• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número3"

Copied!
6
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Development

of

standardized

extractive

solution

from

Lippia

sidoides

by

factorial

design

and

their

redox

active

profile

Bruno

S.

Lima

a

,

Cledison

S.

Ramos

a

,

João

P.A.

Santos

b

,

Thallita

K.

Rabelo

b

,

Mairim

R.

Serafini

a

,

Carlos

A.S.

Souza

a

,

Luiz

A.L.

Soares

c

,

Lucindo

J.

Quintans

Júnior

d

,

José

C.F.

Moreira

b

,

Daniel

P.

Gelain

b

,

Adriano

A.S.

Araújo

a

,

Francilene

A.

Silva

a,∗

aDepartamentodeFarmácia,UniversidadeFederaldeSergipe,SãoCristóvão,SE,Brazil bDepartamentodeBioquímica,UniversidadeFederaldeRioGrandedoSul,PortoAlegre,RS,Brazil cDepartamentodeFarmácia,UniversidadeFederaldePernambuco,Recife,PE,Brazil

dDepartamentodeFisiologia,UniversidadeFederaldeSergipe,SãoCristóvão,SE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16December2014 Accepted17December2014 Availableonline24April2015

Keywords: Lippiasidoides Factorialdesign Antioxidant Flavonoids

a

b

s

t

r

a

c

t

Theaimofthisstudywastoevaluatetheinfluencesofvariablesofpreparationontotalflavonoidscontent fromextractivesolutionofLippiasidoidesCham.,Verbenaceae.Thusa23factorialdesignwasusedtostudy

theimportanceofplantproportion,theextractionmethodandsolventontheextractionofflavonoid.The methodologyofdeterminationofchemicalsinfactorialdesignwasvalidatedaccordingtotheparameters requiredbyBrazilianHealthAgency.Theextractionsolutionwasselectedthroughafullfactorialdesign wherethebestconditionstoachievethehighestcontentofflavonoidswere:7.5%(w/v)ofplantwith ethanol50%(v/v)assolvent.ThepolyphenolscontentwasdeterminedbyLCmethodanditsrelationship withtheantioxidantandfreeradicalscavengingactivitieswasevaluated.Thefreeradicalscavenging activitiesandantioxidantpotentialsweredeterminedfordifferentconcentrationsusingvariousinvitro

models.Ourresultsindicatethatextractsexhibitedasignificantdose-dependentantioxidanteffectas evaluatedbyTRAP/TARassays.Besides,weobservedanantioxidantactivityagainsthydroxylradicalsand nitricoxide,andprotectionagainstlipidperoxidationinvitro.Ourresultssuggestthattheextractpresents significantinvitroantioxidantpotentialindicatingpromisingperspectivesforitsuseaspharmaceutical/or foodadditive.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Lippia sidoides Cham., Verbenaceae, popularly known as

“alecrim-pimenta”, isa typicalshrubcommonlygrowinginthe

NortheastofBrazil.Thisspeciesproducesanessentialoilrichin thy-molandcarvacrol,whichhasapotentantimicrobialactivityagainst fungiandbacteria(Lemosetal.,1990;Lacosteetal.,1996).The hydro-alcoholicextractsofthisplantarelargelyusedfortreatment ofskinwounds,asamouthantisepticandinliquidsoap prepa-rationstotreatandpreventgeneralfungalinfectionsofthebody (Matos,2000).

Inthisway,thosegroupsofsubstancescanbesuccessfullyused aschemicalsmarkerswhichcanassistinthestudiesof standard-izationofextractivesolutionsfrommedicinalplants.

∗ Correspondingauthor.

E-mail:francilene.silva@pq.cnpq.br(F.A.Silva).

However,validatedqualitycontrolmethodsneedtobe

devel-oped inorder tocomplywithregulatoryrequirements, ifsome

plantistobeusedasrawmaterialbythepharmaceutical indus-try;theabsenceofthosestudieshampersthereproducibilityofthe extractivesqualities,whichcouldaffecttheefficiencyandsafety. Thus,thestandardizationofplantextractivesolutionsshouldbe thefirststepduringthetechnologicaldevelopmentof phytophar-maceuticals.Theinfluenceofseveralparameterssuchasextractive methodandtechnology,typeandconcentrationofsolvent,aswell asplantconcentration,andtheirinfluenceinthephysical-chemical properties of theextractive solutions should be evaluated and quantified(Audietal.,2001;Cunhaetal.,2009).

Thefactorialdesignisastatistictoolusedtoscreeningand/or

optimization process,with rapid and economic way,and

max-imization the quality of final products. Besides, the statistical analysisawardresultsarereliable(MyersandMontgomery,1995; Montgomery,1997).Thus,itispossibletorankeachindependent variable according toits significance on thestudied responses. Therefore,withreducedtimeandexperimentaleffort,itmaybe

http://dx.doi.org/10.1016/j.bjp.2014.12.004

(2)

possibletochoicetheextractiveconditionsthatareabletoproduce

themaximumexperimentalresponse (MyersandMontgomery,

1995; Montgomery,1997; Canteri-Scheminet al., 2005; Soares etal.,2005).

Theaimofthisworkwastousethefactorialdesigntoevaluate theeffectoftheplantproportion,solventtype,concentrationand theextractionmethodonthetotalflavonoidscontentinextractives solutionsfromL.sidoides.Additionally,theaimwasalsotoevaluate theinvitroantioxidantactivityoftheoptimizedextractivesolution.

Materialsandmethods

Plantmaterial

Aerialpartsof LippiasidoidesCham., Verbenaceae,were col-lectedinthegardenofmedicinalplantsoftheFederalUniversity ofSergipe(SãoCristóvão,Brazil)inMay2009andwasidentified byProf.AnaPaulaN.Pratawhoisa planttaxonomistfromthe

DepartmentofBiology.Avoucherspecimen(ASE2626)hasbeen

depositedintheHerbariumofDepartmentofBiology.Theplant materialafterharvestingwassubjectedtodryingprocessina circu-latingairatatemperatureof40±2◦Cuntilstabilizationofresidual moisture.Afterdryingtheplantmaterialwasmanuallyselected, subjectedtogrindinginagrinderofknives,weighed,sampledand wascharacterizedthroughanalysisof moisturecontent, granu-lometricanalysisusingsieveof150,250,355,500,600,710and 1000␮m,lossofdryingbygravimetricmethodanddetermination

ofextractivecontent.

Evaluationofanalyticmethodologybyspectrophotometry

Throughthetechniqueofdeterminationwithoutacid hydroly-sis(Petryetal.,1998;Silvaetal.,2009;Marquesetal.,2012),the sampleofrawmaterialwassubjectedtoextractionunderreflux (7.5%,w/v)andwasheldinadilutionof3:50mlofstocksolutionin waterdistilled;then,inflasksof20mlaliquotswereaddedto3.2ml ofthedilutedsolutionand1.6mlofAlCl3(2.5%and7.5%)inorderto assesswhatwouldbetheidealconcentrationofAlCl3necessaryfor chelatingflavonoidslikequercetinfoundintheextractivesolution ofL.sidoides.Then,theballoonswerefilledwithethanol(40%)and

30minafterthereadingswereperformedina

spectrophotome-terat423nm(maximumofAlCl3-quercetincomplexed).Giventhe optimalconcentrationofAlCl3 tocomplexationwasperformeda readingofscanningtheextractivesolutionbeforeandafter

com-plexationwhich comprised a range of200–800nm inwhich it

wasintended to strengthen the displacement of bathochromic

flavonoidsolution.

Validationmethodology

Amethodologytodetermineandquantifytheflavonoidsinraw materialmustbevalidatedconsideringthefollowingparameters: specificity,linearity,precision,accuracy androbustness(Anvisa, 2003).

Thestatisticanalysisandexperimentaldesign

Theexperimentalmatrixwasa23factorialdesignanditwas usedtoevaluatetheinfluenceofplantproportions(5.0/7.0%;w/v), solventtype(water/ethanol50%)andtheextractionmethod (infu-sion/decoction)ontheefficiencyoftheextractionofflavonoids.The experimentswereperformedintriplicate,andthetotalflavonoids content(TFC)wasusedasresponses.Thestatisticalanalysisofthe factorialdesignwasperformedusingthesoftwareStatistica®

6.0

(StatSoft,USA).TheexperimentaldatawereanalyzedbyANOVA

andt-testforstandardizedeffects(MyersandMontgomery,1995).

HPLCanalysisofextractivesolution

PreparationofL.sidoidesextracts

Dryextract(100ml)obtainedbydecoction(7.5%,w/vin15min) wasdilutedwithmethanol/milli-Qwater(50:50,v/v)toachievea concentrationof10␮g/ml.ForinjectionintheHPLC,thesolutions

werefilteredina0.44␮m(regeneratedcellulose)membrane.

AnalyticalandpreparativeHPLC

TheHPLCanalysiswasperformedonaShimadzusystem

con-sisting of a degasser DGU-20A3, a SIL-20A autosampler, two

LC-20AD pumps and a SPDM20Avp photodiode array detector

(DAD),coupledwithaCBM20Ainterface.Beforeinjectionintothe HPLC,thesolutionswerefilteredina0.44␮m(regenerated

cellu-lose)membrane.Theanalyticalmethodemployedalineargradient systemwhich consisted of (A) acetic acid:water 1.0%(v/v); (B)

methanol.Thechromatographic separation hasbeenperformed

usingaPhenomenexLunaC18analyticalcolumn250mm×4.6mm

(5mmparticlesize).Theflowratewas0.6ml/minandtheinjection volumewas20␮l.Themobilephaseconsistedofgradientofwater

andmethanolstartingwith10%Bduring20min;40–45%Bduring 5min;45–60%Bduring10min;60–75%Bduring25mintotaltime of60min.Photodiodearraydetectorwassetat254nmfor acquir-ingchromatograms.Theanalysisofpeakswasbasedinaccordance withtheretentiontimeofthestandardsubstanceandmass

spec-trum(MS/MS).Massspectrometricanalysiswasperformedona

Bruckermassspectrometerfittedwithiontrapionizationsource. Thenegativeionmode[m/zM−H]wasusedforallcompounds.Ion trapionizationwasoperatedinMRMandconditionswere: nebu-lizerpressure:40psi;drygasflow:9l/min;dryinggastemperature: 300◦C;flowrate:200l/min.

Redoxactiveprofile

Totalantioxidantpotential(TRAP)andtotalantioxidantreactivity (TAR)

TRAP/TAR was determined by measuring the

chemi-luminescence (CL) intensity of luminol induced by 2,2′-azobis (2-amidinopropan) dihydrochloride (AAPH) (Lissi et al., 1995).

ThebackgroundCLwasmeasuredbyaddingAAPHandluminol.

Then,thesamples(OELSfrom1ngml−1to1mgml−1)wereadded,

and the CL was measured in a liquid scintillator counter. The

lastcountbeforetheadditionsampleswasconsideredas100%. Graphswereobtainedbyplottingpercentageofcountspermin(% cpm)versustime(s).TheAUC(TRAPassay)wascalculatedusing GraphPadPrismsoftware.TheTARwascalculatedastheratioof lightintensityinabsenceofsamples(Io)/lightintensityrightafter OELSaddition(I).

TBARS(ThiobarbituricAcidReactiveSpecies)

TBARSassaywasemployedtoquantifylipidperoxidationand

anadaptedTBARSmethodwasusedtomeasuretheantioxidant

(3)

at1200gfor10min.Analiquotof0.5mlfromthesupernatantwas mixedwith0.5mlTBAandheatedat95◦Cfor30min.After cool-ing,samplesabsorbancewasmeasuredusingaspectrophotometer at532nm.TheresultswereexpressedasapercentageofTBARS formedbyAAPHalone(inducedcontrol).

Hydroxylradical(•OH)scavengingassay

HydroxylradicalsweregeneratedbyaFentonsystem(FeSO2 -H2O2).Whenexposedtohydroxylradicals,thesugardeoxyribose isdegradedtomalonaldehyde(MDA),whichgeneratesapink chro-mogenonheatingwithTBAatlowpH.Themethodfordetermining thescavengingonhydroxylradicalswasperformedaccordingtoa previouslydescribedprocedure.

Nitricoxide(NO)scavengingassay

Nitricoxidewasgenerated fromspontaneousdecomposition

ofsodiumnitroprusside(SNP)inthephosphatebuffer(pH7.4). OncegeneratedNOinteractswithoxygentoproducenitriteions, whichweremeasuredbytheGriessreaction.Thereactionmixture containingSNPinphosphatebufferandOELSatdifferent concen-trationswereincubatedat37◦Cfor1h.Analiquotwastakenand homogenizedwithGriessreagent.Theabsorbanceofchromophore wasmeasuredat540nm.Percentinhibitionofnitricoxide gener-atedwasmeasuredbycomparingtheabsorbancevaluesofnegative controls(SNPandvehicle)andassaypreparations.

Resultsanddiscussion

Characterizationoftheplantmaterial

TheplantmaterialofL.sidoidesusedinthisresearchpresented particlemeandiameterof325␮m,lossondryingof11.25%and

extractivecontentof19.83%.Theseproprietiesareimportantfor standardizationofextractiveprocess,sinceparticlesmean diam-eterinfluencestheextractionefficiencyandthelossondryingis importanttoconservationofrawmaterial(ListandSchimdt,1989).

Developmentofanalyticmethodologybyspectrophotometry

Thealuminumcationformsstablecomplexeswithflavonoids, whichleadstoadeviationofthepeakabsorptiontolonger wave-length.Thusitispossibletodeterminetheamountofflavonoids, avoidingtheinterferenceofotherphenolicsubstances,mainly phe-nolicacids,whichinvariably accompanytheflavonoidsinplant tissues.Thisreadingisdoneinspectrophotometerat425nm,using aluminumchlorideto2%.Therewasnostatisticallysignificant dif-ferenceinamplitudeofthepeakabsorptionoratthetimethatthis pointhasbeenreachedregardingtheconcentrationofAlCl3was used.

Validationofthemethodology

AccordingtoBrazilianHealthAgency(Anvisa,2003),the pur-poseofvalidationistodemonstratethatthemethodissuitable for their intended purpose, and to identify qualitative, semi-quantitativeand/orquantitiesof drugsand othersubstances in

pharmaceuticals. Thus, the method is validated when has the

specificity,linearity,precision,accuracyandrobustnesswithinthe parametersrequired.

Thespecificityofmethodwasdemonstratedacrossthe spec-trumscanningoftheextractivesolutionfromL.sidoides(7.5%,w/v) andthestandardquercetin(50.0␮g/ml),bothcomplexedwith

alu-minumchloride(2.5%),onlyonepeakbeingshownofmaximum

4.500

4.000

2.000

–2.000

–4.000

–4.500

200.00 400.00 600.00

L.sidoides

Quercetin

nm.

Abs.

800.00 000

Fig.1. Spectrumscanningof theextractivesolution fromL. sidoidesandthe quercetinstandard.

absorptionat423nmfor quercetinandotherat405nmfor the extractivesolution(Fig.1).

Thelinearitywasobtainedthroughofthecalibrationcurveof quercetindilutedinethanol(40%).Thiscurvewasmadewithfive differentconcentrations:10,20,30,40and50␮g/ml.The

param-eterlinearityisveryimportantbecauseitdemonstratesthatthe resultsobtainedaredirectlyproportionaltotheconcentrationof analyteinthesample,withinaspecifiedrange.

Thetestwasmadeintriplicateandtheresultsofthestatistical analysisareshowedinTable1.Theequationofthelineobtained wasy=0.01467x+0.3062,theaccuracyofthedeterminationswas between102.10and101.11%(Table1)andthedetermination coef-ficientobtainedwasgreaterthan0.99(r2=0.9992)whichiswithin theparametersofexistinglegislation(Anvisa,2003).

Theprecisionwasobtainedattwolevels:repeatability,which

evaluated the concordance betweenthe results within a short

periodoftimewiththesameanalystandsameinstrumentation. Thislevelwascarriedintriplicatewithsixdeterminationsof100% oftheconcentrationofthetest;andthesecondlevelwasthe

inter-mediate precision,which analyzes the correlationbetween the

resultsfromthesamelaboratory,obtainedindifferentdayswith differentanalystsperformedinduplicatewithsixdeterminations. Theresultsofthestatisticalanalysisoftheprecisiontestareshown inTable2.

Theaccuracyobtainedasindicatedbytheresolutionforthis testwasthusappliedintheanalyticalmethodologyproposedin theanalysisofasubstanceofknownpurity;inlow(22.5␮g/ml),

medium(45␮g/ml)andhigh(65␮g/ml)concentrationaccording

totheminimumandmaximumvaluesonthecurvealltheresults areshowninTable3.

The robustness was evaluated by variation of temperature

between25and35◦Candthesolutionconcentrationofaluminum

Table1

Resultsofthestatisticalanalysisofthelinearitytest.

TC C SD RSD A

10 10.2152 1.723 1.68 102.10 20 20.4642 2.351 1.15 102.32 30 30.6136 2.093 0.68 101.65 40 40.6821 1.254 0.28 101.90 50 50.5461 2.372 0.46 101.11 TC(␮g/ml),theoreticalconcentration;C(␮g/ml),meanconcentrationofthree

(4)

Table2

Resultsofthestatisticalanalysisoftheprecisiontest.

Test TC C SD RSD A

Repeatability 50.0 50.47 2.45 1.09 99.59 50.0 50.91 1.75 0.38 100.32 50.0 49.97 2.12 0.32 100.21 Intermediate

precision

Analyst1 44.0 44.05 2.11 0.47 100.76 Analyst2 44.0 44.16 2.09 0.47 100.32 TC(␮g/ml),theoreticalconcentration;C(␮g/ml),meanconcentrationofthree

deter-minations;SD,standarddeviation;RSD(%),relativestandarddeviation;A(%), accuracy.

Table3

Resultofthestatisticalanalysisoftheaccuracytest.

Test CL TC C SD RSD A

Accuracy Low 22.5 22.475 2.45 1.09 99.89 Medium 45.0 44.912 1.75 0.38 99.80 High 65.0 64.978 2.12 0.32 99.95 CL,concentrationlevel;TC(␮g/ml),theoreticalconcentration;C(␮g/ml),mean

concentrationofthreedeterminations;SD,standarddeviation;RSD(%),relative standarddeviation;A(%),accuracy.

chlorideinmethodbetween2.5and7.5%.Theanalysesweredonein triplicate.Themethodwasrobustforthevariationoftemperature andsolutionconcentrationofaluminumchloride.

Experimentaldesign

Theresultsforthetotalflavonoidscontentofeachextractive solutionarepresentedinTable4.Thestandardizedeffectsofeach main factor as wellas respectiveinteractions are presented in Table5.Regarding thestatisticalanalysisof experimentaldata, themostimportanteffectcouldbeattributedtothefactorSolvent, whichprovidesmoreefficientextractiveprocedurewhenethanol 50%(v/v)wasusedassolvent.Accordingtot-test,thesecondmain factorwasthedrugproportion.Nostatisticallysignificanteffect couldbeimputedtoextractionmethods(infusion/decoction).On theotherhand,theinteractionsofextractionmethodwereableto provideimprovementsontheextractiveefficiencyeitherwith Sol-ventorPlantproportion.Theexpectedimprovementsintheyield ofTFCduetoincreasingdrugamountaswellasthepositiveeffect ofethanol:watermixtureundergoextraenhancedeffectderived frommethodofextraction.Althoughnosignificanteffectswere observedfortheMethodofExtraction,theinfluenceof maintain-ingthetemperaturebydecoctionseemstobeessentialtopromote betterwettabilityoftherawmaterialandhigherdiffusivityofthe solvent.

SeparationpolyphenolsbyHPLC

Photodiodearraydetectorwassetat254nmforacquiring

chro-matograms.ThechromatogramL.sidoidesextract showedthree

Table5

Statisticalanalysisofexperimentaldata:standardizedeffects(mainfactorsand interactions).

Standardizedeffect t-Test ANOVA(F) Mean/interc. 14.64 53.11*

(1)Method 1.014 1.84 3.38

(2)Plant(%) 2.69 4.88* 23.85*

(3)Solvent 4.37 7.92* 62.67*

1by2 1.33 2.42* 5.83*

1by3 1.41 2.57* 6.58*

2by3 1.00 1.82 6.30

*˛=0.05.

majorpeakswellseparated:P1(R.T.21min),P2(R.T.34min)and P3(R.T.41min).P1wasidentifiedaschlorogenicacid(Fig.2).P2 andP3 werenot identifiedbut exhibitedUV spectrapattern of caffeoylquinicacidderivatives,indicatingthatthisclassof polyphe-nolsare themajorconstituents inthe extract.P1 had itsmass

spectrum analysis and Showed MS 353 m/z and MS2 191 m/z

(chlorogenicacidmolecule).

Redoxactiveprofile

TheTRAPandTARmethodsarewidelyemployedtoestimatethe generalantioxidantcapacityofsamplesinvitro.Thus,thegeneral antioxidantpotentialofextractfromL.sidoideswasfirstevaluated bytheTRAP/TARassays.TheTRAP/TARassaysindicatethat opti-mizedextractivesolutionofL.sidoides(OELS)presentsasignificant antioxidantactivityattheallconcentrationsstudied(Fig.3).

Lipidperoxidation(LPO)hasbeendefinedasthebiological dam-agecausedbyfreeradicalsthatareformedunderoxidativestress (Zinetal.,2002).Severalplantextractshavebeenshowntoinhibit LPOasmeasuredbythelevelsofTBARS.Thelipidsinmembrane arecontinuouslysubjectedtooxidantchallenges.Oxidantinduced abstractionofahydrogenatomfromanunsaturatedfattyacylchain ofmembranelipidsinitiatestheprocessofLPO,whichpropagates asachainreaction.Intheprocess,cyclicperoxides,lipid peroxi-desandcyclicendperoxidesaregenerated,whichultimatelyare fragmentedintoaldehydeslikeMDA.Similarly,theOELSwereable topreventlipoperoxidationinducedbyAAPHinvitroina lipid-enriched system(Fig.4).TheOELSat 100ngml−1 to1mgml−1 showedantioxidantactivityagainsthydroxylradicals(Fig.5).To determinetheabilityofextracttoactasareactivenitrogenspecies (RNS)scavenger,weevaluatedtheNO-scavengingactivitybythe Griessmethodand OELSat100ngml−1 to1mgml−1 showeda significant(p<0.05)NO-scavengingactivity(Fig.6).

The resultsfoundin this studyare in agreementwith both observationsandsuggestadirectcorrelationbetweenantioxidant activityandpolyphenolcontent.Itisprobablethattheactive prin-cipleresponsiblebytheredoxactivityinthisworkisthepolyphenol content.Severalstudieshaveshownthattheredoxactivity asso-ciatedwithnaturalantioxidantsisattributedtothetotalcontent

Table4

Matrixofthefactorialdesign23.

Exp Codedvariable Naturalvariable TFT(␮g/ml)

Method Plant Solvent Method Plant(w/v) Solvent

1 +1 +1 −1 Decoction 7.5 Water 13.043

2 +1 +1 +1 Decoction 7.5 EtOH50% 21.280

3 +1 −1 +1 Decoction 5.0 EtOH50% 14.798

4 +1 −1 −1 Decoction 5.0 Water 11.476

5 −1 +1 −1 Infusion 7.5 Water 13.568

6 −1 +1 +1 Infusion 7.5 EtOH50% 16.064

7 −1 −1 +1 Infusion 5.0 EtOH50% 15.157

8 −1 −1 −1 Infusion 5.0 Water 11.752

(5)

65.0

254nm, 4nm (1.00)

A

62.0 60.0 57.5 55.0 52.5 50.0 47.5 45.0 42.5 40.0 37.5 35.0 32.5 30.0 27.5 25.0 22.5 20.5 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 P1

P3 P2

35.0 40.0 45.0 50.0 55.0 min mAU

950 900 850 800 750

650

550

450

350

250

150 100 50 0 200 300 400 500 600 700

254nm, 4nm (1.00)

B

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 min mAU

Fig.2.(A)ChromatogramofextractivesolutionofL.sidoides.(B)Chromatogramofthereferencesubstance(chlorogenicacid).

30 0000

A

20 0000

10 0000

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

TRAP

(AUC arbitary units)

0

System Trolox

100 ng/ml 1 1 mg/ml µg/ml

10 µ g/ml

100 µg/ml

100

80

60

40

20

B

∗∗∗

∗∗∗

∗∗∗

∗∗∗

T

AR (Io/I)

0

System Trolox

100 ng/ml 1 1 mg/ml µg/ml

10 µ g/ml

100 µg/ml

Fig.3.(A)TotalRadical-TrappingAntioxidantParameter(TRAP)atdifferent con-centrations.Valuesrepresentmean±S.E.D.,experimentsintriplicate,***p<0.001 differentfromsystemandtrolox(ANOVAfollowedbyTukey).(B)Thetotal antiox-idantreactivity(TAR)wascalculatedastheratiooflightintensityinabsenceof samplesexpressedaspercentofinhibition(I0/I).Valuesrepresentmean±S.E.D.,

experimentsintriplicate,***p<0.001differentfromsystemandtrolox(ANOVA followedbyTukey).

100

50

0 150

System Trolox

100 ng/ml 1 1 mg/ml µg/ml

10 µ g/ml

100 µg/ml

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

TBARS

(% AAPH-induced

damage)

Fig.4. ThiobarbituricAcidReactiveSpecies(TBARS)wasevaluatedfromL.sidoides

(100ngml−1to1mgml−1).Valuesrepresentmean

±S.E.D.,experimentsin tripli-cate,ANOVAfollowedbyTukey,*p<0.05;***p<0.001differentfromsystem.

100

50

0 150

System Trolox

100 ng/ml 1 1 mg/ml µg/ml

10 µg/ml

100 µg/ml

∗∗∗

∗∗

∗∗

∗∗∗

∗∗∗

∗∗

% of hydroxyl

Fig. 5.Hydroxyl radical-scavenging activity from L. sidoides (100ngml−1 to

1mgml−1).Valuesrepresentmean

(6)

100

50

0 150

System Trolox

100 ng/ml1 1 mg/ml µg/ml

10 µg/ml

100 µg/ml

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

% of nitrite formation

Fig.6. Nitricoxide (NO) scavenging activity from L.sidoides (100ngml−1 to

1mgml−1).Valuesrepresentmean±S.E.D.,experimentsintriplicate,ANOVA

fol-lowedbyTukey*p<0.05;***p<0.001differentfromsystem(SNP).

ofphenoliccompounds(Halliwell,2008;Rice-Evansetal.,1997; Scalbertetal.,2005;Serafinietal.,2011).

Conclusions

Theanalysisof datafromthis studyconfirmedtheability of

thedeveloped methodforevaluatingthepolyphenolcontentin

extractsofL.sidoidesandtheanalysisoffactorialdesignshowed thattheoptimumconditiontopreparetheextractivesolutionswith maximumtotalflavonoidcontent,foundextractionbydecoction, using7.5%(w/v)ofplantandethanol50%(v/v)astheextractive solvent.Concluding,thedatepresentedhereinindicatesthattheL. sidoidesextracthaveinvitroantioxidantactivityandshouldbe con-sideredasnewsourcesofnaturalantioxidantsjointlywithother phenolicrichplants.Furtherstudiesareneededtoexaminethe potentialuseoftheseextractsinthepreventionortreatmentof

pathologies where oxidativestress seemstoplay an important

role.

Authors’contributions

BSLandCSRcontributedwithchromatographicanalysis, fac-torialdesignandwritingofthemanuscript.JPAS,TKRandCASS contributedwiththeredoxactiveprofile.MRS,LALS,LJQJ,JCFM, DPG,AASAandFASdesignedthestudy,supervisedthelaboratory work,contributedtocriticalreadingofthemanuscript,writingof themanuscriptandfinaleditingofthemanuscript.Alltheauthors havereadthefinalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

The authors are grateful to CAPES, CNPq, FACEPE/PE and

FAPITEC/SEforfinancialsupportandfellowships.

References

Audi,E.A.,Campos,E.J.V.,Rufino,M.,Cortez,D.G.,Bersani-Amado,C.A.,Soares, L.A.L.,Petrovick,P.R.,Mello,J.C.P.,2001.PetiveriaalliaceaL.:plantdrug qual-itycontrol,hydroalcoholicextractstandardizationandpharmacologicalassay oflyophilizedextract.ActaFarm.Bonaer.20,225–232.

Anvisa,2003.Resolutionn◦899,2003,AgênciaNacionaldeVigilânciaSanitária.

MinistériodaSaúde,Brasília,DF.

Canteri-Schemin,M.H.,Fertonani, H.C.R.,Waszczynskyj,N.,Wosiacki,G.,2005. Extractionofpectinfromapplepomace.Braz.Arch.Biol.Technol.48,259–266. Cunha,F.P.,Costa,L.J.L.,Fernandes,A.J.D.,Souza,T.P.,Soares,L.A.L.,2009. Develop-mentandoptimizationofextractivesfromAstroniumurundeuva(allemão)Engl. byfactorialdesign.Braz.Arch.Biol.Technol.52,23–29.

Halliwell,B.,2008.Arepolyphenolsantioxidantsorpro-oxidants?Whatdowelearn fromcellcultureandinvivostudies?Arch.Biochem.Biophys.476,107–112. Lacoste,E.,Chaumont,J.P.,Mandin,D.,Plumel,M.M.,Matos,F.J.,1996.Antiseptic

propertiesofessentialoilofLippiasidoides(Cham).applicationtothecutaneous microflora.Ann.Pharm.Fr.54,228–230.

Lemos,T.L.,Craveiro,A.A.,Alencar,J.W.,Matos,F.J.,Clarck,A.M.,MacChesney,J.D., 1990.AntimicrobialactivityofessentialoilofBrazilianplants.Phytother.Res. 4,82–84.

Lissi,E.,Salim-Hanna,M.,Pascual,C.,DelCastillo,M.D.,1995.Evaluationoftotal antioxidantpotential(TRAP)andtotalantioxidantreactivityfrom luminol-enhancedchemiluminescencemeasurements.FreeRadic.Biol.Med.2,153–158. List,P.H.,Schimdt,P.C.,1989.PhytopharmaceuticalTechnology.CRCPress,Florida. Marques,G.S.,Monteiro,R.P.M.,Leão,W.F.,Lyra,M.A.M.,Peixoto,M.S.,Rolim-Neto, P.J.,Xavier,H.S.,Soares,L.A.L.,2012. Evaluationofproceduresfor spectro-photometricquantificationoftotalflavonoidsinleavesofBauhiniaforficata. Quím.Nova35,517–522.

Matos,F.J.A.,2000.PlantasMedicinais.ImprensaUniversitária,Fortaleza. Montgomery,D.C.,1997.DesignandAnalysisofExperiments.Willey,NewYork. Myers,R.H.,Montgomery,D.C.,1995.ResponseSurfaceMethodology:Processand

ProductOptimizationUsingDesignedExperiments.Willey,NewYork. Petry,R.D.,DeSouza,K.C.B.,Bassani,V.L.,Petrovick,P.R.,González,O.G.,1998.

Dosea-mentodoteordeflavonóidestotaisemextratoshidroalcoólicosdePassiflora alataDryander(maracujá).Rev.Bras.Farm.79,7–10.

Rice-Evans,C.A.,Miller,N.J.,Paganga,G.,1997.Antioxidantpropertiesofphenolic compounds.TrendsPlantSci.2,152–159.

Scalbert,A.,Manach,C.,Morand,C.,Rémésy,C.,2005.Dietarypolyphenolsandthe preventionofdiseases.Crit.Rev.FoodSci.Nutr.45,287–306.

Serafini,M.R.,Santos,R.C.,Guimarães,A.G.,DosSantos,J.P.,DaConceicão,A.D.S., Alves,I.A.,Gelain,D.P.,DeLima,P.C.N.,Quintans-Júnior,L.J.,Bonjardim,L.R., Araújo,A.A.S.,2011.MorindacitrifoliaLinnleafextractpossessesantioxidant activitiesandreducesnociceptivebehaviorandleukocytemigration.J.Med. Food14,1–8.

Silva,I.V.,Ferreira,M.S.,Wanderley,A.G.,Fernandes,M.J.B.C.,Soares,L.A.L.,DeSouza, T.P.,2007.Theinfluenceofextractiveparametersonthepreparationofasolution fromPsidiumguajavaL.ActaFarm.Bon.28,116–120.

Silva,K.G.H.,Xavier-Júnior,F.H.,Farias,I.E.G.,Silva,A.K.A.,Caldas-Neto,J.A.,Souza, L.C.A.,Santiago,R.R.,Alexandrino-Júnior,F.,Nagshima-Júnior,T.,Soares,L.A.L., Santos-Magalhães,N.S.,Egito,E.S.T.,2009.Stationarycuvette:anewapproach toobtaininganalyticalcurvesbyUV–VISspectrophotometry.Phytochem.Anal. 20,265–271.

Soares,L.A.L.,González,O.G.,Petrovick,P.R.,Schmidt,P.C.,2005.Optimizationof tabletscontainingahighdoseofspray-driedplantextract:atechnicalnote. AAPSPharmSciTech6,368–371.

Imagem

Fig. 1. Spectrum scanning of the extractive solution from L. sidoides and the quercetin standard.
Fig. 5. Hydroxyl radical-scavenging activity from L. sidoides (100 ng ml −1 to 1 mg ml −1 )
Fig. 6. Nitric oxide (NO) scavenging activity from L. sidoides (100 ng ml −1 to 1 mg ml −1 )

Referências

Documentos relacionados

O Bairro dos CTT foi construído há 60 anos, tendo sofrido, durante estes anos, algumas obras de manutenção de serviços camarários e intervenções pontuais,

The analysis of the phase behaviors of the ATPES found that the extraction efficiency and enrichment factor of TAP was influenced by the types of salts, the concentration of salt,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Estas propriedades medicinais, principalmente a ação antimicrobiana, para derivados vegetais e a possibilidade de sinergismos com drogas antimicrobianas

Figure 2 - Effect of drying rate on primary root protrusion (a) , percentage of normal seedlings (%) (b) and germination speed index (GSI) (c) of Campomanesia adamantium

Thus, the optimum time of harvest is every three days, which guarantees to the producer that flowers with maximum productivity, quality and total flavonoid contents will be

Optimal conditions of arsenic extraction were obtained by evaluating the operational parameters of ultrasound bath and the analysis conditions with the experimental design.. The

Estas condições selecionam uma solução particular do conjunto de soluções possíveis da equação de onda e na ausência de termos de ordem inferior a dois na equação de onda,