• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número1"

Copied!
6
0
0

Texto

(1)

Instanton Eets in Heavy Lambda Masses

HilmarForkel,

Institutf urTheoretishe Physik,UniversitatHeidelberg,

Philosophenweg19,D{69120Heidelberg,Germany

Fernando S. Navarra, and Marina Nielsen

Instituto deFsia,UniversidadedeS~aoPaulo,

C.P.66318, 05315-970S~aoPaulo,SP,Brazil

Reeivedon17August,2000

We alulate the masses of b and in the frameworkof QCD sum rules inluding instanton

ontributions. We nd thatthese ontributions have thesame size of thefour quarkondensate

ontribution and improve the Borel stability inboth Dira strutures of the baryon orrelation

funtion.

I Introdution

Theammountofdataonheavybaryonsisalready

im-pressive. Alone in the harm setor, for example, 17

baryons have been seen. New data an be expeted

to emergein the near future when CLEO III,BaBar,

HERA-B andCDF/D0 begintaking data. With these

aumulationofexperimentaldata,morereliable

theo-retialalulationsareneeded.

From the theoretial point of view [1℄, heavy

baryonsprovideuswithagoodtestinggroundforQCD.

In priniple,beauseof thelargemasses involved, the

perturbative ontribution, whih is under ontrol, is

dominantand nonperturbative (not ompletely under

ontrol) are orretions. Moreover, they oer an

ad-vantageoverheavy-lightmesons(wherewealsohavea

large mass sale), namely, they are the ideal plae to

studythedynamisofadiquarksysteminthe

environ-mentofaheavyquark.

Nonperturbativeeets an beomputed in

dier-ent expansion shemes, one of them being QCD sum

rules. Inthestudyofthediquarkdynamis,instantons

mayplayaruial roleandhaveto beinludedin the

sumruleapproahto heavybaryons.

Thealulationofbaryonmasseswithinthe

frame-work of QCD sum rules is quite appealing, sine in

thisapproah,thehadronpropertiesarerelatedtothe

fundamentalparametersofQCD:quarkmassesand/or

QCDvauumondensates.

Theappliationof thismethod to thelightbaryon

systems has shown that the baryon masses are

essen-tiallydeterminedbythehiralsymmetrybreaking

on-densates. Another nonperturbative ontribution may

omefrominstantons. Indeed,overthelastyears

grow-hadronstruture hasbeenolleted. Itoriginatedrst

frommodelsbuiltoninstantonvauumphenomenology

[2,3℄andreentlyreeivedmodelindependentsupport

fromooledlattiestudies[4℄.

Intheaseofheavybaryonsystemswewouldexpet

theinstantonontributiontobeevenmorepronouned

beauseofthesmalldistanesinvolved,whihenhane

theroleplayedbysmallsizeinstantonsandreduethe

relativeimportaneofotherondensates. Moreover,in

a heavy baryon, aording to Heavy Quark Eetive

Theory(HQET),the main quantum numbersare

ar-riedby the heavyquarkand the diquark behaveslike

asalarobjet. It is known that instantonsare more

ativeinthesalarandpseudosalarhannel[5,6℄. We

mightthereforeexpetthemtoberesponsibleforsome

substanialeetin heavybaryonsproperties.

Theimportane ofexpliitinstantonorretionsin

thenuleonmasshavebeenaddressedinRef.[5,7℄. The

orretionsinthenuleonhannelturnouttobesmall

in the hirally-even orrelator and in the

orrespond-ing sum rule, but signiant in the hirally-odd one.

Indeed,thehirally-oddsumruleouldhardly be

sta-bilizedwithoutinstantonorretions,whereasthe

hi-rally even one is stable and in agreement with

phe-nomenology even if the instanton ontribution is

ne-gleted[8℄.

In Ref.[9℄ the spetraof heavybaryons were

om-puted in the framework of QCD sum rules. Whereas

satisfatoryresultswere foundforthe

;b

,inthease

of the

and

b

partiles the authors onlude that

thereisnoBorelstabilityinthissumruleandtherefore

noreliablepreditions anbemade for therespetive

(2)

withintheframeworkofHQET.

Sine instantons were shown to stabilize one the

nuleon mass sum rules and sine in heavy baryons

they should be the most important soure of

non-perturbativeeets,wewill,inthiswork,reanalyzethe

alulationofRef. [9℄inludingtheinstanton

ontribu-tionandinvestigateitsonsequenesfortheBorel

sta-bilityofthebaryonorrelators. Weaddressspeially

theheavy'sbeausetheywere\theproblemati

par-tiles", but thealulation ould be straightforwardly

extended tothe 's. However,asitwillbeomelear,

thereisnoneedtodothisextention.

Analmotivationforinludinginstantonsinheavy

baryon alulationsis the fat that theygenerate

dif-ferenteetsindierentDirastrutures. Thisis

espe-iallywelomeintheQCDsumruleanalysisof

semilep-toniheavydeays. Itwasfoundin[12℄thatthetotal

deayratevariesbyafator3whendierentstrutures

areonsidered. Thisisanindiationthatsomephysis

isstillmissingand,inviewofthestruturedependene

oftheresults,weshallhekwhetherinstantonsarethis

missingontribution.

II Instanton Contribution

We now evaluate the small-sale instanton

ontribu-tions to the

Q

(where Q stands for or b)

orrela-tors. Webeginwiththeheavy

Q

orrelationfuntion,

whih is haraterizedby two invariant amplitudes of

oppositehirality,

(q)=i

Z

d 4

xe iqx

h0jT

(x)

(0)j0i =i Z

d 4

xe iqx

(x)=/q

q (q

2

)+

1 (q

2

) (1)

Theompositeoperator

isbuiltfromQCDeldsandservesas aninterpolatingeld for

Q

. Weadopt:

(x)=

ab

u T

a (x)C

5 d

b (x)

Q

+b

u T

a (x)Cd

b (x)

5 Q

(2)

d

whereu,dandQarequarkeldsandbisaparameter.

Inserting(2)intheintegrandof(1)wearriveat

(x)=S

Q

0

(x)L

0(x;0) (3)

whereS Q

0

(x)istheheavyquarkpropagatorand

L

0

(x;0)=

ab

a 0

b 0

0

Tr[S d

aa 0(x)

5 CS

uT

bb 0(x)C

5 ℄

(4)

where S d

aa 0

(x) andS uT

bb

0(x) are respetivelythe dand

(transposed)uquarkpropagatorsand C istheharge

onjugationoperator.

Theleadinginstantonontributionsto the

orrela-tors anbe alulatedin semilassialapproximation,

i.e. byevaluating (4)in thebakgroundofthe

instan-ton eld and by taking the weighted average of the

resulting expression over the quantum distribution of

theinstanton'solletiveoordinates[5℄. These

ontri-butionsaddnonperturbativeorretionstotheWilson

oeÆientsof the onventional OPE, with whih they

willbeombined.

Therationalebehindthesemilassialtreatmentof

instantonontributions and the alulational strategy

areanalogous to thosepresentedin ref. [5,7℄, andwe

thusjust skeththeessentialstepshere. Toleading

or-derintheprodutof quarkmassesand instantonsize,

atedwiththequarkzero-modes[13℄

0 (x)=

1

5

(r 2

+ 2

) 3=2

/ r

r

U; (5)

where thesupersript orresponds to an (anti-)

in-stantonof size with enter atz. Thespin-olor

ma-trixU satises(~+~)U =0andr=x z. Thezero

modeontributionsenterthealulationofthe

orrela-torsthroughtheleadingterminthespetral

represen-tationofthequarkbakgroundeldpropagator

S

q

(x;y)=

0 (x)

0 y

(y)

m

q ()

+O(m

q

): (6)

The avor dependent eetive quark mass m

q () =

m

q 2

3

2

2

hqqi(whereqstandsforupordownquarks)

in the denominator is generated by interations with

long-wavelengthQCDvauumelds[14℄. Quark

prop-agationinthehigher-lyingontinuummodesinthe

in-stanton bakgroundwill be approximatedasin [7℄ by

thefreequarkpropagator.

Notethatboththezeroandontinuummode

prop-agatorsareavordependent. Thezeromodepart

on-tains the eetive quarkmass, whih depends on the

urrentquarkmassesandontheorresponding

onden-sates. Theurrentquarkmasses enter, of ourse,also

the ontinuum mode ontributions. Beause of 1=m

(3)

With the quark bakground eld propagator at

hand, theinstantonontributions to theLambda

or-relatorsanbeevaluated.

For the funtion L (the olor indies have been

summed)weobtain:

L

I+I

(x;0) = 8 4 Z d 4 n() m 0 2 () Z d 4 z 1 [(x z) 2 + 2 ℄ 3 [z 2 + 2 ℄ 3 ;(7)

where the subsript I +I indiates that the

instan-tonandanti-instantonontributions(whihareequal)

have been summed. In the above expression the

ef-fetivequarkmassis denedasm 0 ()= 2 3 2 2 hqqi 0 withhqqi 0

(huui+hd di)=2.

Thefurtherevaluationofeq. (7)requiresanexpliit

expressionfortheinstantonsizedistributionn()inthe

vauum. Instantonliquidvauummodels [15℄and the

analysis of ooled lattie ongurations [4℄ have

pro-dued a onsistent piture of this distribution. The

sharplypeaked,almostgaussianshapeofn()foundin

ref. [15℄ anbesuÆientlywellapproximatedas[16℄

n()=nÆ( ) ; n' 1 2 fm 4 ; ' 1 3

fm ; (8)

whihnegletsthesmallhalfwidth('0:1fm)ofthe

dis-tribution. Ineq. (8)weintroduedtheaverage

instan-tonsize and the instanton number density n, whih

equalsthedensityofanti-instantons.

After performing the integration over instanton

sizes,weinserttheamplitude(7)bakinto(3)andthe

latterinto(1). Intheevaluationof

q (q 2 )and 1 (q 2 )

weperformastandardBoreltransform[17℄,

(M 2

) lim

n!1 1 n! (Q 2 ) n+1 d dQ 2 n (Q 2 ) (9) (Q 2 = q 2

) with the squaredBorelmass sale M 2

=

Q 2

=nkeptxedinthelimit.

III Mass sum rules

Having the instanton ontributions for

q (q 2 ) and 1 (q 2

), we add to them the other OPE terms, whih

aretheperturbative,thefourquarkondensateandthe

gluonondensate. These termsareexatlylikeinRef.

[9℄andwereferthereadertothatpaperfordetails,

giv-inghereonlytheresultingexpressions. Thisompletes

theQCDsideofthesumrulesinbothstrutures,/qand

1. Thephenomenologialsideisdesribed,asusual,as

asumofpole andontinuum,thelatterbeing

approx-imatedbytheOPEspetraldensity.

Thenalexpressionforthe/qsumruleis:

16 4 f 2 Q e M 2 =M 2 = m 4 Q (1+b

2 ) 32 Z s 0 m 2 Q dse s=M 2

f(s)+ a 2 (1 b 2 ) 6 e m 2 Q =M 2 +

(1+b 2

)<g 2 s G 2 > 192 Z s0 m 2 Q dse s=M 2 f 0 (s)

+ (1 b 2 ) n 4 2 m u m d Z 1 1=M 2 d 1 2 1 M 2 3

I(;)e (m 2 Q )=(M 2 1) (10)

andforthe1sumruleis:

16 4 f 2 Q M e M 2 =M 2 = (1 b 2 )m 5 Q 8 Z s 0 m 2 Q dse s=M 2 g(s)+ (1+b

2 )m Q a 2 6 e m 2 Q =M 2 + (1 b 2 )m Q <g 2 s G 2 > 96 Z s0 m 2 Q dse s=M 2 g 0 (s)

(4)

f(s)=(1 x 2

)(1 8

x +

1

x 2

) 12ln(x) (12)

g(s)=(1 x)(1 10

x +

1

x 2

)+6(1+ 1

x

)ln (x) (13)

f 0

(s)=(1 x)(1+5x) (14)

g 0

(s)=(1 x)(7+ 2

x

)+6ln(x) (15)

I(;)= Z

+

d

e (

2

)=( 2

2

)

( 2

2

) 2

(16)

with x = m 2

Q

=s. In the above equations f

Q is the

oupling betweenthe baryon urrent and thepole, s

0

is the ontinuum threshold (whih we take as s

0 =

(m

+s)

2

) and a = 4 2

< qq >. In our

expres-sions we have a 2

whih is the four quark ondensate

ontribution written in termsof a, indiating that we

have used the fatorization hypothesis. < g 2

s G

2

> is

thegluonondensate.

We might now extrat the masses by numerially

minimizingthedierenebetweenbothsidesofthesum

rule(simultaneouslyforbothstrutures)asafuntion

of M

, f

Q

and s. Alternatively, the baryon masses

maybeextrated from theratiobetweenthetwosum

rules. Indeeddividing(11)by(10),weisolateM

asa

funtionofM 2

. Indoingso,weeliminatetheoupling

f

Q

andtheM

dependene intheexponents. Wean

thenanalyzetheBorelstabilityintheduialmass

re-gions 3:0 M 2

6:0 GeV 2

and 5:0 M 2

30:0

GeV 2

respetivelyfor

and

b

. Foragivenb hoie,

there isonlyoneparameterto bevaried: s. Wewill

adopt this last method beause it is very eonomial

andhasthemeritofavoidingnumerialminimizations.

Ofourse,thenal resultsshould notdependstrongly

onthemethod.

IV Numerial results

Thenumerialinputsforouralulationsarem

=1:4

GeV, m

b

=4:6 GeV, m

u = m

d

=0:3 GeV, <qq >=

(0:23) 3

GeV 3

and < g 2

s G

2

>= 0:47 GeV 4

. s will

assumevaluesaround0:5GeV.

InFig. 1and2weshowthemasssumrulefor

re-spetivelyinthe/qandinthe1struture. Inthevertial

axisaretherighthandsidesof(10)and(11)multiplied

by the exponential e +M

2

=M

2

. In the horizontal axis

is the Borel mass squared. The dashed, dash-dotted,

dottedandlongdashedlinesrepresentrespetivelythe

perturbative,four-quarkondensate,gluonondensate

and instantonontributions. Thesolidline isthesum

3.0

4.0

5.0

6.0

M

2

(GeV)

2

0.00

0.20

0.40

0.60

0.80

16

π

2

f

c

(GeV

6

)

Figure1.

masssumrule/qinthestrutureasafuntion

oftheBorelmasssquared. Thedashed,dash-dotted,dotted

and long dashedlinesrepresent respetively the

perturba-tive,four-quarkondensate,gluonondensateandinstanton

ontributions. Thesolidline isthesumofall lines.

Figure2. Thesameas1forthe1struture.

InFig. 3weshowM

(obtained bydividing (11)

by(10)) asafuntion ofthe Borelmasssquared. The

dashedlineshowsthesumofallOPEterms,exeptthe

(5)

3.0

4.0

5.0

6.0

M

2

(GeV)

2

1.00

1.50

2.00

2.50

3.00

M

Λ

c

(GeV)

Figure 3. M

as a funtion of the Borel mass squared.

The solid(dashed)line showthe resultwith (without)

in-stantons.

Intheseguress=0:7and b=0. Inthedashed

line of Fig. 3wetakes =0:61. Fromthem wean

onludethatbothsumrulesarereasonablystableand

thatthenonperturbativeorretionsaresmall. Among

them,however,instantonsarethemostimportantones.

Moreover,hoosingb6=0wouldnotgenerateinstability

but wouldimplyinreasingvaluesofs(s ishosen

soasto reproduetheorret valueofM

at the

or-responding value of M 2

), whih would be unrealisti.

Thereforeourresultssuggestthatb'0forthe

ur-rent. Atlargervaluesofb(b0:6)thesumruleswould

beomeirremediablyunstable.

10.0

15.0

20.0

25.0

30.0

M

2

(GeV)

2

0.00

0.50

1.00

1.50

16

π

2

f

b

(GeV

6

)

Figure4. Thesameas1forb.

10.0

15.0

20.0

25.0

30.0

M

2

(GeV)

2

0.00

2.00

4.00

6.00

8.00

16

π

2

M

Λ

b

f

b

(GeV

7

)

Figure5.Thesameas2for

b .

InFigs. 4,5and 6weplotexatlythesame

quan-titiesasinFigs. 1,2and3(andwiththesame

onven-tions)for

b

. Intheseguress=0:72andb=0:15.

Themostprominentfeatureoftheseguresisto show

howallthenonperturbativeontributionsarenotonly

small,butsigniantlysmallerthanintheharmase.

We an also see that, as in theprevious ase, the

in-stantongivesthemostimportantnonperturbative

on-tribution. As for the stability we observe again that

instantonsplayaverymodestrole,enhaningthesum

ruleinthelowerBorelmassregion.

10.0

15.0

20.0

25.0

30.0

M

2

(GeV)

2

4.50

5.00

5.50

6.00

6.50

M

Λ

b

(GeV)

Figure6.Thesameas3for

b .

It is well known that instantonsmay generate

at-trativeforesbetweenquarks. Inourase,sinethey

play arole only in the light setor, we may visualize

theheavybaryonasbeingomposedbyaheavyquark

\atrest"andadiquark\orbiting"aroundit. This

(6)

quarks (in the diquark) is strong enough. This an

behekedby analyzing the behaviour of the mass

whenweinludetheinstantonontributionin the

or-relationfuntion. Whenallotherparametersarexed,

adereaseinM

meansadeeperbinding,whihanbe

attributed to the quark-quark binding via instantons.

Thislaststatementisonlytruebeauseofthe

fatoriza-tionobservedin(3). Intheaseoflightbaryonsthere

would be a mixing between all quarks. We ompute

the masses by adjusting the right hand sides of (10)

and (11)toexponentialforms (as funtions of1=M 2

).

The slopes are identied with the masses. The result

ofthisproedure isshowninTableI:

M 2

b (GeV

2

) /q 1 s(GeV)

withoutinstantons 34.78 34.86 0.5

withinstantons 33.93 34.03 0.5

withoutinstantons 32.63 32.90 0.4

withinstantons 31.86 32.07 0.4

TABLE I M 2

b

inGeV 2

withandwithoutinstantons

fortwothresholdparameterss inthetwostrutures

/ qand1

As itan seen,in both struturesand fordierent

thresholdvaluestheinlusionofinstantonsreduesthe

mass. Thisisompatiblewiththepitureofabound

diquarkwithbindindenergyof'100MeV.

V Summary and onlusions

We have alulated the masses of

b and

in the

frameworkofQCDsumrulesinludinginstanton

on-tributions. We nd that these ontributions havethe

same size of the four quark ondensate ontribution

and improvea little the Borel stability in both Dira

strutures ofthebaryonorrelationfuntion. Wealso

ndthatthebaryonurrentparameterbshouldassume

smallvalues,b0:15.

WewouldliketothankFAPESPandCNPq,Brazil,

forsupport.

Referenes

[1℄ Seeforareentreview,S.GrooteandJ.G.Koerner,\

HeavyBaryons-Statusand Overview(Theory)",

hep-ph/9901282.

[2℄ C.G.Callen,Jr.,R.Dashen,andD.J.Gross,Phys.Rev.

D17,2717 (1978),E. V.Shuryak,Nul.Phys.B203,

93, 116,140(1982).

[3℄ D. I.Diakonov andV.Yu.Petrov,Nul.Phys.B245,

259(1984);Phys.Lett.B147,351(1984);Nul.Phys.

B272,457(1986).

[4℄ M.-C.ChuandS.Huang,Phys.Rev.D45,2446(1992);

M.-C.Chu,J.M.Grandy,S.HuangandJ.W.Negele,

Phys.Rev.D49,6039(1994).

[5℄ H.ForkelandM.K.Banerjee,Phys.Rev.Lett.71,484

(1993).

[6℄ E.V.Shuryak,Nul.Phys.B214,237(1983);H.Forkel

andM.Nielsen,Phys.Lett.B345,55(1995).

[7℄ H. Forkel and M. Nielsen, Phys. Rev. D 555, 1471

(1997).

[8℄ B.L.Ioe,Nul.Phys.B188,317(1981),Nul.Phys.B

191,591(1981);V.M.BelyaevandB.L.Ioe,Sov.Phys.

JETP 56, 493(1982); Y. Chunget al., Nul. Phys. B

197,55(1982).

[9℄ E.Bagan,M.Chabab,H.G.DoshandS.Narison,Phys.

Lett.B287,176(1992);Phys.Lett.B278,367(1992).

[10℄ Y. Dai, C. Huang, C. Liu and C. Lu, Phys. Lett. B

371,99(1996).

[11℄ S.Groote,J.G.Koerner,A.A.Pivovarov,Phys.Rev.

D61(2000)071501.

[12℄ R. S. Marques de Carvalho et al., Phys.Rev. D 60,

034009(2000).

[13℄ G.'tHooft,Phys.Rev.Lett.37,8(1976);Phys.Rev.

D14,3432(1976).

[14℄ M. A. Shifman,A. I.Vainshtein,andV. I.Zakharov,

Nul.Phys.B163,46(1980);L.J.Reinders,H.

Rubin-steinandS.Yazaki,Phys.Rep.127,1(1985).

[15℄ E.V.ShuryakandJ.J.M.Verbaarshot,Nul.Phys.B

341,1(1990).

[16℄ E. V. Shuryak, Nul. Phys. B 203, 93 (1982); 116

(1982).

[17℄ M. A. Shifman,A. I.Vainshtein,andV. I.Zakharov,

Imagem

Figure 2. The same as 1 for the 1 struture.
Figure 4. The same as 1 for b.

Referências

Documentos relacionados

we nd innitely many more new growing modes for open and losed universes.. The large sale struture of the universe

orretions perturbatively and show that at all orders the Casimir energy remains zero, sine eah=. term in the power series in

present all the experimentally known eletri dipole atomi transitions and energy levels for the O..

This paper reports the analysis of modal normalized frequeny ut-o of oaxial bers having four..

in some oordinate systems, like ylindrial, spherial.. and prolate

Disordered Magneti Media: Loalization Parameter,.. Energy T ransp ort V eloity and

Laser beam inident on a slab of GRIN glass. where x is measured from beginning of GRIN

tion of the path integral using urvilinear oordinates,.. sine quantising in urvilinear oordinates leads