• Nenhum resultado encontrado

Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines

N/A
N/A
Protected

Academic year: 2021

Share "Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines"

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Chromatography

A

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a te / c h r o m a

Development

of

a

novel

microextraction

by

packed

sorbent-based

approach

followed

by

ultrahigh

pressure

liquid

chromatography

as

a

powerful

technique

for

quantification

phenolic

constituents

of

biological

interest

in

wines

João

Gonc¸

alves,

Berta

Mendes,

Catarina

L.

Silva,

José

S.

Câmara

CQM-UMa,CentrodeQuímicadaMadeira,CentrodeCiênciasExactasedaEngenhariadaUniversidadedaMadeira,CampusUniversitáriodaPenteada,9000-390Funchal,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28September2011

Receivedinrevisedform6January2012 Accepted6January2012

Available online 18 January 2012 Keywords:

Wines

Bioactivecompounds

Microextractionbypackedsorbent(MEPS) Ultrahighpressureliquidchromatography (UHPLC)

a

b

s

t

r

a

c

t

Anovelanalyticalapproach,basedonaminiaturizedextractiontechnique,themicroextractionbypacked sorbent(MEPS),followedbyultrahighpressureliquidchromatography(UHPLC)separationcombined withaphotodiodearray(PDA)detection,hasbeendevelopedandvalidatedforthequantitative deter-minationofsixteenbiologicallyactivephenolicconstituentsofwine.Inadditiontoperformingroutine experimentstoestablishthevalidityoftheassaytointernationallyacceptedcriteria(linearity, sensi-tivity,selectivity,precision,accuracy),experimentsareincludedtoassesstheeffectoftheimportant experimentalparametersontheMEPSperformancesuchasthetypeofsorbentmaterial(C2,C8,C18, SIL,andM1),numberofextractioncycles(extract-discard),elutionvolume,samplevolume,andethanol content,werestudied.TheoptimalconditionsofMEPSextractionwereobtainedusingC8sorbentand smallsamplevolumes(250␮L)infiveextractioncycleandinashorttimeperiod(about5minforthe entiresamplepreparationstep).Thewinebioactivephenolicswereelutedby250␮Lofthemixture con-taining95%methanoland5%water,andtheseparationwascarriedoutonaHSST3analyticalcolumn (100mm×2.1mm,1.8␮mparticlesize)usingabinarymobilephasecomposedofaqueous0.1%formic acid(eluentA)andmethanol(eluentB)inthegradientelutionmode(10minoftotalanalysis).The methodgavesatisfactoryresultsintermsoflinearitywithr2

-values>0.9986withintheestablished con-centrationrange.TheLODvariedfrom85ngmL−1(ferulicacid)to0.32␮gmL−1((+)-catechin),whereas theLOQvaluesfrom0.028␮gmL−1(ferulicacid)to1.08␮gmL−1((+)-catechin).Typicalrecoveriesranged between81.1and99.6%forredwinesandbetween77.1and99.3%forwhitewines,withrelative stan-darddeviations(RSD)nolargerthan10%.TheextractionyieldsoftheMEPSC8/UHPLC–PDAmethodology werefoundbetween78.1(syringicacid)and99.6%(o-coumaricacid)forredwinesandbetween76.2 and99.1%forwhitewines.Theinter-dayprecision,expressedastherelativestandarddeviation(RSD%), variedbetween0.2%(p-coumaricando-coumaricacids)and7.5%(gentisicacid)whiletheintra-day precisionbetween0.2%(o-coumaricandcinnamicacids)and4.7%(gallicacidand(−)-epicatechin).On thebasisofanalyticalvalidation,itisshownthattheMEPSC8/UHPLC–PDAmethodologyprovestobean improved,reliable,andultra-fastapproachforwinebioactivephenolicsanalysis,becauseofitscapability fordeterminingsimultaneouslyinasinglechromatographicrunseveralbioactivemetaboliteswithhigh sensitivity,selectivityandresolvingpowerwithinonly10min.Preliminarystudieshavebeencarried outon34realwholewinesamples,inordertoassesstheperformanceofthedescribedprocedure.The newapproachoffersdecreasedsamplepreparationandanalysistime,andmoreoverischeaper,more environmentallyfriendlyandeasiertoperformascomparedtotraditionalmethodologies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Thechemicalcompositionpresentinawine,coveralarge num-berofmetabolitesincludingprimary(e.g.sugars,organicacids, aminoacids)andsecondarymetabolites(e.g.polyphenolssuchas

∗ Correspondingauthor.Tel.:+351291705112;fax:+351291705149. E-mailaddress:jsc@uma.pt(J.S.Câmara).

flavonoids,anthocyaninsandotherpigments).Allofthese com-poundshaveastronginfluenceonthequalityandcharacterofthe wine,andarethereforeimportantnotonlyforthewine character-ization,butalso,reflectsthehistoryofthewineproducingprocess, includingthegrapevariety,theyeaststrain,thecontainersused forfermentationandstorage,andtheenologicpractices.Aswellas beingagoodsourceofvitaminC,dietaryfiber,andminerals,berries containhighlevelsofnaturalpolyphenolcomponentsthatactas potentantioxidants.Grapeandwineextracts,richinpolyphenols,

0021-9673/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.chroma.2012.01.023

(2)

Fig.1.Chemicalstructuresofthebiologicalactivephenolicconstituentsfoundinwines.

havearangeofbiologicaleffectsthatcanhavebeneficialoutcomes onhumanhealth[1,2].

Polyphenols arise biogenetically from either the shiki-mate/phenylpropanoidpathwayor‘polyketide’acetate/malonate pathway,orboth, producingmonomericandpolymericphenols andpolyphenols,whichfulfilaverybroadrangeofphysiological rolesinplants[3].Apparentlyactasdefense(againstherbivores, microbes,virusesorcompetingplants)andsignalcompounds(to attractpollinatingorseeddispersinganimals),aswellas protect-ingtheplantfromultravioletradiationandoxidants[3].Theycan be categorized as (i) flavonoids and (ii)nonflavonoid phenolic compounds[4].Todate,severalhundredsofdifferentflavonoids havebeendescribedandthenumbercontinuestoincrease[5].This groupcomprisesof15carbons,with2aromaticringsconnected bya3-carbonbridge(Fig.1).Accordingtothemodificationsofthe centralC-ring,theycanbedividedintodifferentstructuralclasses includingflavonols(representedmainlybyquercetin,kaempferol, andmyricetin),flavones(representedbyapigeninandluteolin), flavan-3-ols (ranging from the simple monomers (+)-catechin anditsisomer (−)-epicatechintotheoligomericand polymeric proanthocyanidins),flavanones,isoflavones,andanthocyanidins.

Themainnonflavonoidphenoliccompounds(Fig.1)ofdietary significancearetheC6–C1phenolicacids(gallic,p-hydroxybenzoic, protocatechuic, vanillic, and syringic acids),the C6–C3 hydrox-ycinammates (p-coumaric, caffeic, and ferulic acids, frequently accumulateastheirrespectivetartrateesters,coutaric,caftaric,and fertaricacids)andtheirconjugatedderivatives,andthe polyphe-nolic C6–C2–C6 stilbenes (phytoallexins produced by plants in responsetodisease,injury,andstress).

In recent years the role of bioactive phenolic compounds andflavonoidsasprotectivedietaryconstituentshasbecomean increasinglyimportantareaofhumannutritionresearch.Unlike the traditional vitamins, they are not essential for short-term

well-being,butthereisincreasingevidencethatmodestlong-term intakesmayexhibitapotentialformodulatinghumanmetabolism in a manner favorable contributing to the beneficial effects of fruit-andvegetable-richdiets.Indeed,thereisreasonableevidence fromepidemiologicalstudiestosupportthenotionthatdietsrich inphenolics(derivedfromfruitsandvegetables) areassociated withlowerrisksofcancer,osteoporosis,cardiovasculardiseases, cataracts,and diseases associated withbrain andimmune dys-function [6–13]. Furthermore,polyphenols fromred wine have beenreportedtoexertpotentantioxidanteffectsthatprevent low-andvery-lowdensitylipoprotein(LDLandvLDL)oxidation(crucial stepsinatheroscleroticlesionformation)andDNAbases(relevant totheinductionofcancer)byfreeradicals[14–17],inhibitionof plateletaggregation[18–20],inhibitionofcellproliferation, migra-tion,andangiogenesis,anddespitesomereportsoftheabsenceof anassociation[21,22],theyareseriouscandidatestoexplainthe protectiveeffectsofvegetableandfruitconsumptionagainst sev-eraldiseases.Onepossiblereasonforthisprotectiveeffectmaybe thepowerfulantioxidantandfreeradicalscavengingpropertiesof variousclassesofphenoliccompounds[23].

Developedmethodsregardingtheanalysisofbiologicallyactive phenolicsin winesgenerally includesextractions withsolvents (methanol, ethanol, acetone or mixtures of these with water), cleanupandfurtherfractionationbyliquid–liquidextraction(LLE) [24],usuallywithethylacetate[25];columnchromatography(CC) [26]orsolidphaseextraction(SPE)[27,28].However,these proce-duresarequitetime-consumingandneedrelativelyhighvolume ofsolvent/sample,whichisimpracticalfortheroutineanalysesof manyfoodcommodities.Theever-increasingdemandforcontrol analysishascontributedmarkedly totherenewalofinterest in miniaturizedanalyticaltechniques(MAT)whichhastakenplace overthelastyears.TheMAThadgainedattentionduetoitsmany special features over classical approaches. Usage of little or no

(3)

Fig.2. SchematicdiagramoftheMEPSsyringeandMEPS-BINfromSGE,Analytical Science.

AdaptedfromWirthetal.[32].

solvent(reducingexposureofanalysttosolvents),increasing sen-sitivityof analysisand user-friendlysystem,should bepointed out.Inthiscontextthemicroextractionbypackedsorbent(MEPS) appearsasanewformatforsolid-phaseextraction(SPE)thathas beenminiaturizedtoworkwithsamplevolumesassmallas10␮L [29,30].ThecommerciallyavailablepresentationofMEPSusesthe samesorbentsasconventionalSPEcolumnsandsoissuitablefor usewithmostexistingmethodsbyscalingthereagentandsample volumes.UnlikeconventionalSPEcolumns,theMEPSsorbentbed isintegratedintoaliquidhandlingsyringethatallowsforlowvoid volumesamplemanipulationseithermanuallyorincombination withlaboratoryrobotics.Whenthesamplehaspassedthroughthe solidsupport,theanalytesareadsorbedtothesolidphasepacked inabarrelinsertandneedle(BIN)[30–32](Fig.2).

Thecartridgebedcanbepackedorcoatedtoprovideselective andsuitablesamplingconditions.Silicabased(C2,C8,C18),strong cationexchanger(SCX)usingsulfonicacidbondedsilica,restricted accessmaterial(RAM),hilic,carbon,polystyrene–divinylbenzene copolymer(PS–DVB)ormolecularimprintedpolymers(MIPs),can beusedassorbentmaterials.Thisnewtechniqueisverypromising becauseitisfast,simpleanditrequiresverysmallvolumeof sam-plestoproducecomparableresultstoconventionalSPEtechnique. Furthermore, this technique can be easily interfacedto LC–MS andGC–MStoprovideacompletelyautomatedMEPS/LC–MSor MEPS/GC–MSsystem.Thisextractiontechnique(MEPS)couldbeof interestinclinical,forensictoxicologyandenvironmentalanalysis areas[29,33–39].

ThecurrentavailableHPLCmethodsforquantificationof bioac-tivephenolicsinseveralmatrices,includingwines,haveruntimes intherangeof10–50min[24,28,40,41].Recently,ultrahigh pres-sureliquid chromatography(UHPLC)hasbecomewidelyspread techniqueandnewtrendinseparationsciences[33].Higher sep-aration efficiency of sub-2-␮m particle sorbents allows faster chromatographic separation keeping the same resolution com-paredtoHPLCsorbentswithconventionalparticlesize[33,42,43]. ThisisexpressedbyKnoxcurves,wherelowerheightequivalent oftheoreticalplateindicatesimprovedseparationefficiencyand higheroptimumlinearvelocity,whichmeansdecreaseinanalysis time[33,44].

The current research study describe the development and validation of an ultra-fast, efficient, sensitive, reliable and highthroughputMEPS-basedmethodologyincombination with UHPLC–PDAforthesimultaneousdetermination of16bioactive phenolicconstituentsinwines.TheUHPLCsystemusedincludes a binarysolventmanagerwhich delivers upto15,000psi pres-sure,aphotodiodearray(PDA)detectorwithaspectrainarangeof between200and400nm,a1.8␮mparticlesizecolumnanda sam-plemanagerwithsmallinjectionvolumeused(2␮L).Compared

toLLEandSPE,MEPSsavespreparationtimeandreducessolvent wastesignificantly.Spikedsyntheticwinesolution,redwine(Real Lavrador,codedasRL)andwhitewine(GrãoVasco,codedasGV) wereusedtoevaluatetheperformanceofthedevelopedmethod. SomefactorsinfluencingtheMEPSextractionefficiency,suchas type of sorbent material, number of extractioncycles (extract-discard),volumeofeluentandsamplevolume,wereevaluatedand optimized.Themethodwasthenappliedto34winesamplesfrom differentproducersandgeographicorigin.Tothebestofour knowl-edgenopapershasbeenpublishedfortheanalysisofbioactive phenolicconstituentsinwinesbyMEPS.

2. Experimental

2.1. Reagents,standardsandmaterials

All chemicals were of analytical grade. Methanol (99.9% purity, Sigma–Aldrich), formic acid (Merck), and acetic acid (Riedel-de-Haën) of HPLC gradient were purchased through Labodidáctica-EquipamentosdeLaboratórioDidácticos,Lda. (Fun-chal, Portugal). Ethanol absolute (99.5% purity), and sodium hydroxidewereobtainedfromPanreac(Barcelona,Spain). Bioac-tivephenolicstandards,gallicacid,gentisicacid,(−)-epicatechin, m-coumaricacid,o-coumaricacid,cinnamicacid,cinnamicacid, vanillicacid,p-coumaricacid,rutin,ferrulicacidandkaempferol, allfromFlukaBiochemicaAG(Buchs,Switzerland),and protocat-echuic acid, tartaricacidand syringicacid, from Sigma–Aldrich (St. Louis, MO, USA), were supplied through Labodidáctica-EquipamentosdeLaboratórioDidácticos,Lda.(Funchal,Portugal). MyricetinandsyringaldehydewereacquiredfromAcros Organ-ics(Geel,Belgium)and(+)-catechin,CaymanChemicalCompany (Montigny-le-Bretonneux,France).Internalstandard,Trolox,was acquired from Fluka Biochemica AG (Buchs, Switzerland). The purity of all polyphenolicstandards and internal standard was greater than 95%. Ultrapure water (18Mcm at 23◦C) was obtainedbymeansofa Milli-Qwater purificationsystem (Mil-lipore, Milford,MA,USA). Alltheeluates werefilteredthrough 0.22␮m PTFE membrane filters (Millipore, Milford, MA, USA) suppliedbyViaAthena-GestãodeLaboratórios,Lda.(Sacavém, Lis-bon,Portugal).TheMEPSgas-tightsyringe(250-␮L)andtheBIN (BarrelInsertand Needle)containingthesorbentmaterial from SGEAnalyticalScience(Melbourne,VIC,Australia)wereprovided by I.L.C.-Instrumentosde LaboratórioeCientíficos,Lda. (Lisbon, Portugal). The Waters Acquity UPLC HSS T3 analytical column (100mm×2.1mm,1.8␮mparticlesize)waspurchasedfromVia Athena-GestãodeLaboratórios,Lda.(Sacavém,Lisbon,Portugal).A HANNAinstrumentspH209pHmeter(Woonsocket,USA)was sup-pliedbyLabodidáctica-Equipamentos deLaboratórioDidácticos, Lda.(Funchal,Portugal).

2.2. Standardpreparationandwinesamples

Individual stock solutions of each polyphenol tested were prepared in pure methanol at concentration of 1000␮gmL−1, aliquotedin4mLvials,andstoredat−20◦C,inthedark.Under

theseconditionstheywerestableforatleast4month(asassessed byUHPLC).Workingstandardsolutionscontainingthe16 polyphe-nolswas prepareddaily fromtheindividual stock solutionsby dilutingtheminthesyntheticwine(5gL−1tartaricacid,12%(v/v) ethanol).Thisstandardwasusedbothtospikethewinesinorderto performtheassaysforoptimizationofextractionconditionsandfor calibrationstudyatdifferentconcentrations.Thechemical struc-turesoftheinvestigatedbioactivemetabolitesarereportedinFig.1. Calibrationstandards(1–50␮gL−1)werepreparedfreshontheday oftheanalysisbydilutingtheappropriateworkingsolutionsin syn-theticwinesolution.Therangesofconcentrationswereselected

(4)

Table1

Varietalcomposition,ethanolcontentandproductionyearofinvestigatedwines.

Wine Region Year Alcohol(%,v/v) Varietalcomposition

Redwine

Esteva Douro 2009 13 TintaRoriz,TourigaFranca,TintaBarrocaandTourigaNacional

JPAzeitão Setúbal 13 Castelão,AragonezandSyrah

Terrasd’elRei Alentejo 2010 13 Trincadeira,Castelão,MoretoandAragonez

Reguengos Alentejo 2010 13 Aragonez,TrincadeiraandCastelão

MonteVelho Alentejo 2009 14 Aragonez,TrincadeiraandCastelão

CasadeSantar Dão 2007 13.5 TourigaNacional,AlfrocheiroandTintaRoriz

Periquita Azeitão 2008 13 Castelão,AragonezandTrincadeira

Contemporal Dão 2008 12 TourigaNacional,TourigaFrancesa,TintaRorizandTintaBarroca

FreiBernardo Beiras 2009 12.5 Rufete,MarufoandTintaRoriz

RealLavrador Alentejo 2010 13 Castelão

PorcadaMurc¸a Douro 2009 13 TourigaNacional,TintaRoriz,ToutigaFrancesaandTintoCão

AdegadeBorba Alentejo 2009 14 Aragonez,TincadeiraandAlicanteBouschet

FontedaSerrana Alentejo 2009 14 Aragonez,Trincadeira,CabernetSauvignonandAlicanteBouschet

Pelão Douro 2009 12 BagaandTourigaNacional

TerrasAltas Dão 2007 12 Bastardo,Jean,TourigaNationalandAlfrocheiro

GrãoVasco(GV) Dão 2008 13 Jaen,TintaRorizandTourigaNacional

Torcaz Madeira 2004 12 TintaNegraMole

TMR1 Madeira 2009

TerrasdeLava Azores 2009 13 Merlot,CabernetSauvignon,SaborinhoandSyrah

TerrasdeLava Azores 2010 13 Merlot,CabernetSauvignon,SaborinhoandSyrah

Basalto Azores 2009 12 Periquita,AgronómicaandSaborinho

Basalto Azores 2010 12 Periquita,AgronómicaandSaborinho

Whitewine

RealLavrador(RL) Alentejo 2010 12.5 RoupeiroandRabo-de-ovelha

Vidigueira Alentejo 2009 13.5 AntãoVaz,Manteúdo,PerrumandRoupeiro

Navegante Alentejo 2009 13 AntãoVaz,Manteúdo,PerrumandRoupeiro

Planalto Douro 2009 12.5 MalvasiaFina,Viosinho,GouveioandCódega

Periquita Azeitão 2008 12 MoscatelandArinto

GrãoVasco Dão 2009 13 Encruzado,BicalandMalvasiaFina

Vi ˜natigoGual Canary 2005 13 AlbilloReal

TMW1 Madeira 2010

TMW2 Madeira 2010

TMW3 Madeira 2010

Lajido Ac¸ores 1999 16.5 Arinto,VerdelhoandTerrantez

VG-Verdelho Madeira 2004

infunctionofsensitivityoftheUHPLC–PDAtowardseach bioac-tivephenoliccompound.Physical-chemicalcharacteristicsaffect theanalyticalsignalandforsomecompoundshigher concentra-tionshadtobeusedinordertodetectedthecompound.Trolox wasusedasinternalstandard(IS).

Thirty-fourrepresentative commercial table wines available from different regions of Portugal, and Macaronesia Islands (Madeira,AzoresandCanary),whichwereproducedaccordingto standardproceduresanddefinedvarietalcomposition,were ana-lyzed.The listof the studied wines,production year and their varietalcompositionaresummarizedinTable1.

Allsamplesweretakenfrombottledwinesreadyforsaleand storedat−20◦C.

Syntheticwinesampleswerepreparedbyanethanolsolution at12%(v/v)towhich5gL−1tartaricacidwereadded.SolutionpH wasadjustedto3.4with1Msodiumhydroxide.

Winesamplesandsyntheticwinesweredealcoholizedunder vacuumat40◦C,upto

¼

ofinitialvolume,inordertoavoid inter-ferences of ethanol. The volume of dealcoholized extracts was adjustedtoinitialsamplevolumewithwaterandthepHadjusted to3.4with30% (v/v)acetic acid. Allsampleswereanalyzed in triplicate.

2.3. OptimizationofthefactorsaffectingtheperformanceofMEPS TheMEPSprocedurewascarriedoutbymeansofaSGE Ana-lyticalScience(I.L.C.,Lisbon,Portugal)apparatus,consistingofa 250-␮Lgas-tightsyringewitharemovableneedle.Thesyringewas fittedwithaBIN(BarrelInsertandNeedle)containing4mgofthe sorbentmaterialandwasusedtodrawanddischargesamplesand solutionsthroughtheBIN.Asyntheticwinesamplespikedwith

knownamountsofbioactivephenolicswasusedtooptimizethe MEPSprocedure.SeveralimportantMEPS-influencingextraction factorssuchasthetypeofsorbentmaterial,numberofextraction cycles,elutionvolume,samplevolume,andethanolcontent,were evaluated.

Selectionofsorbentisanimportantfactortoachieveacceptable clean-upandgethighextractionyield[30].Thereforethe perfor-manceof thefive MEPS sorbentmaterials:C2(ethyl-silica), C8 (octyl-silica),C18(octadecyl-silica),SIL(unmodifiedsilica)andM1 (amixedmodesorbentcontaining80%C8and20%strongcationic exchange(SCX))wastestedandcompared,inordertoselectthe bestsorbent for thetarget analytes.C2–C8phases are suitable forlipophilicanalytes(non-polar)andpolymericphasessuchas polystyrene–divinylbenzeneormixedmodephases(anion–cation exchange mode) are suitable for polar analytes such as acidic andbasiccompounds.Toselectthenumberofextractioncycles (extract-discard)andsamplevolume,analiquotof50␮L,100␮L and250␮Lofsyntheticwinewaspumpedupanddownonce,five andtentimes,inordertoobtainthebestextractionefficiency. Dif-ferentelutionvolumes(50,100,250,350and500␮L)werealso tested.Theflowrateduringaspirationislimitedtoabout20␮Ls−1 topreventcavitation.Thiswillincrease analyte/sorbentcontact timeandextractionefficiency.Inordertochecktheinfluenceof ethanolcontent,asyntheticwinewith12%(v/v)ofethanolcontent wascomparedtodealcoholizedsyntheticwineextract.The deal-coholizedextractwasadjustedtoinitialvolumeusingsolutions withdifferentalcoholiccontent: (a)100%water;(b) 90% aque-oussolutionofformicacidat0.1%and10%methanol;and(c)80% aqueoussolutionofformicacidat0.1%and20%methanol(mobile phase used at initial step of gradient elution). Since the influ-enceofmethanolonMEPSpolyphenolsextractionefficiencywas

(5)

similartoethanol,anditwasusedaseluentintheUHPLCsystem, weselectthemethanoltoevaluatetheeffectofalcoholiccontent onextractionefficiency.Alloptimizationprocedureswerecarried outintriplicate.

2.3.1. MEPSprocedureforbioactivephenolicconstituents

Theprecisionengineeringusedinthedesignandmanufacture ofMEPSallowsthesamefunctionsasSPE,suchastheremovalof interferingmatrixcomponentsandtheselectiveisolationand con-centrationofanalytes.MEPSexperimentswereconductedusing 4mgofsolid-phasematerial(C8sorbentselected,inthe optimiza-tionstep,asthebestsorbenttoisolatethetargetanalytes).Before beingusedforthefirsttime,thesorbentwasmanuallyconditioned firstwith100␮Lmethanolandthenwith100␮Lwater(0.1%formic acid). Thisstep activates thesorbent and ensures reproducible retentionoftheanalytes[30].250␮Lsampleswerepassedthrough theC8sorbentfivetimesata flowrateofabout20␮Ls−1.The solidphasewasthenwashedwith100␮Lofwatercontaining0.1% formicacidtoremoveinterferences,ataspeedofabout50␮Ls−1. Theanalyteswerethenelutedwith250␮Lof95%methanoland 5%waterdirectlyintoavial.Betweeneveryextraction,the sor-bentwasrinsedwith250␮Lmethanolfollowedby250␮Lofthe washingsolution.Thisstepdecreasedmemoryeffects(carry-over), butalsofunctionedasconditioningstepbeforethenextextraction. TheextractswerefilteredthroughMilliporemembranePTFE fil-ters(0.22␮mparticlesize).Analiquotof2␮Lofthissolutionwas injectedintriplicateintotheUHPLC–PDAsystem.Thesame pack-ingbedwasusedforabout100extractions;thenitwasdiscarded duetoboththelowanalyteextractionyieldsandcloggingofthe sorbent.AllMEPSstepsincludingactivation,loading,washing,and elutionwerecarriedoutmanually.Inallmeasurements(standards andsamples)Troloxwasaddedastheinternalstandard(IS). 2.4. UPLC–PDAanalysisandoperatingconditions

BesidesmaximumenrichmentperformancebyMEPS,the deter-minationofthetargetanalytes,insmallsamplevolumesrequires asensitivedetectionmethod.Theanalysisofbioactivesecondary metaboliteswascarriedoutonaWatersUltraPerformanceLiquid ChromatographicAcquitysystem(UPLC,AcquityH-Class)(Milford, MA,USA) combined witha Waters Acquity quaternary solvent manager(QSM),anAcquitysamplemanager(SM),acolumnheater, a 2996 PDAdetector, and a degassing system. Thewhole con-figuration was driven by Empower software v2.0 from Waters Corporation. Optimum separation was achieved with a binary mobilephase whichconsisted of(A) waterat 0.1%formic acid, and(B)methanol,withaconstantflowrateof250␮Lmin−1, giv-inga maximum backpressure of 6000psi,which is withinthe capabilitiesoftheUPLC.2␮Lofextractswereinjectedintothe WatersAcquityUPLCsystem,equippedwithanAcquityUPLCTM

strength silica HSS T3 analytical column (1.8␮m particle size, 2.1mm×100mm)andprotectedwithanAcquityUPLCTMHSST3

VanGuardTMPre-column(Waters,Milford,MA,USA);column

tem-peraturewasthermostatedat40◦Candthesampleswerekeptat 4◦C inthesample manager.The5mingradientwasasfollows: 80%A(0min);80–70%A(0.50min);68%A(1min);20%A(8min); and80%A(10min),followedbyare-equilibrationtimeof3min,for bringingthecolumntotheinitialconditionsaftergradientanalysis, givenatotalruntimeof13min.Allsolventsandsampleswere fil-teredthrough0.22␮mmembranefiltersfromMillipore(Millipore, Milford,MA,USA),beforeuse.ForquantificationpurposesthePDA detectionwasconductedbyusingfourdistinctchannelsthatwere settothemaximumabsorbancewavelengthofeachpolyphenol,as indicatedinTable2.Theywereidentifiedbycomparingthe reten-tiontimeandspectralcharacteristicsoftheirpeakswiththoseof Table

2 Peak number, retention time (RT), UV–vis data, and calibration parameters for the validation of sixteen bioactive phenolic compounds on synthetic wine, by the newly developed methodology (MEPS C8 /UHPLC–PDA). Peak number RT (min) Bioactive phenolics max a(nm) Analytical performance Conc. Range (␮ g mL − 1) Regression equation br 2 LOD c(␮ g L − 1) LOQ d(␮ g L − 1) % Matrix effect Red wine White wine 1 1.894 Gallic acid 270 1–50 0.0015 x e− 0.0005 0.9989 0.22 0.73 87.3 93.3 2 3.045 Protocatechuic acid 260 1–50 0.057 x + 0.0034 0.9986 0.036 0.12 84.4 87.7 3 3.333 (+)-Catechin 278 2–50 0.0014 x + 0.0017 0.9993 0.32 1.08 95.7 81.4 4 4.030 Gentisic acid 325 1–30 0.0028 x − 0.0012 0.9992 0.085 0.28 90.7 90.7 5 4.256 (− )-Epicatechin 280 1–25 0.002 x + 0.0017 0.9980 0.18 0.59 95.0 90.0 6 4.507 Vanillic acid 260 1–50 0.0193 x + 0.0027 0.9994 0.044 0.15 84.8 88.8 7 4.695 Syringic acid 277 1–25 0.0226 x − 0.0029 0.9998 0.050 0.17 86.6 95.7 8 5.167 Syringaldehyde 308 1–50 0.0334 x + 0.0043 0.9997 0.070 0.23 93.1 87.7 9 5.555 p -Coumaric acid 308 1–40 0.0686 x − 0.0432 0.9990 0.013 0.043 83.5 79.2 10 5.775 Ferulic acid 323 1–25 0.0643 x − 0.009 0.9998 0.0085 0.028 90.0 91.8 11 6.181 m -Coumaric acid 278 1–40 0.0653 x − 0.0427 0.9991 0.028 0.093 89.1 88.4 12 6.360 Rutin 256 1–25 0.0542 x + 0.0464 0.9958 0.15 0.50 87.2 102.6 13 6.781 o -Coumaric acid 276 1–40 0.0659 x − 0.0359 0.9993 0.026 0.088 86.0 90.6 14 7.029 Myricetin 372 1–30 0.0699 x − 0.0084 0.9995 0.078 0.26 112.6 110.4 15 8.112 Cinnamic acid 277 1–40 0.1617 x − 0.0468 0.9995 0.026 0.088 99.6 102.0 16 8.965 Kaempferol 366 1–25 0.1659 x + 0.0049 0.9993 0.022 0.074 97.6 87.6 17 9.178 Trolox 289 50 – – – – – – a Maximum absorbance values obtained in PDA system detection. b Correlation coefficient, give an estimating how well the experimental points fit a straight line. c Limit of detection. d Limit of quantification. Values obtained from ordinary least-squares regression data. e x = analyte concentration.

(6)

Table3

Accuracy,extractionyield,intra-andinter-dayperformance,obtainedforbioactivephenoliccompoundsbyusingMEPSC8/UHPLC–PDAmethodology. Bioactivephenolics Fortification

level(␮gmL−1)

Accuracy(%) Extractionyield(%) RSD(%)

Redwine Whitewine Redwine Whitewine Intra-day(n=7) Inter-day(n=25)

Gallicacid LLa 1 85.7 82.8 84.3 86.4 4.7 5.9 MLa 30 89.9 94.2 89.4 94.5 3.2 4.0 HLa 50 95.1 96.7 80.1 96.8 2.6 1.4 Protocatechuicacid LL 1 83.1 86.6 88.8 82.3 1.1 1.9 ML 20 95.0 87.0 95.2 88.5 1.2 1.6 HL 50 98.9 95.6 98.9 95.8 1.6 0.7 (+)-Catechin LL 2 89.2 80.2 82.4 87.7 3.5 7.5 ML 20 91.3 83.6 79.3 79.1 2.2 2.5 HL 50 88.9 88.7 80.9 89.8 1.9 1.5 Gentisicacid LL 1 87.9 82.0 81.9 85.2 3.2 4.0 ML 10 90.1 89.6 91.0 83.0 1.7 1.0 HL 30 97.1 93.7 97.2 94.1 1.5 1.2 (−)-Epicatechin LL 1 91.2 94.9 83.0 95.2 4.7 5.6 ML 10 87.4 98,0 85.4 98.0 1.3 1.8 HL 25 89.1 99.1 82.7 99.1 1.1 1.6 Vanillicacid LL 1 89.0 82.4 86.3 85.0 0.7 1.4 ML 20 80.7 94.9 83.8 95.1 0.7 0.8 HL 50 93.7 98.1 94.0 98.1 2.0 0.4 Syringicacid LL 1 80.3 78.9 85.8 76.2 1.6 1.8 ML 10 86.9 84.1 78.1 86.3 0.6 0.7 HL 25 91.6 91.7 84.4 92.3 0.6 0.6 Syringaldehyde LL 1 95.8 89.6 80.5 90.6 2.0 1.3 ML 20 95.9 97.8 96.1 97.9 1.6 0.9 HL 50 98.6 99.3 98.6 99.3 2.4 0.6 p-Coumaricacid LL 1 85.8 86.0 90.9 91.0 0.5 0.9 ML 20 88.6 93.7 89.7 94.0 0.4 0.2 HL 40 94.7 97.1 95.0 97.2 0.4 0.3 Ferulicacid LL 1 94.0 85.3 94.4 89.1 0.3 1.3 ML 10 90.3 93.3 91.1 93.7 0.5 0.7 HL 25 95.3 96.6 95.5 96.7 0.3 0.4 m-Coumaricacid LL 1 81.3 92.2 83.0 92.8 1.0 1.0 ML 20 87.8 97.9 81.8 98.0 0.4 0.4 HL 40 89.6 99.0 90.6 99.0 0.2 0.3 Rutin LL 1 82.6 81.4 83.1 89.3 0.5 3.8 ML 10 84.7 93.6 93.4 94.0 0.4 2.9 HL 25 90.1 96.6 88.8 96.7 0.6 0.5 o-Coumaricacid LL 1 93.4 77.1 93.8 81.4 0.8 0.9 ML 20 99.0 94.7 99.0 95.0 0.7 0.2 HL 40 99.6 97.6 99.8 97.7 0.8 0.3 Myricetin LL 1 87.0 91.8 81.4 82.4 0.6 2.6 ML 10 81.1 81.5 84.1 84.4 0.5 1.4 HL 30 92.4 94.8 92.9 95.1 0.6 0.18 Cinnamicacid LL 1 85.1 86.9 84.1 81.2 0.5 0.9 ML 20 90.6 94.7 91.4 95.0 0.2 0.5 HL 40 94.9 97.4 95.2 97.5 0.4 5.7 Kaempferol LL 1 94.2 82.0 94.6 87.5 0.4 0.7 ML 10 99.0 80.4 99.0 83.6 0.4 0.6 HL 25 99.4 91.6 99.4 92.2 0.3 0.5

aConcentrationlevelsusedinMEPS

C8/UHPLC–PDAvalidationstudies:LL-lowlevel;ML-mediumlevel;HL-highlevel.

standardsand theywerequantifiedusingthestandardsofeach one.

2.5. Methodvalidationdesign

ThenewlydevelopedMEPSC8/UHPLC-DADapproachwasfully

validatedintermsofselectivity,linearity,limitsofdetection(LOD) andquantification(LOQ),inter-andintra-dayprecisions,accuracy andextractionefficiency(Table2).Theassayswerecarried out at Laboratory of Analytical Chemistry and Enology (Centro de QuímicadaMadeira)usingtheC8sorbentandaWatersAcquity

H-Class equipped with a HSS T3 analytical column (100mm× 2.1mm,1.8␮mparticlesize).

Theselectivityofthemethodwasassessedbytheabsenceof interferingpeaksattheelutiontimesofthebioactivemetabolites. Thelinearityoftheanalyticalmethodwasevaluatedbuildingthree calibrationcurves(thepeakareaanalyte/peakareaISratioobtained

wereplottedagainstthecorrespondingstandardconcentration)for eachbioactivephenolicusingstandards,preparedinsyntheticwine fromindividualstocksolutions,at7differentconcentrationslevels, includingthezeropoint(Table3).Thezeropoint(unspiked syn-theticwine)enablestoverifythatnoneofthecompoundsshowed

(7)

residuallevelorbackgroundsignal.Eachlevelofconcentrationwas preparedintriplicateandinjectedthreetimes,sotherewereatotal ofninereplicates.

Thesensitivityofthemethodwasassessedbydeterminingthe LOD(thelowestanalyteconcentrationthatproducesaresponse detectableabovethenoiselevelofthesystem)andLOQ(thelowest levelofanalytethatcanbeaccuratelyandpreciselymeasured)for eachcompound.LODandLOQwerecalculatedwiththedata gen-eratedinthelinearitystudies,beingLODdefinedas(a+3Sa/b)and

LOQas(a+10Sa/b),where“a”representsoriginordinate,“Sa”the

originordinatevarianceand“b”theslope[45].Theseparameters werecalculatedforeachanalytefromthestandardsolutionsused toobtainthecorrespondingcalibrationcurves,usingtheUHPLC developedmethod.

Precisionisafunctionofconcentrationanditwascalculated bydividingthestandarddeviation(SD)bythemeansof concen-trationtoobtainthecoefficientof variation(C.V.),which when expressedonapercentagebasisgivestherelativestandard devia-tion(RSD).TheuseoftheRSDvalues,whichdescribesthecloseness ofagreementbetweenseriesofmeasurements,facilitates compar-isonsofvariabilitiesatdifferentconcentration.Methodprecision wasevaluatedbyspikingasyntheticwineatthreedifferent con-centration levels, correspondingto the low level (LL), medium level(ML)andhighestpoint(HL)ofcalibrationcurve(Table3)of eachphenoliccompoundandtreatedbyMEPSC8.Sevenreplicates

(n=7)wasperformedinthesamedaytoobtainrepeatability (intra-dayprecision).Forinter-dayprecision(intermediateprecision—IP) evaluation,thesameprotocolwasfollowedbutsixreplicatesof eachlevelwereanalyzeddailythroughthreedifferentdays(n=25; 7+18).

In order to check the accuracy of the proposed method a recovery study was carried out by spiking a red wine (RL) and a white wine (GV), in triplicate at three concentration levels correspondingto theLL, ML and HL (Table 3), and sub-jected to the MEPSC8 procedure described in Section 2.3. The

RL and GV wines phenolics concentration was previously determined by MEPSC8, and the recovery values were

calcu-lated according to the following formula: Accuracy=100× ([analyte]afterspiking−[analyte]beforespiking)/[analyte]added; where

[analyte]afterspikingistheanalyteconcentrationmeasuredinspiked

wine;[analyte]beforespikingistheanalyteconcentrationmeasured

inunspikedwine,and[analyte]addedisthenominalconcentration

of the analyte added to wine. Extraction efficiency (EE) was determinedbyreplicateanalysis(n=3)ofsyntheticwinespiked withbioactivephenolicsatthreeconcentrationlevels(LL,ML,and HL;seeTable3)andsubjectedtoMEPSC8procedure(CSWMEPS);a

secondsetofdifferentaliquotsofsyntheticwinewassubjectedto MEPSC8andtheextractsspikedwithbioactivephenolicsatLL,ML,

andHLconcentrationlevels(CSW).Thepeakarearatioobtainedfor

spikedsyntheticwinematrixbeforeandafterMEPSC8wasused

tocalculatethecorrespondingconcentrationthroughregression analysis (interpolationof signals in calibrationgraphs). The EE wasthencalculatedasfollow:%EE=(CSWMEPS/CSW)×100,where

CSWMEPS and CSW representstheconcentrationofthebioactive

phenolicsbeforeandafterMEPSC8procedure.

Thematrixeffectwasevaluatedbythepercentageofthe quo-tientbetweentheslopesofthestandardsinsyntheticwineand those obtainedby spikingRLand GV wines (standardaddition method).

3. Resultsanddiscussion

3.1. OptimizationoftheMEPSprocedure

Tooptimizemicroextractionbypackedsorbent,factors affect-ingtherecoverysuchasnatureofsorbent,numberofextraction

cycles,elutionvolume,samplevolume,andethanolcontent,were carefullyinvestigated.Selectionofsorbentisimportanttoachieve acceptable clean-up and extraction yield, therefore the perfor-mance of different kinds of sorbents such as C2, C8, C18, SIL andM1(mixedmodeC8+SCX)wasevaluated.Fig.3ashowsthe UHPLC–PDAresponseforthetargetanalytesusingdifferent sor-bents.

EachMEPSsorbentwasevaluatedintermsofextraction effi-ciency and reproducibility. M1, C2 and C8 sorbents (Fig. 3a) providedthebestextractionyields,howeverC8sorbentwaschosen fortheMEPSprocedurebecauseprovidedbetterresultsfor extrac-tionyieldandprecisioncomparedtobothM1andC2sorbents.In additiontheC8sorbentshowedgoodreproducibilityandstability forrepeateduse.Itwasusedformorethan100extractionswithout lossofextractionpower.Ontheotherhand,theSILsorbent(silica) gavelowextractionyieldsofanalytes.Theinfluenceofalcoholic contentontheMEPSextractionefficiencywasevaluatedbytesting differentsolutionstoadjustthedealcoholizedwineextracttoinitial volumeandcomparingthemwiththeefficiencyobtainedbyusing syntheticwinewith12%(v/v)ofethanol.Theresultsshowedthat thebestefficiencywasobtainedwhenultra-purewaterwasused toadjustthedealcoholizedwineextractvolumetoinitialsample volume.

InMEPStheretentionoftheanalytestothesorbentphaseis affectedby thenumberof extractioncyclesperformedand the speedapplied.Practically,analiquotofthevolumeofthesample can be drawn upand downthrough the syringe,once or sev-eraltimes(cycles)withoutdiscardingit.Themultiplyextraction cyclescanbecarried outfromthesamealiquot (draw–ejectin thesamevial)orbydrawupfromaliquotanddiscardinwaste (extract–discard).Thelastoptionwasselectedinthisstudy.The influenceofthenumberofextractioncyclesandsamplevolume onextractionefficiencyofbioactivephenoliccompoundstudiedis illustratedinFig.3b.Assaysshowedthatthecompetitionforactive adsorptionsitesoftheC8sorbentincreasedslightlyastheapplied extractionnumberandsamplevolumeincreasedFig.3b.

Statistically,nosignificantdifferenceswereobservedbetween once,fiveandtentimesof250␮Lsamplewinearepassedthough theC8sorbent.Forthisreason5×250␮Lwasselected,sincethe resultsshowedthatfiveextractioncyclesgaveagoodrecoveryand canextendthelifetimeoftheMEPScartridge.Fig.3cshowsthe UHPLC–PDAresponsefordifferentelutionvolumes,namely50␮L, 100␮L,250␮L,350␮L,and500␮L.Theresultsshowedthata vol-umeof50␮Lisenoughtoobtainthehighestextractionefficiency. 3.2. Methodvalidation

To demonstrate the feasibility of the present approach for determinationofwinebioactivephenolicsandtotestits practi-cability,themethodwasfullyvalidatedconsideringthelinearity, limitofdetection(LOD),limitofquantification(LOQ),extraction yield, accuracy and intra/inter-day precision.These parameters werecalculatedforeachbioactivephenolicusingconcentrations usuallyfoundinwines.Thevalidationparametersareshownin Tables2and3.

For each compound a linear regression of the peak areaanalyte/paekareaISvsconcentration,wascalculatedto

deter-minethelinearityofthemethodusingthreereplicatesatseven levelsofconcentration(Table2).

TheUHPLC–PDA systemgave linearresponseover the stud-iedrangeofconcentrationsandtheleast-squareslinearregression analysisofthedataprovidedexcellentcorrelationcoefficient val-ues for all compoundstested (r2>0.9986). The calibration was

performedbytheuseofsyntheticwine-matchedcalibration stan-dardsprepared asdescribed in Section2.2.The quantitationof the samples was performed using the means of equation of

(8)

Fig.3. (a)ComparisonoftheperformanceoffivedifferentMEPSsorbentsandtheinfluenceofthealcoholiccontent;(b)effectofnumberofextractioncycles (extraction-discard)andsamplevolume;and(c)influenceofdifferentelutionvolumes;ontheextractionefficiencyofbioactivephenoliccompoundsinwinesbyMEPS.Valuesexpressed asmean±standarddeviation(n=3).

calibrationcurves,obtainedfromordinaryleast-squaresregression data(Table2).

Thelimitsofdetection(LOD)andlimitsofquantification(LOQ) (correspondingtothebioactive phenolic amountforwhich the areaisequalto3timesand10timesthechosenstandard devi-ation,respectively)werecalculated fromordinaryleastsquares regressiondata[46].Thestandarddeviationchosentocalculate theLODandLOQvaluesistheresidualstandarddeviationofthe regressionlineforallbioactivephenoliccompoundsinthe ana-lyzedmatrix.AsitcanbeseeninTable2,theMEPSC8/UHLPC–PDA

methodologygavein generalvery lowdetectionlimits,ranging between0.0085and0.32␮gmL−1,whilelimitsofquantification rangedfrom0.028to1.08␮gmL−1,forferulicacidand(+)-catechin, respectively.

The percentage of matrix effect was evaluated through the percentageofthequotientbetweentheslopesofthestandards obtainedinsyntheticwineandthoseobtainedfromspikedRL(red) andGV(white)wines(standardadditionmethod).Matrixeffect valuesrangedfrom79.2to110.4%forwhitewineandfrom83.5 to112.6%forredwine,thereforenosignificantmatrixeffectwas observed(Table2).

Inordertoevaluatetheaccuracyofthemethod,arecoverystudy wascarriedoutbyspikingRLredwineandGVwhitewinesamples atthreeconcentrationlevels,withaknownamountofeach bioac-tivephenolic(Table3).Theconcentrationofphenolicsaddedtothe wineswaschosentocovertheexpectedvaluesinthewinesamples.

Theaccuracywasdeterminedaccordingtotheequationpresented inSection2.5.

Themeanaccuracy ofthebioactivepolypenols foreach for-tification level is listed in Table 3. At all concentration levels, satisfactory results were found with recovery values ranging from81.1(myricetinat10␮gmL−1)to99.6%(o-coumaricacidat 40␮gmL−1)forredwines,andbetween77.1(o-coumaricacidat 1␮gmL−1)and99.3%(syringaldehydeat50␮gmL−1).The extrac-tionyields(absoluterecovery)whenusingMEPSsinglepushing andpullingoff250␮LofsamplethroughtheC8sorbentmodewas examined.Theresultsshowedanaverageextractionyieldofabout 89.2%forredwineand91.3%forwhitewineatallconcentration levelsinvestigated (Table 3).Furthermore, theabsolute extrac-tionyield increase slightlyfrom low concentrationlevel(86.1% forredwines,and86.4%forwhitewines)tomedium(89.2%red wines,and91.3%for whitewines)and highconcentrationlevel (92.1%forredwines,and96.4%forwhitewines).Therefore,low concentrationofbioactivephenoliccompoundsresultsinlower extractionyieldsthantheobtainedtothemiddleandhigh fortifica-tionlevel.Thereasonforthismaybeduetothefactthatthesurface chemistryof sorbentcanbechanged byinterferingcompounds fromwineandthereforesorptionpropertiescanbechangedand maymixedretentionmechanismwasinvolved[31].Thiseffectis morepronouncedatlowconcentrationsoftheanalytewhen ana-lyte/matrixratioisverylow.Thesamebehaviorwasobservedfor accuracy.

(9)

J. Gonc ¸ alves et al. / J. Chromatogr. A 1229 (2012) 13– 23 21

Concentrationaofbioactivephenolicconstituentsinstudiedwines(valuesobtainedwerenotcorrectedbytherecoveries).

Concentration

Gal.ac.b Prot.ac.b Cat.b Gent. ac.b

Epicat.b Van.ac.b Syr.ac.b Syr.b p-Coum.ac.b Fer.b m-Coum. ac.b Rut.b o-Coum. ac.b Myr.b Cin. ac.b Kaemp.b Redwines

RealLavrador 12.8±0.1 –c 15.6±0.3 1.2±0.1 2.6±0.02 2.4±0.02 4.3±0.1 3.2±0.04 <LOQd

FontedaSerrana 13.5±0.3 – 11.5±0.8 – 1.4±0.1 – 2.6±0.02 – 2.4±0.02 – – 2.3±0.1 – 5.8±0.2 – 0.4±0.001 Torcaz 10.2±0.2 0.2±0.008 – – – 1.6±0.02 4.2±0.02 – 1.6±0.008 – – <LOQ – – – – Pelão 10.5±0.1 – 8.1±0.1 – 1.3±0.03 – 3.1±0.04 – 1.6±0.01 – – 1.7±0.1 – 3.0±0.03 – 0.3±0.004 JPAzeitão 12.5±0.1 – 15.1±0.2 – 0.9±0.001 – 2.5±0.001 – 1.9±0.004 – – 2.8±0.01 – 4.4±0.03 – 0.2±0.001 PorcadeMurc¸a 9.7±0.1 – 10.5±0.6 – 0.7±0.0001 – 1.9±0.02 – 1.5±0.04 – – 4.4±0.05 – 6.7±0.04 – 0.8±0.003 Periquita 10.5±0.05 – 9.2±0.2 – 2.4±0.04 – 3.8±0.02 – 2.0±0.008 – – 3.3±0.05 – 2.2±0.04 – – Contemporal 9.6±0.2 – 8.4±0.1 – 3.4±0.01 – 1.8±0.01 – 1.7±0.04 – – 4.0±0.002 – 3.8±0.04 – 0.4±0.01 Reguengos 8.7±0.02 – 10.0±0.05 – – – 2.4±0.01 – 1.8±0.003 – – 4.2±0.02 – 1.8±0.01 – 0.2±0.001 FreiBernardo 22.2±0.2 – 19.5±0.1 – 3.5±0.04 – 1.5±0.01 – – – – 3.7±0.06 – 3.8±0.004 – 0.5±0.002

GrãoVasco 6.8±0.1 – 11.7±0.1 – <LOQ – 2.1±0.01 – 2.3±0.002 – – 1.4±0.03 – 8.1±0.01 – <LOQ

CasadeSantar 9.7±0.1 – 10.7±0.02 – 2.2±0.05 – 3.9±0.01 – 1.9±0.002 – – 3.9±0.03 – 2.2±0.004 – 0.6±0.002

AdegadeBorba 10.0±0.1 – 11.8±0.02 – 0.7±0.001 – 2.4±0.01 – 2.5±0.02 – – 5.0±0.04 – 4.5±0.002 – 0.9±0.005

TerrasAltas 12.4±0.4 – 7.2±0.0001 – 2.4±0.04 – 3.1±0.002 – 2.2±0.01 – – 0.8±0.009 – 2.2±0.02 – 0.1±0.001

TMR1 19.1±0.04 – 10.0±0.05 – 0.9±0.0001 – 1.7±0.003 – – – – 1.6±0.02 – 3.2±0.004 – 0.1±0.0002

Esteva 6.2±0.2 – 8.6±0.1 – – – 2.8±0.01 – 1.8±0.001 – – 1.8±0.001 – 3.0±0.001 – 0.2±0.001

MonteVelho 5.6±0.1 – 9.0±0.02 – <LOQ – 2.8±0.001 – 1.7±0.001 – – 4.2±0.001 – 3.8±0.003 – 0.8±0.001

Terrasd‘elRei 8.5±0.1 – 9.7±0.01 – 0.8±0.001 – 3.7±0.01 – 1.9±0.004 – – 3.8±0.005 – 1.2±0.004 – 0.1±0.001

TLT2009 22.4±0.2 0.2±0.001 20.0±0.07 – 8.5±0.1 – 2.7±0.01 – 2.8±0.004 1.2±0.02 – 3.4±0.005 – 6.7±0.03 – <LOQ

TLT2010 29.1±0.4 – 21.3±0.2 – 8.9±0.2 1.1±0.01 1.7±0.01 – – – – 3.1±0.06 – 5.1±0.04 – 0.5±0.01

Basalto2009 23.7±0.5 0.2±0.003 16.6±0.1 – 6.6±0.02 – 1.6±0.005 – 2.6±0.03 – – 2.4±0.02 – 5.2±0.04 – <LOQ

Basalto2010 23.0±0.1 – 31.4±0.2 – 7.3±0.2 2.1±0.01 1.8±0.01 – 2.2±0.03 – – <LOQ – 2.8±0.006 – 0.6±0.01

Whitewines

GrãoVasco 1.9±0.01 – 3.2±0.2 – <LOQ – – – 1.7±0.001 0.7±0.0006 – <LOQ – – – –

Vidigueiro 1.7±0.03 – 1.6±0.1 – <LOQ – – – – 0.3±0.001 – 3.4±0.01 – – – 0.3±0.002

Navegante 2.5±0.01 – 3.8±0.2 – <LOQ – – – – – – 3.1±0.02 – – – –

Planalto 1.5±0.03 – <LOQ – <LOQ – – – 2.1±0.002 0.6±0.002 – <LOQ – – – –

RealLavrador 17.0±0.05 – – – – – – – 1.5±0.002 0.5±0.002 – <LOQ – – – –

Periquita 1.0±0.03 <LOQ – – – – – – – 0.4±0.001 – – – – – –

TMW1 – <LOQ – – – – – – 0.9±0.002 0.5±0.001 – 0.6±0.03 – – – –

TMW2 – <LOQ – – <LOQ – – – 0.8±0.01 0.3±0.0003 – <LOQ – – – –

Vi ˜natigoGual – <LOQ – – – – – – 1.5±0.003 0.4±0.0003 0.7±0.001 – – – – –

TMW3 3.6±0.03 – 5.9±0.02 – <LOQ 0.6±0.01 0.9±0.002 – – – – 0.9±0.02 – 0.4±0.002 – –

Lajido 4.3±0.04 <LOQ – – – – – – 3.0±0.003 0.5±0.004 – – – – – –

VG-Verdelho – <LOQ – – – 0.3±0.002 1.0±0.004 0.8±0.004 1.0±0.001 – – <LOQ – 0.4±0.0004 – –

aThecontentofeachofthe16polyphenolsanalysedinthewinesamplestestedisthemeanofthreereplicates±SDandindicatedas␮gmL−1.

b Gal.ac.(gallicacid),Prot.ac.(protocatechuicacid),Cat.((+)-catechin),Gent.(gentisicacid),Epicat.((−)-epicatechin),Van.ac.(vanillicacid),Syr.ac.(syringicacid),Syr.(syringicaldehyde),p-coum.ac.(p-coumaricacid),Fer.

(ferulicacid),m-coum.ac.(m-coumaricacid),Rut.(rutin),o-coum.ac.(o-coumaricacid),Myr.(myricetin),Cin.ac.(cinnamicacid)andkaemp.(kaempferol).

c (–)notdetected.

(10)

Fig.4.ProfileofMEPSC8/UHPLC–PDAchromatogramof(a)syntheticwineandsyntheticwinespikedwith16bioactivepolyphenols;(b)unspikedredwine(RL);and(c)

unspikedwhitewine(GV)(forpeakidentificationseeTable2).

Methodprecisionwasmeasuredthroughrepeatability inter-day and intra-day studies, expressed by the relative standard deviation(RSD)andcalculatedusingthemeasurementofpeakarea ofeachbioactivephenoliccompoundinthematrix.Theintra-day precisionwasmeasuredbycomparingstandarddeviationofspiked syntheticwine(LL,ML,HL)runinthesameday(n=7).Theinter-day precisionwasdeterminedbyanalyzingspikedsyntheticwine sam-plesforthreealternatedays.TheresultsaresatisfactorywithRSD valueslowerthan8%foreachmeasuredanalyteatallspiking lev-els(Table3).Theintra-dayprecisionvaluesatthethreedifferent levelsrangedfrom0.2(m-coumaricacidat40␮gmL−1 and cin-namicacidat25␮gmL−1)to4.7%(gallicacidand(−)-epicatechin at1␮gmL−1)(n=7),whereastheinter-dayprecisionvariedfrom 0.2(p-coumaricando-coumaricacidat25␮gmL−1)to7.5% ((+)-catechinat1␮gmL−1)(n=18+7).

Combination of fast MEPS technique together with quick UHPLC–PDA system proves to be an improved, with excellent recoveries,sensitivity,and repeatability,which makeitpossible touseasaquickapproachtoanalyzetheselectedbiologicalactive constituentsinwines.

3.3. Determinationofbioactivephenolicsinwinesby MEPSC8/UHPLC–PDA

UHPLCcanberegardedasanewdirectionforliquid chromatog-raphy.Usingsub-2␮mparticlesandmobilephasesathighlinear velocities,andinstrumentationthatoperatesathigherpressures thanthoseusedinHPLC,dramaticincreasesinresolution, sensitiv-ity,andspeedofanalysiscanbeobtained.

Inordertotesttheapplicabilityofthedevelopedmethod,the microextractionbypackedsorbentprocedurewasfirstappliedto amixtureofpolyphenolsstandardsandthento34winesamples (22redand12whitewines)(Table4).AsshowninFig.4a,the sep-arationofthestandardmixtureof16phenolicmetabolitesisvery fast,beingachievedwithinonly10min.Allsampleswereanalyzed intriplicate.

Goodpeakshapeandresolutionwasachievedforallthe com-poundswithnointerferencefromthewinematrix(Fig.4a).The chromatogramsforthewhiteandredwinessamplesshowedquite differentprofiles(Fig.4bandc)andtheircomplexityincreasesor decreasesaccordingtothewavelength.Themaximumabsorbance valuesofeachbioactivephenoliccompoundlistedinTable2was usedforquantificationpurposes.

The content of bioactive phenolic compounds found in the winesamplesassayedis summarizedinTable4.Ascanbe eas-ilyobserved,thebioactivephenolicsanalyzedareaboutsixtimes moreabundantinredwines.Thefactthatpolyphenolscontentis higherinredwineswaswidelydescribedbeforeintheliterature [47].Thephenolicacidsgentisic,o-coumaricandcinnamicalong tosyringaldehyde,werenotfoundinanyofthestudiedwines.On contrast,gallicacid,(+)-catechin,syringicacid,rutinandmyricetin werefoundinallredwinesanalyzed.

RedwinefromAzores,Basalto,wasbyfartheonethatshowed higherpolyphenoliccontentconsideringthesumofthe16 bioac-tivepolyphenolstested(almost71.24␮gmL−1),followedbyTerras de Lava,with polyphenoliccomposition around70.68␮gmL−1. In whitewines, thepolyphenoliccontentis significantlylower, varying from about 1.09␮gmL−1 in the TMW1 wine up to 18.98␮gmL−1inRLwine.Thisfactmakeswhitewineslessprone tobeeffectiveinhealthprotectionagainstoxidativedamageasthe protectiveeffectsassociatedtomoderatewineconsumptionhave beenattributedtotheircontentinpolyphenols.Infact,Fuhrman etal. [48]have shownthat itwaspossibletohavewhite wine withantioxidantcharacteristicssimilartothoseofredwinejust byincreasingitspolyphenolscontent,whatcouldbeeasily obtain-ingbyincreasingtheextractionofgrapeskinpolyphenolsduring thematurationprocess[48].

Regardingtotheindividualphenolicconstituents,gallic acid and rutin were themost abundantbiologically active foundin allwinesinvestigated,followedbyp-coumaricacid,(+)-catechin and(−)-epicatechin.Theseresultsconfirmedthatwine polyphe-noliccompositionisveryheterogenic,beingdependentofdiverse

(11)

factors,namelylocalclimateandvinificationconditionsthatare quitedifferentamongthewinesamplesusedinthiswork. 4. Conclusions

A novel, ultrafast, sensitive and reproducible MEPSC8/UHPLC–PDA-based methodology, using a 100mm

ana-lytical column (Acquity HSS T3) packed with 1.8␮m particle size, was developed, validated and successfully applied to the simultaneous determination of 16 bioactive phenolics in wine matrices.Theextractionprocedureissimpler,moreefficientand lesstime-consuming,andmoreovercanbeusedforsmallsample volumes(50␮L)aswellaslargevolumes(>1000␮L).Aftera care-fulselectionoftheeluentsystems,itwasdemonstratedthatthe chromatographicseparationofthebioactivephenolicmetabolites couldbeachievedinlessthan10minwithhighresolvingpower. Thecombinationoftheshorterrunningtimewithasmallerflow ratealsoreduced drasticallythesolventconsumption and thus ismoreenvironmentalfriendly.Thepackedsyringecanalsobe used several times (100 or more) depending from the matrix nature.Thevalidatedmethodshowedagoodperformance with regard to selectivity, LODs, LOQs, linearity, extraction yields, accuracy and intra/inter-day precisions. The results obtained fromapplicationofthemethodologytowinesamplessuggested thatthismethodcanbepotentiallyusefultoquantitate eachof thesecompoundsandserve aspromising alternativetoexisting methodology for bioactive phenolic constituent determination. Moreover,themethodcouldbeappliedtotheanalysisofbioactive phenolicinotherfoodmatrices(vegetables,fruits),asanattractive andverypromisingapproachfortheanalysisofothergroupsof compoundsduetothepossibilityofautomation,easytouse,rapid and minimumcost ofanalysiswhen compared toconventional SPE.

Acknowledgements

TheauthorsthankthefinancialsupportofFEDER(Transnational Cooperation MAC 2007-2013 Program) through VinSaudeMAC project(MAC/1/M105)andFCTthroughtheMSPortuguese Net-works (REDE/1508/RNEM/2005) and Pluriannual base funding (QUI-Madeira-674).

References

[1]A.Scalbert,C.Manach,C.Morand,C.Remesy,L.Jimenez,Crit.Rev.FoodSci. Nutr.45(2005)287.

[2]G.Tucker,K.Robards,Crit.Rev.FoodSci.Nutr.48(2008)929.

[3]F.Daayf,V.Lattanzio,RecentAdvancesinPolyphenolResearch,Blackwell Pub-lishing,2008.

[4]L.Bravo,Nutr.Rev.56(1998)317.

[5]J.B.Harborne,C.A.Williams,Phytochemistry55(2000)481.

[6]J.J.Anderson,M.S.Anthony,J.M.Cline,S.A.Washburn,S.C.Garner,PublicHealth Nutr.2(1999)489.

[7]S.N.Nichenametla,T.G.Taruscio,D.L.Barney,J.H.Exon,Crit.Rev.FoodSci.Nutr. 46(2006)161.

[8]V.Juturu,Curr.Nutr.FoodSci.4(2008)227.

[9]I.Erlund,R.Koli,G.Alfthan,J.Marniemi,P.Puukka,P.Mustonen,P.Mattila,A. Jula,Am.J.Clin.Nutr.87(2008)323.

[10]M.G.L.Hertog,D.Kromhout,C.Aravanis,H.Blackburn,R.Buzina,F.Fidanza, S.Giampaoli,A.Jansen,A.Menotti,S.Nedeljikovic,M.Pekkarinen,B.S.Simic, H.Toshima,E.J.M.Feskens,P.C.H.Hollman,M.B.Katan,Arch.Intern.Med.155 (1995)381.

[11] M.G.L.Hertog,P.C.H.Hollman,B.vandePutte,J.Agric.FoodChem.412(1993) 1242.

[12] I.C.W.Arts,P.C.H.Hollman,Am.J.Clin.Nutr.81(2005)317S.

[13]P.J.Mink,C.G.Scrafford,L.M.Barraj,L.Harnack,C.P.Hong,J.A.Nettleton,D.R. JacobsJr.,Am.J.Clin.Nutr.85(2007)895.

[14] E.N.Frankel,J.Kanner,J.B.German,E.Parks,J.E.Kinsella,Lancet341(1993)454. [15] E.N.Frankel,A.L.Waterhouse,P.L.Teissedre,J.Agric.FoodChem.43(1995)890. [16]S.V.Nigdikar,N.R.Williams,B.A.Griffin,A.N.Howard,Am.J.Clin.Nutr.68(1998)

258.

[17]B.Fuhrman,A.Lavy,M.Aviram,Am.J.Clin.Nutr.61(1995)549. [18] J.A.Kim,Endocr.Metab.ImmuneDisord.DrugTargets8(2008)82.

[19]K.J.Mukamal,J.M.Massaro,K.A.Ault,M.A.Mittleman,P.A.Sutherland,I. Lip-inska,D.Levy,R.B.D’Agostino,G.H.Tofler,Alcohol.Clin.Exp.Res.29(2005) 1906.

[20] H.D.Sesso,Am.J.Cardiovasc.Drugs1(2001)167.

[21]H.D.Sesso,J.M.Gaziano,S.Liu,J.E.Buring,Am.J.Clin.Nutr.77(2003)1400. [22]H.D.Sesso,J.M.Gaziano,J.E.Buring,C.H.Hennekens,Am.J.Epidemiol.149

(1999)162.

[23] WHO,ReportofaJointWHO/FAOExpertConsultation,WHOTechnicalReport Series916,Geneva,WorldHealthOrganization,2003.

[24]N.Paixão,R.Perestrelo,J.C.Marques,J.S.Câmara,FoodChem.105(2007)204. [25]C.Gómez-Cordovés,F.Varela,C.Larrigaudiere,M.Vendrell,J.Agric.FoodChem.

44(1996)3449.

[26]A.Escarpa,M.C.González,J.Chromatogr.A823(1998)331.

[27]C.L.Silva,J.Pereira,V.G.Wouter,C.Giró,JoséS.Câmara,Talanta86(2011)82. [28]V.Pereira,JoséS.Câmara,J.Cacho,J.C.Marques,J.Sep.Sci.33(2010)1204. [29] M.Abdel-Rehim,J.Chromatogr.A1217(2010)2569.

[30]J.Gonc¸alves,JoséS.Câmara,J.Sep.Sci.34(2011)2376. [31]Z.Altun,M.Abdel-Rehim,Anal.Chim.Acta630(2008)116.

[32]H.J.Wirth,N.Lahoutifard,P.Wynne,MeasuringFruitJuiceAdulterationby ChangesinFlavonoidContentUsingMEPSTMandHPLC,SGEAnalyticalScience,

Ringwood,Australia.

[33]L.Nováková,Z.Spácil,M.Seifrtová,L.Opletal,P.Solich,Talanta80(2010)1970. [34]M.A.Saracino,G.Lazzara,B.Grugnoli,M.A.Raggi,J.Chromatogr.A(2011),

doi:10.1016/j.chroma.2011.01.071.

[35] R.Mandrioli,L.Mercolini,D.Laetena,G.Boncompagni,M.A.Raggi,J. Chro-matogr.B879(2011)167.

[36]M.Vita,P.Skansen,M.Hansen,M.Abdel-Rehim,J.Chromatogr.B879(2011) 167.

[37] H.Vlckova,D.Solichova,M.Blaha,P.Solich,L.Nováková,J.Pharm.Biomed. Anal.55(2011)301.

[38]M.M.Galera,M.D.GilGarcia,M.J.Culzoni,H.C.Goicoechea,J.Chromatogr.A 1217(2010)2042.

[39] A.El-Bequali,A.Kussak,M.Abdel-Rehim,J.Chromatogr.A1114(2006)234. [40]N.Paixão,V.Pereira,JoséC.Marques,JoséS.Câmara,J.Sep.Sci.31(2008)2189. [41]B.Klejdus,J.Vacek,L.Lojková,L.Benesová,V.Kubán,J.Chromatogr.A1195

(2008)52.

[42]D.Guillarme,C.Casetta,C.Bicchi,J.L.Veuthey,J.Chromatogr.A1217(2010) 6882.

[43]D.Guillarme,D.T.T.Nguyen,S.Rudaz,J.L.Veuthey,J.Chromatogr.A1149(2007) 20.

[44]D.T.-T.Nguyen,D.Guillarme,S.Rudaz,J.L.Veuthey,J.Chromatogr.A1128 (2006)105.

[45]V.F.Samanidou,M.K.Nika,I.N.Papadoyannis,J.Sep.Sci.30(2007)2391. [46] A.A.Bertelli,D.K.Das,J.Cardiovasc.Pharmacol.54(2009)468. [47]J.Gruz,O.Novák,M.Strnad,FoodChem.111(2008)789.

[48]B.Fuhrman,N.Volkova,A.Suraski,M.Aviram,J.Agric.FoodChem.49(2001) 3164.

Imagem

Fig. 1. Chemical structures of the biological active phenolic constituents found in wines.
Fig. 2. Schematic diagram of the MEPS syringe and MEPS-BIN from SGE, Analytical Science.
Fig. 4. Profile of MEPS C8 /UHPLC–PDA chromatogram of (a) synthetic wine and synthetic wine spiked with 16 bioactive polyphenols; (b) unspiked red wine (RL); and (c) unspiked white wine (GV) (for peak identification see Table 2).

Referências

Documentos relacionados

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Two approaches based on partition equilibrium, stir bar sorptive extraction (SBSE) and microextraction by packed sorbent (MEPS) were evaluated for determination of selective serotonin

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

As etapas de criação e expressão dos modelos e analogias proporcionaram à professora, às pesquisadoras e aos pares acesso às ideias que embasavam o entendimento dos estudantes sobre

Some factors influencing the MEPS extraction efficiency of (E)- resveratrol, such as type of sorbent material, number of extraction cycles (extract–discard), and sample volume,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and