• Nenhum resultado encontrado

Rev. Bras. Hematol. Hemoter. vol.39 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Hematol. Hemoter. vol.39 número2"

Copied!
7
0
0

Texto

(1)

w w w . r b h h . o r g

Revista

Brasileira

de

Hematologia

e

Hemoterapia

Brazilian

Journal

of

Hematology

and

Hemotherapy

Original

article

Foxo3

gene

expression

and

oxidative

status

in

beta-thalassemia

minor

subjects

Sandra

Stella

Lazarte

∗,1

,

María

Eugenia

Mónaco

1

,

Magdalena

María

Terán,

Ana

Cecilia

Haro,

Miryam

Emilse

Ledesma

Achem,

Blanca

Alicia

Issé

UniversidadNacionaldeTucumán,SanMigueldeTucumán,Argentina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3October2016

Accepted5January2017

Availableonline22February2017

Keywords:

Beta-thalassemiatrait

Oxidativestress

FoxO3

Thiobarbituricacidreactivespecies

Erythrocytecatalaseactivity

a

b

s

t

r

a

c

t

Background:Oxidativestressmayaggravatesymptomsofhemolyticanemiassuchas

beta-thalassemia.FoxO3activationresultsinresistancetooxidativestressinfibroblastsand

neuronalcellcultures.

Objective:ThepurposeofthisresearchwastostudyFoxO3geneexpressionandoxidative

statusinbeta-thalassemiaminorindividuals.

Methods:Sixty-three subjects (42 apparently healthy individuals and 21 with

beta-thalassemiaminor)wereanalyzed attheUniversidadNacionaldeTucumán,Argentina,

betweenSeptember2013andJune2014.Acompletebloodcount,hemoglobin

electrophore-sis in alkaline pHand hemoglobin A2 levels were quantified.Moreover, thiobarbituric

acidreactivespecies,erythrocytecatalaseactivityandironstatuswereevaluated.

Beta-thalassemiamutationsweredeterminedbyreal-timepolymerasechainreaction.FoxO3gene

expressionwasinvestigatedbyreal-timereversetranscription-polymerasechainreaction

usingmononuclearcellsfromperipheralblood.

Results:Subjectsweregroupedaschildren(≤12years),andadultwomenandmen.The

analysisoferythrocytecatalaseactivity/hemoglobinratiorevealedasignificantdifference

(p-value<0.05)betweenhealthyandbeta-thalassemiaminoradults,butnosignificant

dif-ference wasobservedin thethiobarbituricacid reactivespecies levelsand FoxO3gene

expression(p-value>0.05).Thiobarbituricacidreactivespeciesandtheerythrocyte

cata-laseactivity/hemoglobinratiowerenot significantlydifferentoncomparingthetypeof

beta-thalassemiamutation(␤0or␤+)presentincarriers.

Conclusions: Thelackofsystemicoxidativeimbalancedemonstratedbythiobarbituricacid

reactivespeciesiscorrelatedtotheobservationofnormalFoxO3geneexpressionin

mono-nuclearcellsofperipheralblood.However,animbalancedantioxidantstatewasshownby

theerythrocytecatalaseactivity/hemoglobinratioinbeta-thalassemiaminorcarriers.It

wouldbenecessarytostudyFoxO3geneexpressioninreticulocytestoelucidatetheroleof

FoxO3inthispathology.

©2017Associac¸ ˜aoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.Published

byElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthorat:InstitutodeBioquímicaAplicada,Balcarce747,CP4000,SanMigueldeTucumán,Argentina.

E-mailaddress:slazarte@fbqf.unt.edu.ar(S.S.Lazarte).

1 Authorscontributedequallytothiswork.

http://dx.doi.org/10.1016/j.bjhh.2017.01.005

1516-8484/©2017Associac¸ ˜aoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.PublishedbyElsevierEditoraLtda.Thisisan

(2)

Introduction

Theoxidative status ofcells isdetermined bythe balance

betweenpro-oxidants andantioxidants. Oxidants are

com-poundsthatcanacceptelectrons,asopposedtoreductants

thatdonateelectrons.Pro-oxidantsarereferredtoasreactive

oxygenspecies(ROS).ThetoxicityofROSdependsontheir

reactivityandlifespan.Longerlifespanpermitsthemto

dif-fuse,interactwithsensitivebiologicalsubstrates andcause

damagetovariousorganelles.Mostofthetransitionmetals,

suchasiron,canconvertrelativelystableoxidantsinto

power-fulradicals.Excessironcatalyzeshydroxylradicalgeneration

fromactivatedoxygenspeciesbytheHaber–WeissandFenton

reactions.1

Theintracellularresponsetooxidative-stressin

erythro-poiesisinvolves the transcription factor,Forkheadbox O3a

(FoxO3a), which controls pathway(s) regulating erythroid

maturation and the levels of oxidative stress in murine

erythropoiesis.2 ActivationofFoxO3ahasbeenproposed as

aprotectivemechanisminpathologicalerythropoiesis

char-acterizedbyabnormalROSlevelssuchasin␤-thalassemia.

ThisFoxO3aeffectismediatedbytheup-regulated

transcrip-tionofthe ROSscavengingenzymes,superoxidedismutase

2,alsoknownasmanganesesuperoxidedismutase(MnSOD),

andcatalase.3

Thalassemiais a globin gene disorder that results in a

diminishedrate of synthesisof oneor more ofthe globin

chains and, consequently, a reduced rate of synthesis of

hemoglobin(Hb)orHbsofwhichthatchainconstitutesapart.

Beta(␤)-thalassemiaisoneofmostcommonautosomal

reces-sivedisorders worldwide,and is causedbyreduced (␤+)or

absent(␤0)synthesisofthe␤globinchainsoftheHbtetramer,

whichismadeup oftwoalpha(␣)globinandtwo␤globin

chains(␣2␤2).4

Aquantitativereductionin␤globin resultsinthe

accu-mulationofanexcessof␣globinchainsthatareresponsible

for the pathophysiology of the disorder. The excess of ␣

globinchainsformsunstable tetramersthatdissociate into

monomersandthen,followedbyachangeintheirtertiary

structure,areoxidized,first tomethemoglobinandthen to

hemichromes which precipitate with time. The following

stepsarereleaseofhemandfreeiron(labileironpool),and

precipitation ofthe proteinmoiety ofthe globin,including

on the plasma membrane. Cell damage occurs during the

production of red blood cell (RBC) precursors in the bone

marrow (ineffective erythropoiesis) and in mature RBC in

theperipheralblood resulting inshortenedlifespans.

Fac-torsresponsible fortheoxidative stressinthalassemia are

hemoglobininstabilityandironinexcess.5

␤-Thalassemiaminor(BTM)isaclinicaldefinitionapplied

tothalassemiapatientswhopresentamilderclinicalcourse

than those with ␤-thalassemia major, with a moreor less

markedanemiathatdoesnotrequiretreatmentwithregular

bloodtransfusions.6Previousreportswerefocusedexclusively

onoxidativestress inpatients with␤-thalassemiamajor7,8

and ␤-thalassemia intermedia.9,10 In severe -thalassemia,

it is difficult to evaluate oxidative stress because of the

high proportionof normalred cells dueto multiple

trans-fusions. However, oxidative stress has been found to be

increasedinboth␤-thalassemiasubgroups.Incontrast,

lit-tle is known about the oxidative status in BTM subjects,

althoughSeleketal.6andLabibetal.11concludedthat

oxida-tivestressisincreased.Furthermore,littleisknownaboutthe

relationofoxidativestatusinBTMsubjectswithdifferent␤

-thalassemiamutations.Thisevaluationisimportantdueto

thelargegenotypicandphenotypicheterogeneityofdifferent

populations.

The purposeof this work was to study the FoxO3 gene

expressionandoxidativestatusinindividualswithBTM,and

tocorrelateitwiththetypeof␤-thalassemiamutation(␤0or

␤+).

Methods

A descriptive cross-sectional study was carried out at the

Instituto de Bioquímica Aplicada (Universidad Nacional de

Tucumán,Argentina)fromSeptember2013toJune2014.

Subjects

This study was approved by Bioethics committee of the

Facultad de Medicina (Universidad Nacional de Tucumán),

Tucumán, Argentina. Informedconsentwas obtained from

all participants of the study. The sample consisted of 21

BTM subjects(BTM group)and 42 apparently healthy

indi-viduals(Healthygroup).Theinclusioncriteriawerepatients

who were diagnosed with BTM and healthy subjects who

wereolderthanoneyearold.Individualswhohadingested

vitamins, smokers, diabetics, and patients with coronary

heartdisease,rheumatoidarthritis,dyslipidemia,

hyperten-sion,malignancy,chronicliverdiseaseorrenaldysfunction

wereexcludedfromthestudy.Furthermorepatients

submit-tedtoirontherapywithin21dayspriortoanalysis,andthose

whohadreceivedtransfusionsforanyreasonotherthantheir

thalassemiawithinthethreemonthsleadinguptothestudy

werenotincluded.

Allproceduresfollowedwereinaccordancewiththeethical

standards ofthe committeeresponsible forhuman

exper-imentation and with the Helsinki Declaration of 1975, as

revisedin2008.

Hematologicalstudies

Blood samples of ␤-thalassemia carriers were collected

in K2-ethylenediaminetetraacetic acid (EDTA). RBC count,

meancorpuscularhemoglobin(MCHb)andmeancorpuscular

volume(MCV)wereanalyzedwithaSysmexKX-21N

hema-tological counter (Kobe, Japan). DecreasedMCV and MCHb

allowed an individual to be considered as a potential

car-rier. Thecarrier status was confirmedby celluloseacetate

membraneelectrophoresisatalkalinepH,andtheHbA2level

bymicrocolumnchromatography(BioSystemS.A.,Barcelona,

Spain). If Hb A2 was ≥3.5%, then the subjects were

diag-nosed as␤-thalassemia carriers.Serumiron(Fe),totaliron

bindingcapacity(TIBC)andtransferrinsaturation(SAT)were

measured by a colorimetric method (Wiener Lab, Rosario,

(3)

Beta-thalassemiamutationsbyDNAanalysis

GenomicDNA wasisolated withthe HighPurePolymerase

ChainReaction(PCR)TemplatePreparationKit(Roche

Diag-nostics)from250␮LofK2-EDTAanticoagulatedwholeblood.

PCRandmutationdetectionbymeltingcurveanalysiswere

performed in a LightCycler system 2.0 (Roche

Diagnos-tics), which can simultaneously measure signals emitted

from two different fluorophores. PCR primers (forward: 5′

-gctgtcatcacttagacctca-3′; reverse: 5-cacagtgcagctcactcag-3)

weredesignedtoamplifya587-bpregionofthe␤-globingene

surroundingthemostcommon␤-thalassemiamutationsin

theArgentinianpopulation,asreportedpreviously.12The

clus-teringofmanymutationswithinsmall distancespermitted

theuseoftwocombinationsofprobestoanalyzefivecommon

␤-thalassemiamutations.

FoxO3geneexpression

The FoxO3 gene expression was analyzed using real-time

reversetranscription-PCR(RT-qPCR).Thedataobtainedfrom

the real time PCR were compared with the expression of

theglyceraldehyde3-phosphatedehydrogenase(GAPDH)geneas

anendogenouscontrol(relativequantification).RT-qPCRisa

powerfultooltoquantifygeneexpression.Thequantitative

endpointforreal-timePCRisthethresholdcycle(Ct).TheCt

isdefinedasthePCRcycleatwhichthefluorescentsignalof

thereporterdyecrossesanarbitrarilyplacedthreshold.

RNAwasextractedfrom1mLofK2-EDTAanticoagulated

bloodusingTRIzolReagentaccordingtothemanufacturer’s

protocol(Invitrogen). ThePCRdissociationcurves and

sub-sequent analyses were performed in the LightCycler 2.0

equipment (Roche Diagnostics). The amplicons were

sub-jectedtoananalysisof‘melting’temperaturetoestablishthe

specificityoftheamplifiedfragmentsandidentitythem.The

primersandPCRconditionsweretakenfromKajiharaetal.13

TheFoxO3geneexpressionwascalculatedusingthefollowing

formula:FoxO3=2−Ct,i.e.[2−(CtFoxO3−CtGAPDH)].

Oxidativestressanalysis

OxidativedamagetobiologicalmacromoleculessuchasDNA,

proteinsandlipidscanbemeasuredbyquantifyingspecific

reaction end products. During peroxidation, the peroxides

are decomposed to malondialdehyde (MDA), which can be

detectedbythiobarbituricacidinacolorimetricreactionthat

produces thiobarbituric acid reactive species (TBARS). The

TBARSlevelwasmeasuredspectrophotometricallyat532nm

underacidicconditionsinplasmaobtainedafterthe

centrifu-gationofanticoagulatedwholeblood.14TBARSisexpressedin

␮mol/L.

In order to defend themselves against the deleterious

effectsofROS,cellsmaintainaneffectiveantioxidantsystem

consistingofwaterorlipid-solubleantioxidantsandenzymes

thatremoveROSbymetabolicconversion.H2O2isconverted

towaterandO2bycatalase.Catalaseactivitydiffersgreatly

indiverse human tissues.The highestactivity isfound in

RBC,whichis3600-foldhigherthaninserum.Thus,the

cata-laseactivityofbloodispracticallyallattributabletoRBCs.15

Erythrocytecatalaseactivity(ECAT)wasanalyzedinK2-EDTA

anticoagulated wholeblood usingthe Góth techniquewith

minormodifications tocalculatetheresults.16 TheECATto

bloodhemoglobinratio(ECAT/Hb)wascalculated.

Statisticalanalysis

TheStatisticalPackagefortheSocialSciences(SPSS)software

version20.0wasusedthroughouttocarryoutallthestatistical

analyses.Hematologicalandoxidativestressparameterswere

comparedbytheMann–WhitneyUtestforpairwise

compar-isonsbetweengroups.Thetestswereperformedwithp-value

<0.05asthelevelofsignificance.Theinfluenceofserumiron

onTBARSvaluesandFoxO3expression,independentofthe

group(HealthyorBTM),wasevaluatedbysimpleregression

analysis.

Results

Forty-twohealthysubjectsand21BTMindividualswere

stud-ied.Table1showsthe resultsofhematologicalparameters,

TBARSandtheECAT/Hbratioinadultgroupsstratifiedby

gen-der.ThesameparametersareobservedinTable2forhealthy

and BTM children. As expected, significant differences (p

-value<0.05)inhematocrit,hemoglobin,MCVandMCHbwere

foundbetweenBTMandHealthygroups.

Lipidperoxidation,asdeterminedbytheTBARSlevel,did

not detectsignificant differences betweenthe Healthy and

BTMgroups(p-value=0.083).NormalTBARSlevelswere

deter-minedbythe5thand95thpercentiles,andarangefrom0.42

to0.88␮mol/Lwasobtained.OnlyoneBTMsubjectexceeded

theTBARSupperlimit.

Thecomparativeanalysisofantioxidantstatususingthe

ECAT/Hbratioshowedasignificantdifference(p-value=0.000)

betweenhealthyandBTMadults.ThenormalECAT/Hbratio

(from0.50to0.91MU/g)wasestablishedusingthe5thand95th

percentiles.

TheFoxO3geneexpressionwasmeasuredinBTMsubjects

andin21ofthe42healthysubjects;asinthecaseofTBARS

andECAT/Hb,the5thand95thpercentilesdetermineda

nor-malrangeoffrom 0.19to9.47.OnlytwowomenwithBTM

(9.5%),onewiththeIVSI-1G>Amutationandtheotherwithan

undeterminedmutation,exceededtheupperlimit(Figure1).

There was no influence of iron levels on TBARS level

(R2=0.098)orFoxO3expression(R2=0.019).TwoBTMsubjects

hadlowiron(onewomananda1-year-oldchild)butthisdid

notimpedetheobservationofanincreasedHbA2level.

The ␤-thalassemia mutations detected in order of

fre-quencywereIVS-I-1G>A,codon39C>T, IVS-I-110G>Aand

IVS-I-6 T>C.To evaluatethe possible effectof thalassemia

mutationsonHb A2,ironstatus,TBARS,ECAT/Hb ratioand

FoxO3expression,samplesweresubdividedaccordingtothe

typeofmutation(Table3).TheIVSI-6T>C(mildphenotype)

and IVSI-110G>A(more severephenotype)mutationswere

discriminated in the ␤+ group. Differences between ␤0 (11

carriers) and ␤+ (7 carriers) groups were analyzed, without

anysignificantdifferencesbeingfound(HbA2:p-value=0.891;

Fe:p-value=0.556;TIBC:p-value=0.821;SAT:p-value=0.751;

TBARS: p-value=0.079;ECAT/Hb ratio:p-value=0.342;FoxO3

(4)

Table1–Hematologicalparameters,thiobarbituricacidreactivespecies(TBARS)anderythrocytecatalaseactivity

(ECAT)/hemoglobin(Hb)ratioinHealthyandbeta-thalassemiaminor(BTM)adults.

Group n Age[years] HTOa[L/L] MCVa[fL] MCHa[pg] Hba[g/dL] TBARS[mol/L] ECAT/Hba[MU/g]

Healthy

Female(range) 14 34(13–75) 0.42b(0.37–0.46) 88.1(81.8–96.9) 29.4(26.2–31.4) 11.5b(9.3–14.2) 0.61(0.29–0.90) 0.68(0.50–1.08)

Male(range) 25 37(14–64) 0.45(0.42–0.51) 86.2(81.2–93.0) 29.1(25.6–31.2) 14.8(13.0–17.6) 0.68(0.42–0.81) 0.59(0.46–0.88)

BTM

Female(range) 12 33(22–76) 0.36(0.33–0.41) 65.2(63.0–76.9) 19.3(18.3–24.1) 10.6(10.0–12.1) 0.56(0.38–0.79) 0.82(0.66–1.42)

Male(range) 3 33(16–65) 0.39(0.32–0.47) 67.6(66.9–74.3) 20.0(19.8–22.5) 11.5(9.3–14.2) 0.58(0.40–0.90) 0.86(0.76–1.18)

HTO:hematocrit;MCV:meancorpuscularvolume;MCH:meancorpuscularhemoglobin.

a p-Value<0.05betweenHealthyandBTMgroups.

b p-Value<0.05betweenHealthyfemaleandmaleindividuals.

Table2–Hematologicalparameters,thiobarbituricacidreactivespecies(TBARS)anderythrocytecatalaseactivity

(ECAT)/hemoglobin(Hb)ratioinHealthyandbeta-thalassemiaminor(BTM)children.

Group(n) n Age[years] HTO[L/L] MCV[fL] MCH[pg] Hb[g/L] TBARS[␮mol/L] ECAT/Hb[MU/g]

Healthy(range) 3 11(8–12) 0.39a(0.37–0.39) 81.8a(74.6–84.8) 26.3a(23.3–28.0) 122a(121–124) 0.47(0.45–0.75) 0.77(0.50–0.88)

BTM(range) 5 11(1–12) 0.35(0.32–0.38) 63.0(58.7–65.1) 19.2(17.3–19.5) 105(93–112) 0.51(0.38–0.58) 0.83(0.72–0.90)

HTO:hematocrit;MCV:meancorpuscularvolume;MCH:meancorpuscularhemoglobin.

a p-Value<0.05betweenHealthyandBTMchildren.

Discussion

The aim of this study was to investigate the relationship

betweenFoxO3geneexpressionandoxidativestatusin

indi-viduals withthe ␤-thalassemiatrait. In severalstudies, an

increase of oxidative stress has been reported in both ␤

-thalassemiamajorandintermedia.Theincreaseofoxidative

damageinthalassemiahasbeenrelatedtothegenerationof

freeradicalsbyanexcessofdenatured␣-or␤-globinchains,

intracellularironoverloadandlowconcentrationofnormal

hemoglobin.7–11

OxidativestatushasbeeninvestigatedinBTMsubjectsby

onlyafewresearchers.6,11,17Allofthemshowedanincrease

inoxidativestressandanalterationinantioxidantcapacityin

300,000

200,000

100,000

0,000

BTM N

F

o

xO3

* 20

* 24

62

Figure1–FoxO3 geneexpressioninnormaland beta-thalassemiaminorgroups.Abbreviations:BTM: beta-thalassemiaminor(21subjects);N:Healthy(21 subjects).

␤-thalassemiaheterozygotes.Werecentlyreportedthat

cata-lase activity,akey enzymeofthe antioxidantsystem, was

increasedin only14% ofBTMsubjects, withno significant

differences between␤-thalassemiamutations.16 Inorderto

sharpentheresults,theECAT/Hbratiowascalculated,which

was significantlyhigherinBTMindividuals.IntheHealthy

group,thelevelofthisratiowassimilartothatobtainedby

VitaiandGóth.18However,Kósaetal.describedadecreased

ratiobetweencatalaseactivityinbloodandhemoglobininthe

BTMgroup.Theyproposedthatthedecreaseincatalase

activ-itymightbeduetothedamagingeffectsoffreeradicalson

thecatalaseprotein.19However,otherauthorshavereported

increasedcatalaseactivityinthalassemiaindividuals.8

Over 200different mutationshave been foundto cause

␤-thalassemia, with splicing mutations among the most

common. Most of these mutations activate aberrant

cryp-tic 5′-donor or 3-acceptor splice sites without completely

abolishingnormalsplicing.Thesemutationsleadtothe

pro-duction of variable amounts of normal transcripts. Some

mutationsallowasignificant levelofnormalsplicing(such

asIVSI-6 T>C),leading tothalassemiaintermedia, whereas

othersreducenormalsplicingtolowlevels(suchasIVSI-110

G>A)orverylowlevels(suchasIVSI-5G>AandIVSII-654C>T),

causingatransfusion-dependentdiseaseinhomozygotes.20

Therefore, IVS-I-110G>A, althoughconsidered␤+, isavery

severegenotypewithaminimalamountofHbA(generally,

lessthan5%).Sothelackofanysignificantdifferencebetween

␤0and␤+inthepresentstudycouldberelatedtothefactthat

onlytwopatientsaregenuinely␤+(IVS-I-6T>C).

Inrespecttoincreasedoxidativestress,ourfindingswere

notconsistentwithpreviousstudies.Theoxidantstatusof

BTM subjects showed no significant differences with the

Healthygroup. Selek etal., bymeasuringthe totaloxidant

status(TOS),totalantioxidantcapacity(TAC),lipid

hydroper-oxide(LOOH)levelsandoxidativestressindex(OSI),detected

(5)

T able 3 – Results of beta-thalassemia minor subjects accor ding to the beta-thalassemia m uta tions. Type of m utation a n Hb [g/L] Hb A2 [%] Ir on [ ␮ g/dL] TIBC [ ␮ g/dL] SA T [%] TB ARS [ ␮ mol/L] EC A T/Hb [MU/g] FoxO3 g ene e xpr ession a␤ 0(r ang e) 11 108 b(93–121) 4.8 (4.0–5.6) 83 (29–259) 266 (180–347) 31 (8–97) 0.60 (0.40–0.90) 0.92 b(0.66–1.42) 1.84 (0.08–37.01) ␤ +IVSI-110 G>A (r ang e) 5 106 c(100–111) 4.7 (3.8–5.3) 80 (75–103) 297 (220–380) 32 (20–45) 0.51 (0.38–0.54) 0.87 (0.72–1.15) 2.01 (0.01–7.52) ␤ +IVSI-6 T>C (r ang e) 2 108 (103–112) 5.2 (5.1–5.3) 64 (63–66) 224 (203–244) 29 (27–31) 0.55 (0.52–0.58) 0.82 (0.81–0.83) 1.96 (0.53–3.39) Undetermined (r ang e) 3 132 (121–142) 4.4 (4.2–5.3) 80 (58–144) 247 (247–318) 32 (23–45) 0.71 (0.48–0.79) 0.76 (0.73–0.79) 156.29 (1.75–310.83) TIBC: total ir on binding capacity; SA T : tr ansferrin satur ation; TB ARS: thiobarbituric acid reacti v e species; EC A T/Hb: er ythr oc yte catalase acti vity/hemo globin ratio . a ␤ 0gr oup wa s composed of 6 IVSI-1 G>A and 5 CD39 C>T subjects. b p -V alue <0.05 betw een ␤ 0and undetermined gr oups. c p -V alue <0.05 betw een ␤ +IVSI-110 G>A and undetermined gr oups.

analyzingTBARSandTroloxequivalenttoantioxidant

capac-ity (TEAC), identified anincrement of oxidativestress and

antioxidantcapacityin␤-thalassemiaheterozygotes,mainly

incarriersofthecodon39mutation.17Labibetal.measured

TACandTBARS.TheyfoundthatTACwassignificantlylowerin

BTMsubjectsthanincontrols,whileTBARSwassignificantly

higher,withsignificantdifferencesbetweenthe␤0and␤+

tha-lassemiatraits.11Inaddition,Laietal.reportedhigherlevels

ofthepro-oxidant/antioxidant ratioin␤-thalassemia

inter-mediaandBTM,comparedtocontrols.21Differenceswiththe

presentstudymaybeduetomethodologicaldifferencesand

sensitivityofthemethods.

In this study,therewas no relationshipbetween serum

iron,TBARSandFoxO3expression.Inaccordance,Ondeietal.

didnotdetectaninfluenceofironlevels, SATorferritinon

TBARSandTEACvalues.17Al-Hakeimetal.reportedno

statis-ticallysignificantcorrelationbetweenironstatusparameters

and MDA or total carbonyl in patients with␤-thalassemia

major.22 Excessive iron concentrations can stimulate lipid

peroxidationinthalassemiamousemodels,whichresemble

thalassemiapatientsreceivingbloodtransfusions,23however

thesestudies haveindicatedno directassociationbetween

serumironparametersandMDA.22,23 Instead,thestrongest

predictor of increased MDA in patients with severe

tha-lassemiawouldbetheliverironconcentration.24

Themammalianforkheadtranscription factors ofthe O

class(FoxOs) hasfourmembers:FoxO1, FoxO3, FoxO4, and

FoxO6.FoxO1andFoxO3areexpressedinnearlyalltissues.

FoxOs transcriptionally activate or inhibit downstream

tar-getgenes,thereforeplayinganimportantroleinproliferation,

apoptosis,autophagy,metabolism,inflammation,

differentia-tion,andstressresistance.FoxO1andFoxO3playanimportant

roleinprotectionofcellsagainstoxidativestress.25Wangetal.

foundthatoxidativestressenhancestheexpressionofFoxO3a

but not FoxO1and FoxO4 inendothelialprogenitor cells.26

FoxO3increasesthelevelsofMnSODinmitochondria,which

removessuperoxideradicals.Invivoexperimentssuggestthat

FoxO3protectsagainstoxidativestressbyincreasingMnSOD

expression and production of catalase and peroxiredoxin

III.27 FoxO3 is also critical for hematopoietic self-renewal.

In vivo experiments have established that FoxO3 deletion

in hematopoietic stem cells increases ROS and impairs

theirhematopoieticcapacity.28FoxO3alsoprotects

erythro-poiesisagainstoxidativestress.2Resveratrol,anovelpotential

therapy that ameliorates oxidative stress in circulating ␤

-thalassemiaredcells,activatesFoxO3transcriptionalfactor.29

The use of rapamycin, a mechanistic target of rapamycin

(mTOR)inhibitor,hasbeentestedin␤-thalassemiamiceand

remarkablyimprovederythroidcellmaturation,␤-globin

pro-ductionand anemiathrough FoxO3activation.30Therefore,

up-regulationofFoxO3couldbeatargettocontroloxidative

stressin␤-thalassemiasubjects.31

OurdatashowthatFoxO3geneactivationwasincreasedin

onlytwoBTMindividuals.FoxO3geneexpressionwasnormal

inmostBTMsubjects,andthisobservationcouldberelated

to the lack ofoxidative imbalance shown byTBARS levels

inplasma. AlthoughFoxO3expressioninperipheral

mono-nuclearcellsisnotstrictlyrepresentativeofoxidativestressin

theerythroidlineage,theirassessmentisvalidbecauseboth

(6)

Alimitationofthisworkisthatsuperoxidedismutasewas

notmeasured;thiscouldhavecontributedtotheevaluation

oftheantioxidantstatusofthecarriers.Thelownumberof

samplesisanotherlimitationofthisstudy.

Conclusions

Oxidative stress plays an important role in the

pathophy-siology of ␤-thalassemia, and its control could ameliorate

theclinicalsignsofthedisease.FoxOtranscriptionproteins

modulateseveralcellularfunctionsthroughregulationof

mul-tiple transcriptional targets. Therefore, regulation of FoxO

transcriptionfactors byantagonistsinsomediseasestates,

oragonistsinnormal anddisease conditions, maybe

use-fulintreatingor preventingawide varietyofdisorders.In

thepresentwork,thepresenceofsystemicoxidativestress

wasnotprovedinBTMindividuals,andinmost,theFoxO3

gene expressionwas notup-regulated. However,the study

of antioxidant activity in RBC demonstrated an increased

ECAT/Hbratio.Ananalysisofreticulocytesseparatedfromthe

bloodofBTMsubjectsmayclarifytheroleofFoxO3inthis

con-dition.Furthermore,itwouldbenecessarytoperformacohort

study of␤-thalassemiaheterozygotes overalong periodof

timetorecognizetheiroxidantstatusandits relationwith

thetypeofmutation.

Funding

Thisworkwasrealizedwithgrantsgrantedbythe Consejo

deInvestigacionesde laUniversidadNacionalde Tucumán

(CIUNT26/D520).

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThisworkcountedonthesupportoftheConsejode

Investiga-cionesdelaUniversidadNacionaldeTucumán(CIUNT26/D520),

whograntedthefundsfortheresearch.Theauthorsthank

Biochemistry Specialist Guillermo Fabián Vechetti and the

Laboratorio Tucumán for the use of its molecular biology

equipment.

r

e

f

e

r

e

n

c

e

s

1. FibachE,RachmilewitzE.Theroleofoxidativestressin hemolyticanemia.CurrMolMed.2008;8(7):609–19.

2. MarinkovicD,ZhangX,YalcinS,LucianoJP,BrugnaraC, HuberT,etal.Foxo3isrequiredfortheregulationofoxidative stressinerythropoiesis.JClinInvestig.2007;117(8):2133–44.

3. NemotoS,FinkelT.Redoxregulationofforkheadproteins throughap66shc-dependentsignalingpathway.Science. 2002;295(5564):2450–2.

4. ForgetBG,BunnHF.Classificationofthedisordersof hemoglobin.ColdSpringHarbPerspectMed. 2013;3(2):a011684.

5.RundD,RachmilewitzE.Beta-thalassemia.NEnglJMed. 2005;353(11):1135–46.

6.SelekS,AslanM,HorozM,GurM,ErelO.Oxidativestatusand serumPON1activityinbeta-thalassemiaminor.Clin Biochem.2007;40(5–6):287–91.

7.WaseemF,KhemomalKA,SajidR.Antioxidantstatusinbeta thalassemiamajor:asingle-centerstudy.IndianJPathol Microbiol.2011;54(4):761–3.

8.Boudrahem-AddourN,Izem-MezianeM,BouguerraK, NadjemN,ZidaniN,BelhaniM,etal.Oxidativestatusand plasmalipidprofilein␤-thalassemiapatients.Hemoglobin. 2015;39(1):36–41.

9.KattamisC,LazaropoulouC,DelaportaP,ApostolakouF, KattamisA,PapassotiriouI.Disturbancesofbiomarkersof ironandoxidant–antioxidanthomeostasisinpatientswith beta-thalassemiaintermedia.PediatrEndocrinolRev.2011;8 Suppl.2:256–62.

10.FerroE,VisalliG,CivaR,LaRosaMA,RandazzoPapaG,Baluce B,etal.Oxidativedamageandgenotoxicitybiomarkersin transfusedanduntransfusedthalassemicsubjects.FreeRadic BiolMed.2012;53(10):1829–37.

11.LabibHA,EtewaRL,GaberOA,AtfyM,MostafaTM,Barsoum I.Paraoxonase-1andoxidativestatusincommon

Mediterranean␤-thalassaemiamutationstrait,andtheir relationstoatherosclerosis.JClinPathol.2011;64(5):437–42.

12.LazarteSS,MonacoME,HaroAC,JimenezCL,Ledesma AchemME,IsseBA.Molecularcharacterizationand phenotypicalstudyofbeta-thalassemiainTucuman, Argentina.Hemoglobin.2014;38(6):394–401.

13.KajiharaT,JonesM,FusiL,TakanoM,Feroze-ZaidiF,Pirianov G,etal.DifferentialexpressionofFOXO1andFOXO3aconfers resistancetooxidativecelldeathuponendometrial

decidualization.MolEndocrinol.2006;20(10):2444–55.

14.BuegeJA,AustSD.Microsomallipidperoxidation.Methods Enzymol.1978;52:302–10.

15.GóthL,NémethH,MészárosI.Serumcatalaseactivityfor detectionofhemolyticdiseases.ClinChem.1983;29(4): 741–3.

16.LazarteSS,MónacoME,JimenezCL,LedesmaAchemME, TeránMM,IsséBA.Erythrocytecatalaseactivityinmore frequentmicrocytichypochromicanemia:beta-thalassemia traitandirondeficiencyanemia.AdvHematol.

2015;2015:343571.

17.OndeiLdeS,EstevãoIdaF,RochaMI,PercárioS,SouzaDR, PinhelMAdeS,etal.Oxidativestressandantioxidantstatus inbeta-thalassemiaheterozygotes.RevBrasHematol Hemoter.2013;35(6):409–13.

18.VitaiM,GóthL.Referencerangesofnormalbloodcatalase andlevelsinfamilialhypocatalasemiainHungary.ClinChim Acta.1997;261(1):35–42.

19.KósaZ,NagyT,NagyE,FazakasF,GóthL.Decreasedblood catalaseactivityisnotrelatedtospecificbeta-thalassemia mutationsinHungary.IntJLabHematol.2012;34(2):172–8.

20.VadolasJ,NefedovM,WardanH,MansooriderakshanS, VoullaireL,JamsaiD,etal.Humanizedbeta-thalassemia mousemodelcontainingthecommonIVSI-110splicing mutation.JBiolChem.2006;281(11):7399–405.

21.LaiME,VacquerS,CartaMP,SpigaA,CoccoP,AbeteC,etal. Evidenceforaproatherogenicbiochemicalphenotypeinbeta thalassemiaminorandintermedia.ActaHaematol.

2011;126(2):87–94.

22.Al-HakeimHK,AudaFM,AliBM.Lackofcorrelationbetween nonlabileironparameters,totalcarbonyland

malondialdehydeinmajorthalassemia.JClinBiochemNutr. 2014;55(3):203–6.

(7)

lymphocytesofthalassemiapatients.IntJCancer. 2009;125(4):759–66.

24.WalterPB,FungEB,KillileaDW,JiangQ,HudesM,PorterJ, etal.Oxidativestressandinflammationiniron-overloaded patientswith␤-thalassaemiaorsicklecelldisease.BrJ Haematol.2006;135(2):254–63.

25.WangY,ZhouY,GravesDT.FOXOtranscriptionfactors:their clinicalsignificanceandregulation.BiomedResInt. 2014:925350.

26.WangF,WangYQ,CaoQ,ZhangJJ,HuangLY,SangTT,etal. Hydrogenperoxideinducedimpairmentofendothelial progenitorcellviabilityismediatedthroughaFoxO3a dependentmechanism.MicrovascRes.2013;90:48–54.

27.LuQ,ZhaiY,ChengQ,LiuY,GaoX,ZhangT,etal.The Akt-FoxO3a-manganesesuperoxidedismutasepathwayis involvedintheregulationofoxidativestressindiabetic nephropathy.ExpPhysiol.2013;98(4):934–45.

28.WangH,LiY,WangS,ZhangQ,ZhengJ,YangY,etal. KnockdownoftranscriptionfactorforkheadboxO3(FOXO3) suppresseserythroiddifferentiationinhumancellsand zebrafish.BiochemBiophysResCommun.2015;460(4): 923–30.

29.FrancoSS,DeFalcoL,GhaffariS,BrugnaraC,SinclairDA, MatteA,etal.Resveratrolaccelerateserythroidmaturation byactivationofFoxO3andamelioratesanemiain

beta-thalassemicmice.Haematologica.2014;99(2): 267–75.

30.ZhangX,CampreciósG,RimmeléP,LiangR,YalcinS, MungamuriSK,etal.FOXO3-mTORmetaboliccooperationin theregulationoferythroidcellmaturationandhomeostasis. AmJHematol.2014;89(10):954–63.

Imagem

Figure 1 – FoxO3 gene expression in normal and beta-thalassemia minor groups. Abbreviations : BTM:

Referências

Documentos relacionados

Furthermore, the change from supine to standing caused clinically significant increases in the hemoglobin, hematocrit, red blood cell, leukocyte, neutrophil, lymphocyte, basophil

6-minute walk test but patients with sickle cell anemia had a lower physical activity level.. compared to

In view of the inflammatory and oxidative stress features observed in SCD, the telomere length was determined in SCD patients and healthy controls in order to correlate this

Long-term follow-up analysis of 100 patients with splenic marginal zone lymphoma treated with splenectomy as first-line treatment.. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri

NST: nutritional support therapy; ASPEN: American Society for Parenteral and Enteral Nutrition; ESPEN: European Society for Clinical Nutrition and Metabolism; FNLCCC:

Diagnosis of SCIC is based on clinical and laboratory evidence of non-obstructive cholestasis, moderately elevated hepatic enzymes and an enlarged and painful liver.. The

Simultaneous occurrence of chronic myeloid leukemia and chronic lymphocytic leukemia: report of an unusual case. Laurenti L, Tarnani M, Nichele I, Ciolli S, Cortelezzi A,

Table 1 – World Health Organization diagnostic criteria for chronic eosinophilic leukemia.. There is no Philadelphia chromosome or breakpoint cluster region-Abelson murine