldata[12]forsev-

eralnitrogencontents. Sincethelocalorderdetermines

mostoftheelectronicpropertiesofthematerial,ourab

initiocalculationsshouldprovidearealisticdescription

oftheelectronicband structureofa-SiN.

Generally, the electronic density of states (DOS)

of amorphous semiconductors obtained by theoretical

modeling present a large number of gap levels. Sev-

eral authors have used some artifacts to \clean" the

gap from those spurious levels. Ina-Si,the gap levels

havebeenremovedbyremovingtheatoms which pre-

sented danglingbonds, and passivating the remaining

bonds with H [13]. On the other hand, we removed

the gap levels by introducinghydrogen in the sample,

performed asimulatedannealing with interatomicpo-

tentials,andthenperformedtheab initiocalculations.

Our procedure wasless articial than others [13, 14],

although alsolesseectiveinremovingthegaplevels.

−20 −16 −12 −8 −4 0 4 8

E (eV)

(e) (d) (c) (b) (a)

D O S

Figure1. Theoreticaltotaldensityofstatesofa-SiN

x . The

gure shows the DOS for (a) x = 0:5, (b) x = 1:0, (c)

x=1:33,(d)x=1:5,and(e)x=1:8.

Fig. 1shows thecalculatedDOS for thea-SiN

x :H

(0 < x < 1:8) with 18% of hydrogen atomic concen-

tration. For x =1.33, the DOS is equivalent to that

of the crystalline -Si

3 N

4

. Therst region of the va-

lence band (VB), corresponding to the N-2s states,is

between-20.0 eV and -12.5 eV. The second region of

the VB,between-10.5and 1.5 eV,is formedby levels

coming from the hybridization of the N-2p and Si-3p

states. Thetopofvalenceband isformedbytheNp

lonepairs. Thegapis foundtobe2.0eV. Theenergy

gap increases with increasing nitrogen concentration,

in the topof the VB, by Si-Nbonds; and by thedis-

placementof the bottom of the conduction band,due

tothesubstitutionofSi-Sianti-bondingstatesbySi-N

anti-bondingones.

−20 −16 −12 −8 −4 0 4 8 12

E (eV) 0

20 40 60

IPR

(a)

−20 −16 −12 −8 −4 0 4 8 12

E (eV) 0

40 80 120

IPR

(b)

Figure2.Inverseparticipationratio(IPR)forallenergylev-

elsina-SiN

x

:H.Thegureshowsthe IPRfor (a)x=1:33

and(b)x=1:5.

Thegap wasdeterminedbyanalyzingthelocaliza-

tiondegreeofthestatesnear theband edges. Thelo-

calizationofeachelectronicstatewasquantiedbythe

inverseparticipationratio(IPR).TheIPRofanorbital

n (

!

r

i ),I(

n

),is denedby:

I(

n )=N

P

N

i=1 j

n (

!

r

i )j

4

h

P

N

i=1 j

n (

!

r

i )j

2 i

2

; (1)

whereN isthenumber ofvolumeelementsin thecell

andi is theindex of the volume element. TheIPR is

largefor highly localized states and small fordelocal-

izedstates.

The IPR can identify a level as belonging to the

band (delocalized), to the band-tail (partially local-

ized), or to the gap (highly localized). Fig. 2 shows

theIPRforallstatesina-SiN

x

:Hfortwonitrogencon-

tents. ThelargeIPRforthestatesinthebottomofthe

(3)

N-2s states. For all nitrogen contents, the closer the

statesare from the gap, thelarger is theIPR. Fig. 3

shows thetheoretical gap asfunction of nitrogen con-

tents obtained by the IPR.The gurealso showsthe

experimental opticalgap [12, 15, 16]. Ourresultsgive

thecorrecttrend: theelectronicgapincreaseswiththe

nitrogen content. Ourresultsalso show that theelec-

tronic gap increases faster with x for x > 1 than for

x < 1, also in agreementwith the experimental nd-

ings. However,ourresultsunderestimatethegapforall

nitrogen contents, which results from the known lim-

itation of the density functional theory in describing

excitedstates.

0 0.5 1 1.5 2 2.5

x 1

2 3 4 5 6

E (eV) g

This work Guraya [11]

Hasegawa [14]

Yin [15]

Figure 3. Electronic energy gap (Eg) versus the nitrogen

content(x).Thegurealsoshowstheexperimentaloptical

gap[12 ,15 ,16 ]. EnergiesareineV.

Electron paramagnetic resonance (EPR) experi-

ments have measured several paramagnetic centers in

siliconnitridewhichhavebeenidentiedtoundercood-

inatedatoms. Acenterwhichgeneratesanenergylevel

inthemiddleofthegaphasbeeninterpretedasdueto

a three-fold coordinated silicon atom (K-center) [17].

A center which generates an energy level in the bot-

tom of the gap hasbeen interpreted asdue to atwo-

fold coordinated nitrogen atom (N

2

-center) [17]. We

investigatedthepropertiesofthegaplevelsina-SiN

1:5

which presented large IPR, and compared their elec-

tronic spatial distribution with the characteristics of

the known EPR centers. We could identify both cen-

ters in ourinvestigation. A level atE

v

+2:48eV(E

v

is thetopof valence band), and thereforeclose tothe

conduction band,clearly showsa danglingbond char-

acteristic,withtheelectronicchargelocalizedarounda

siliconatom. ThislevelisconsistentwiththeK-center

identied byEPR [17]. A levelat E

v

+0:45eV, near

thevalenceband,showsadanglingbondcharacteristic,

with theelectronic chargelocalized aroundanitrogen

atom. ThislevelisconsistentwiththeN

2

-centeriden-

tiedbyEPR[17].

Insummary,wehaveused ab initiocalculationsto

investigate the electronic properties of hydrogenated

trations. Allofourresultswereingoodagreementwith

available experimental data. Theinverseparticipation

ratio allowedto identify thespatial localization of the

all theenergylevels. This showsthat the IPRcanbe

aneectivetooltoinvestigatedeeplevelsinamorphous

materialsevenwhenusingsmallsimulationcells.Addi-

tionally, wehavetheoretically identied theelectronic

active centers which appear in the gap in a realistic

sampleofamorphoussiliconnitride. Thoselevelswere

correlated to theknown EPRresults, namely, the un-

dercoordinatedSiandN atoms.

Acknowledgments

FBM and JFJ acknowledge partial support

from Brazilian agencies PRODOC/CADCT-BA and

FAPESP, respectively. The calculations were per-

formed attheComputerCenter oftheUFBa.

References

[1] F.H.P.M. Habrakenand A.E.T.Kuiper,Mat.Sci-

enceEng.R12,123(1994).

[2] F. de Brito Mota, J. F. Justo, and A. Fazzio, Phys.

Rev.B58,8323(1998).

[3] F. deBrito Mota, J. F.Justo, and A. Fazzio, Int.J.

Quant.Chem.70,973(1998).

[4] F.deBritoMota, J.F.Justo,andA.Fazzio,J.Appl.

Phys86,4249(1999).

[5] J.Robertson,Philos.Mag.B63,47(1991).

[6] J.F.Justo,M.deKoning,W.Cai,andV.V.Bulatov,

Phys.Rev.Lett.84,2172 (2000).

[7] J.F.Justo,A.Fazzio,andA.Antonelli,J.Phys.: Con-

dens.Matter12,10039 (2000).

[8] J. F. Justo, A. Antonelli, and A. Fazzio, Solid State

Commun.118,651(2001).

[9] M.Bockstedte,A.Kley,J.Neugebauer,andM.Schef-

er,Comput.Phys.Commun.107,187(1997).

[10] N.TroullierandJ.L.Martins,Phys.Rev.B43,1993

(1991).

[11] T.Aiyama,T.Fukunaga,K.NiiharaandK.Susuki,J.

Non-Cryst.Solids33,131(1979).

[12] M.M.Guraya,H.Ascolani,G.Zampieri,J.I.Cisneros,

J. H.Diasda Silva, and M. P.Cant~ao, Phys.Rev.B

42,5677(1990).Phys.Rev.B62,4477 (2000).

[13] P. A. Fedders, D. A. Drabold, and S. Nakhmanson,

Phys.Rev.B58,15624(1998).

[14] J. J. Dong and D. A. Drabold, Phys. Rev.Lett. 80,

1928(1998).

[15] S.Hasegawa,M.Matuura,andY.Kurata,Appl.Phys.

Lett.49,1272 (1986).

[16] Z.YinandF.W.Smith,J.Non-Cryst.Solids137,879

(1991).

[17] W. L. Warren, J. Kanicki, J. Robertson, and P. M.

Lenahan,Appl.Phys.Lett.59,1699(1991).

Referências

Documentos relacionados

Ao serem analisadas algumas ações centralizadas e implantadas na rede pública na modalidade a distância, foram encontrados treze cursos de formação continuada para professores

The bioinert surface of silicon nitride ceramics led us to investigate the additions of SiO 2 , CaO and Al 2 O 3 in order to aid the liquid phase sintering and improve the

[r]

TD is caused by a wide range of different structural malformations in the thyroid that result in a wide variety of different phenotypes of CH (6,8-10). TD is subcategorized into:

First of all we consider a defect consisting of the removal of a single Mo atom from the metal-terminated edge (shown as red line and labeled as Mo1). For this defect, we observe

Deste modo, utilizando-se de uma busca histórica pela cultura nacional inserida em um gênero recente, para realizar uma análise deste movimento por meio da mídia, o veículo

Mechanical properties, modulus.. Cento e quarenta e nove estudos foram encontrados, sendo 78 sobre propriedades da dentina e 71sobre materiais restauradores. Os materiais

Os controles foram 323 sintomáticos respiratórios com baciloscopia negativa, oriundos dos mesmos serviços de saúde dos casos: ambulatórios de três hospitais de referência e