• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
7
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Antiproliferative

effects

of

pinostrobin

and

5,6-dehydrokavain

isolated

from

leaves

of

Alpinia

zerumbet

Walter

A.

Roman

Junior

a,b,∗

,

Denise

B.

Gomes

a

,

Barbara

Zanchet

a

,

Amanda

P.

Schönell

b

,

Kriptsan

A.P.

Diel

b

,

Thais

P.

Banzato

c

,

Ana

L.T.G.

Ruiz

c

,

João

E.

Carvalho

c,d

,

Angelita

Neppel

e

,

Andersson

Barison

e

,

Cid

Aimbiré

M.

Santos

f

aProgramadePós-graduac¸ãoemCiênciasdaSaúde,UniversidadeComunitáriadaRegiãodeChapecó,Chapecó,SC,Brazil

bGrupodePesquisaemFitoquímicaeFarmacologiadeProdutosNaturais,UniversidadeComunitáriadaRegiãodeChapecó,Chapecó,SC,Brazil

cCentroPluridisciplinardePesquisasQuímicas,BiológicaseAgrícolas,DivisãodeFarmacologiaeToxicologia,UniversidadeEstadualdeCampinas,Campinas,SP,Brazil dFaculdadedeCiênciasFarmacêuticas,UniversidadeEstadualdeCampinas,Campinas,SP,Brazil

eDepartamentodeQuímica,UniversidadeFederaldoParaná,Curitiba,PR,Brazil

fLaboratóriodeFarmacognosia,DepartamentodeFarmácia,UniversidadeFederaldoParaná,Curitiba,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14April2017 Accepted30May2017 Availableonline29July2017

Keywords:

Medicinalplants Antiproliferativeeffects 5,6-Dehydrokavain Pinostrobin Antitumoragents

a

b

s

t

r

a

c

t

Naturalproductsareamajorsourceofdrugsforthetreatmentofcancer.ThespeciesAlpiniazerumbet

(Pers.)B.L.Burtt&R.M.Sm,Zingiberaceae,iswidelydistributedinBrazilwhereitisknownas“colônia”. Theleavesarecommonlyusedinthetreatmentofhypertensionanddyspepsia,however,theeffectsof

A.zerumbetextractsandisolatedsubstancesonhumancancercellsremaintobeelucidated.Thisstudy wasdesignedtoidentifythechemicalconstituentsofhydroalcoholicanddichloromethaneextractsfrom

A.zerumbetleavesandtoinvestigatetheirinvitroantiproliferativeactivity.Theisolatedphytochemicals includedkaempferol,dihydro-5,6-dehydrokavain,5,6-dehydrokavain,andpinostrobin.The hydroalco-holicextractinhibitedcellularproliferationonlyathighconcentrations,whilethedichloromethane extractshowedamoderateantiproliferativeeffectagainstleukemiaandlungtumorcelllines. 5,6-Dehydrokavainshowedpotentcytostaticactivityagainstglioblastomacellsandamoderateeffectonall othertumorcelllines.Pinostrobinshowedpotentactivityagainstleukemiaandbreasttumorcelllines andmoderatecytostaticeffectagainstovariancell.Furthermore,thisisthefirstreportontheisolationof kaempferolandpinostrobinfromA.zerumbetleaves.Moreover,thepurificationprocessdescribedinthis studywaseffective.TheseresultssuggestthatA.zerumbetleavesareapromisingsourceofanticancer compounds.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Cancerisaseriouspublichealthproblemrepresentingthe sec-ondlargestcauseofdeath(Siegeletal.,2016).Overthenexttwo decades,approximately22 millioncases per yearare expected worldwide(McGuire,2016).Canceristhenamegiventoasetof morethan 100diseases thathave incommontheuncontrolled growthof(malignant)cellsthatinvadetissuesandorgansandcan spread(metastasize)tootherpartsofthebody.Dividingrapidly, thesecellstendtobeveryaggressiveanduncontrollable,causing

∗ Correspondingauthor.

E-mail:romanwa@unochapeco.edu.br(W.A.Junior).

theformationoftumorsormalignantneoplasms(Almeidaetal., 2005;Elkadyetal.,2016).

Thetreatmentofcancerisbasedmainlyonsurgicalresection of the tumor mass and/or administration of radiotherapy, immunotherapy,and/or chemotherapy.However,many cancers stillexhibitonlymodestclinicalresponsestoprotocolsdeveloped foreitherprimarytumorsormetastases(Costa-Lotufoetal.,2010). Moreover,manyanticanceragentshavehighratesofadverse reac-tionsandtoxicityaswellasalowselectivityfortumorcells(Prakash etal.,2013;TopculandCetin,2014).Therefore, withthe objec-tiveoffindingmoreeffectiveandsafetreatments,pharmacological studieswithsubstancesisolatedfromplants,aswellassynthetic derivativesbasedonthesenatural compounds,haveintensified (Harveyetal.,2015;NewmanandCragg,2016).

http://dx.doi.org/10.1016/j.bjp.2017.05.007

(2)

Naturalproductshave beenreportedtoact directlyor indi-rectlyviamultiplecellsignalingpathways.Thus,thecombination oftraditionalchemotherapeuticdrugswithextractsand/orisolated substancescouldprovideaneffectivealternativeforcancer treat-mentorovercomechemoresistance(Apayaetal.,2016).Among naturalproducts,phenoliccompounds,includingflavonoids,have beenshowntohaveanarrayofpharmacologicalactivities(Kristo etal.,2016)suchasanti-inflammatory,cancerchemopreventive, andchemotherapeutic(García-Lafuenteetal.,2009;Georgeetal., 2017).

Alpiniazerumbet(Pers.)B.L.Burtt&R.M.Sm,Zingiberaceae,is

nativetoChinaandJapanandcultivatedinBrazilwhereispopularly knownasfalso-cardamomo,pacová,gengibre-concha,andcolônia (Lorenzi and Matos,2002; Lorenziand Souza,2008).Thisplant is herbaceous,tropical perennial, rhizomatoza,with stemshort thatcanreachupto3mtall.Itbearsfunnel-shapedflowersand theleavesarelanceolate,aromatic,andofcoriaceousconsistency (Correaetal.,2010;Sabooetal.,2014).TheA.zerumbetleavesare traditionallyusedindyspepsiatreatmentandasananthelmintic, in addition to theirantimicrobial, anti-inflammatory,and anti-hypertensive properties (Almeida, 1993; Correa et al., 2010). In addition tokava pyrones,dihydro-5,6-dehydrokavain (DDK), and 5,6-dehydrokavain (DK), rutin, kaempferol-3-O-rutinoside, kaempferol-3-O-glucuronide, (+)-catechin, and (−)-epicatechin, have been reported (Mpalatinos et al., 1998; Elzaawely et al., 2007;XuanandTeschke,2015;Kumagaietal.,2016).The phar-macologicalpropertiesattributedtoextractsofA.zerumbetleaves, flowers, seeds, and rhizome include diuretic and hypotensive effects(Laranjaetal.,1991;Mendonc¸aetal.,1991;Lahlouetal., 2003),antioxidant(Elzaawelyetal.,2007),vasodilatory(Pintoetal., 2009;Victórioetal.,2009),hypolipidemic(Linetal.,2008),and antidepressant-likeeffect(Bevilaquaetal.,2016).Further, antineo-plasticeffectsofAlpiniaofficinarumHence(Ghil,2013)andAlpinia

galanga(L.)Willd.(Samarghandianetal.,2014)rhizomeextracts

havebeendescribed.However,therearenoreportsregardingthe antiproliferativeactivityofA.zerumbetextractsandisolated sub-stances.

Inthiscontext,thepresentstudyaimedtoinvestigatethe chem-ical composition and the in vitro antiproliferative effects of A.

zerumbetleafextractsandtheirmajorconstituents.

Materialandmethods

Standardsandchemicals

Allsolventsand reagentswereofanalytical gradeandwater wasdistilledanddeionized.Thesolventsusedwereethylacetate, methylenechloride,ethanol,andhexane(Vetec®,RiodeJaneiro, Brazil).Nuclearmagneticresonance(NMR)experiments(1Hand 13C)wereperformedonaBrukerAvance400spectrometer(400

and100MHz,respectively)usingCDCl3assolvent.Chemicalshifts

of 1H and 13C NMR were expressed in ppm (ı)using TMS at

0.00ppm as aninternal standard, and couplingconstants(J)in Hz.Columnchromatographywasperformedonsilicagel(Merck, Darmstadt,Germany;230–400meshASTM),andanalytical thin layerchromatography(TLC)wasperformedusingsilicagelplates (Kieselgel60F254,Merck).Thespotswerevisualizedusing

ultra-violetlight(366nm)orbysprayingwith10%H2SO4inmethanol

followedbyheatingat110◦C(10min).

Plantmaterial

TheleavesofAlpiniazerumbet(Pers.)B.L.Burtt&R.M.Sm, Zin-giberaceae,werecollectedinChapecó(SC),Brazil(26◦5836.06′′S and52◦4427.18′′W).TheplantmaterialwasidentifiedbyOsmar

dosSantosRibas,theherbariumcuratoroftheMunicipalBotanical MuseumofCuritiba(PR),whereavoucherspecimenwasdeposited (MBM#306196).

PreparationofextractsofA.zerumbetandchemicalisolation

The leaves of A. zerumbet were dried at room temperature (25±5◦C), pounded in a knife mill (Ciemlab®, CE430),passed throughsieve(425␮m;35Tyler/Mesh),identified,andstored

pro-tectedfromlight.Theextractswereproducedbymaceration(5 days)atroomtemperatureusingdry-milledleavesofA.zerumbet

(100g)insolvent(1:20,w/v),first,withdichloromethaneand, sub-sequently,70%ethanol.AfterfiltrationthroughBüchnerfunnel,the dichloromethane (DEA)and hydroalcoholic(HEA)extractswere concentratedbyevaporationunderreducedpressure,lyophilized, weighed,andstoredinafreezerat−20◦C.

AsampleofDEAextract(4g)wasdissolvedinhexaneand sub-mittedtocolumnchromatographyusingastationaryphasesilica gel(Merck,Darmstadt,Germany)and eluted withhexane:ethyl acetate(EtOAc)(90:10,v/v)increasinginpolarityto90%EtOAc(v/v) toyieldfoursubfractions.ThesubfractionswereanalyzedbyTLC usinghexane:EtOAc(80:20,v/v)asthemobilephase,visualizedat 366nm,andrevealedwithH2SO4 (10%inmethanol)followedby

heatingat110◦C(10min).Subfraction2(0.032g)wasobservedasa spotbyTLCanalysisandwasidentifiedascompound1.Subfraction 3(0.316g)wasfurtherseparatedusingflashcolumn chromatogra-phywithdichloromethaneasaneluent,producingthreeadditional subfractions.Subfraction3.1(0.042g)wasidentifiedascompound 2.

TheHEAextract(50g)wasdilutedindistilledanddeionized water(500ml)andpartitionedwithEtOAc(fivetimes;500ml).The fractionEtOAc(5.2g)wasfractionatedusingcolumn chromatog-raphy (SephadexLH-20) withMeOH asan eluent.TLC analysis usingDCM:MeOH(90:10,v/v)asthemobilephasewasusedto identifyfivesubfractions.Subfraction4(0.053g)wasidentifiedas compound3.

FreshleavesofA.zerumbet(2kg)wereextractedbydecoctionin distilledwater(10l)for15min.Afterfiltration,theaqueousextract (AEA)wasreducedto1000mlbyevaporationunderreduced pres-surefollowedbyliquidpartitionwithchloroform(1000ml).The chloroformfraction(CFA)wasconcentratedbyevaporationunder reducedpressureandweighed(0.785g).Forrecrystallization,to CFA(0.785g),100mlofdistilledwaterwasaddedat100◦Candthe solutionfilteredthroughaglassfiltrationfunnel.Thefiltratewas immediatelyrefrigeratedat−8◦Cfor48h,afterwhich,the crys-talswerefilteredusingaBüchnerfunnelandstoredinthehood withanhydrousNa2SO4.Thecrystalsobtained(0.045g)were

ana-lyzedbyTLCusingCHCl3:EtOH(9:1,v/v)asaneluentandvisualized

at366nmorbysprayingwith10%H2SO4 inmethanolfollowed

byheatingat110◦C(10min)(Itokawaetal.,1981).Thecrystals isolatedusingthismethodwereidentifiedascompound4.

Antiproliferativeassay

(3)

RPMI-1640supplementedwith5%fetalbovineserum(RPMI/FBS 5%)withpenicillin:streptomycin mixture1000U/ml:1000␮g/ml

(1ml/l;RPMI-1640).

Stocksolutionsofthesamples(5mg)werepreparedinDMSO (50␮l)followedbysuccessivedilutionsinRPMI/FBS5%togivefinal

concentrationsof0.25,2.5,25,and 250␮g/ml.Doxorubicinwas

usedasapositivecontrolatfinalconcentrationsof0.25,2.5,25, and250␮g/ml.

Cells in 96-well plates (100␮l cells/well, cell densities:

3–7×104cells/ml)wereincubatedwitheachofthefour

concentra-tionsofsamplesolutionordoxorubicin(100␮l/well)intriplicate

(n=3),for48hat37◦Cand5%ofCO2.Before(T0plate)andafter(T1 plates)sampleaddition,cellswerefixedwith50%trichloroacetic acid(50␮l well) and stained with sulforhodamine B to

quan-titate cell proliferation using the reading at 540nm. The GI50

(concentrationthatproduces50%cellgrowthorcytostaticeffect) andtheTGI(concentrationthatresultedintotalcellulargrowth inhibition)valuesweredeterminedthroughnon-linearregression appliedtoasigmoidalcurveusingOrigin8.0software(OriginLab Corporation).

Results

ChemicalconstituentsofAlpiniazerumbet

The purification techniques employed allowedthe isolation of four compounds from the A. zerumbet leaf extracts (HEA, DEA, and AEA); thesecompounds were identified by compari-son of theirexperimental spectra (IR, NMR 1H, and 13C) with

thosepreviouslydescribed:DDK(1),DK(2)(Itokawaetal.,1981; Mpalatinosetal.,1998),3,4′,5,7-tetrahydroxyflavone(kaempferol; 3)(Markhametal.,1978),and 5-hydroxy-7-methoxy-2-phenyl-2,3-dihydrochromen-4-one(pinostrobin,PTB;4)(Smolarzetal., 2006;Ramirezetal.,2013).

Diidro-5,6-dehydrokavain(DDK;1):Itwasobtainedascolorless needles,meltingpoint96–98◦C;C14H14O3,IRnmax(cm−1;KBrdisk)

1725(pyronecarbonyl),1650,1530(C C),1238,1129(C O C), 1600,725, 600(benzenering)cm−1; ESI-MS:231.1[M+H]+; 1H

NMR(400MHz,CDCl3)ppm (ı):2.79(2H,t; J=8Hz, 7-H),2.96

(2H,t;J=8Hz,8-H),3.81(3H,s,MeO-),5.51(1H,d;J=2.2Hz,3-H), 5.92(1H,d;J=2.2Hz,5-H),7.19–7.34(5H,m,aromatic);13CNMR

(100MHz,CDCl3)ppm(ı):33.72(C-8),36.13(C-7),56.82(MeO-),

88.21(C-3),101.96(C-5),128.53(C-12),129.44(C-10),129.49 (C-14),129.52(C-11),129.55(C-13),141.23(C-9),166.26(C-6),167.81 (C-2),173.76(C-4).

5,6-Dehydrokavain(DK;2):Itwasobtainedasyellowneedles, melting point 136–138◦C; C14H12O3, IR nmax (cm−1; KBr disk)

1710(pyronecarbonyl),1620,1525(C C),1230,1125(C O C), 1650,700, 620(benzenering)cm−1; ESI-MS:229.1[M+H]+; 1H

NMR(400MHz,CDCl3)ppm(ı):3.87(3H,s,MeO-),5.62(1H,d;

J=2.2Hz,3-H),6.24(1H,d;J=2.2Hz,5-H),6.86(1H,d;J=16Hz, 7-H),7.43(1H,d;J=16Hz,8-H),7.36–7.59(5H,m,aromatic);13CNMR

(100MHz,CDCl3)ppm(ı):56.61(MeO-),89.50(C-3),102.73(C-5),

120,12(C-7),128.10(C-14),128,44(C-10),129,41(C-13),129.52 (C-11),130.23(C-12),136.31(C-9),136.74(C-8),160.55(C-2),166.63 (C-6),173.34(C-4).

3,4′,5,7-Tetrahydroxyflavone(kaempferol;3):Itwasobtained asyellowcrystallinepowder,meltingpoint276–278◦C;C15H10O6, IRnmax(cm−1;KBrdisk)3440(OH),1681(C O),1600(C C),1375

(C C),1335,1303,1267,1165(C O)746,748,705.ESI-MS:286.1 [M+H]+.1HNMR(400MHz,CDCl

3)ppm(ı):6.17(1H,d,J=2.1Hz,

6-H),6.37(1H,d,J=2.1Hz, 8-H),6.89(2H, d,J=9.0Hz,3′,5-H), 8.07(2H,d,J=9.0Hz,2′,6-H);13CNMR(100MHz,CDCl

3)ppm(ı):

99.30(C-6),94.56(C-8),104.67(C-10),116.35(C-3′),116.38 (C-5′),123.70(C-1),130.76(C-6),130.78(C-2),137.01(C-3),148.09

Table1

ValuesofGI50andTGI(␮g/ml)forAlpiniazerumbetleaveshydroalcoholic(HEA)and

dichloromethane(DEA)extractsagainstdifferentcelllines.

Celllines GI50(␮g/ml) TGI(␮g/ml)

HEA DEA HEA DEA

U-251 32.73 22.89 222.00 81.82

MCF-7 27.58 9.44 213.60 69.43

NCI/ADR-RES a 7.79 a a

786-0 202.53 24.51 a 52.80

NCI-H460 12.17 5.85 228.88 62.35

PC-3 226.33 23.05 a 78.34

OVCAR-3 18.39 2.05 a 69.17

HT-29 45.13 23.68 a 60.51

K-562 66.98 6.12 a 55.69

HaCat 0.93 4.44 133.31 74.34

Note:Human tumorcelllines: glioblastoma (U-251),breast (MCF-7), ovarian expressingtheresistancephenotype(NCI/ADR-RES),786-O(kidney),non-small cellslung(NCI-H460),prostate(PC-3),ovarian(OVCAR-3),colon(HT-29),leukemia (K-562);humanimmortalizedkeratinocyte(HaCat).GI50=50%growthinhibition;

TGI,totalinhibitionofgrowth.

aEffective concentration higher than the highest tested concentration

(250␮g/ml).

(C-2),158.35(C-9),160.67(C-4′),162.54(C-5),165.64(C-7),177.41 (C-4).

5-Hydroxy-7-methoxy-2-phenyl-2,3-dihydrochromen-4-one (pinostrobin(PTB);4):Itwasobtainedasyellowneedles,melting point 96–98◦C;C

16H14O4,IRnmax (cm−1; KBrdisk) 3432(OH),

1635(C O),1620(C C),1390(C C),1350,1311,1301,1245,1178 (C O)759, 749,700.ESI-MS:271.0[M+H]+;1HNMR(400MHz,

CDCl3)ppm(ı):2.72(1H,dd,J=16.6,3.2Hz,3-H),2.98(1H,dd,

J=16.6, 12.7Hz, 3-H), 3.82 (3H, s, 7-OMe), 5.24 (1H, dd, 12.7, 3.2Hz, 2-H), 6.05 (1H, d;J=2.2Hz, 6-H), 6.10 (1H, d;J=2.2Hz, 8-H),7.35–7.42(5H,m,aromatic);13CNMR(100MHz,CDCl

3)ppm

(ı):46.52(C-3),56.31(C-7-OMe),80.20(C-2),94.41(C-8),97.28 (C-6),106.20 (C-10), 127.33(C-5′), 127.39 (C-6), 129.51(C-3), 129.78(C-4′), 129,79 (C-2), 141.13(C-1), 164.48 (C-7),166.67 (C-5),167.28(C-9),191.88(C-4).

Antiproliferativeeffects

The HEA extract inhibited 50% of the growth of various human tumor cell lines (Fig. 1): immortalized keratinocytes (HaCat; GI50=0.93␮g/ml), lung (NCI-H460; GI50=12.17␮g/ml),

ovarian (OVCAR-3; GI50=18.39␮g/ml), and breast (MCF-7;

GI50=27.58␮g/ml); however,theHEA extract couldnot induce

totalgrowthinhibition(TGI>200.00␮g/ml)(Table1).Incontrast,

(4)

10–3 10–2 10–1 100 101 102 –100

–75 –50 –25 0 25 50 75 100

A

Ce

ll g

ro

w

th

(

%)

Concent

ration

(

µ

g/ml)

U251 MCF7 NCI/ADR-RES 786-0 NCI-H460 HT29 K-562 HaCaT PC-3 OVCAR-3

0.25 2.5 25 250

B

Concent

ration

(

µ

g/ml)

10–3 10–2 10–1 100 101 102

–100 –75 –50 –25 0 25 50 75 100

C

el

l g

ro

w

th

(

%)

U251 MCF7 NCI/ADR-RES 786-0 NCI-H460 HT29 K-562 HaCaT PC-3 OVCAR-3

0.25 2.5 25 250

Fig.1.InvitroantiproliferativeeffectsofAlpiniazerumbetleavesextracts.(A)Hydroalcoholicextract(HEA);(B)dichloromethaneextract(DEA);concentrationrange: 0.25–250␮g/ml;expositiontime:48h;humantumorcelllines:glioblastoma(U-251),breast(MCF-7),ovarianexpressingtheresistancephenotype(NCI/ADR-RES),786-O

(kidney),non-smallcellslung(NCI-H460),prostate(PC-3),ovarian(OVCAR-3),colon(HT-29),andleukemia(K-562);humanimmortalizedcellline:keratinocytes(HaCat).

ovarian(OVCAR-3;GI50=2.05␮g/ml)andlungtumorcells

(NCI-H460;GI50=5.85␮g/ml)inadditiontototalgrowthinhibitionof

allcelllinesatconcentrationsfrom52.80to81.82␮g/ml(Fig.1

andTable1).

Amongtheisolatedcompounds,DK(2)andPTB(4)were eval-uatedintheantiproliferativeassay(Fig.2).DK(2)showedamore potentantiproliferativeeffectthandidPTB(4)andshowed cyto-staticeffectsagainstalmostallthecelllinestestedwithaGI50from

0.25to5.03␮g/ml(Table2).Interestingly,PTB(4)wasmoreactive

againstthebreastcancercellline(MCF-7)withGI50<0.25␮g/ml

andtheleukemiacellline(K562;GI50=0.91␮g/ml)(Table2).

Discussion

ThefamilyZingiberaceaeisarichsourceofsubstanceshavinga therapeuticvalue,suchasflavonoids,whichhavebeendetectedin severalspecies(Iwashina,2000)andareconsideredphytochemical markersoftheorderZingiberales(Pugiallietal.,1993).Previous studiesonAlpiniarhizomeandseedhavereportedtheisolation of alpinetinfrom Alpiniaspeciosa (Krishna andChaganty,1973; Itokawaetal.,1981);pinocembrinandPTBfromAlpiniarafflesiana

(5)

10–3 10–2 10–1 100 101 102 –100

–75 –50 –25 0 25 50 75 100

Cell

grow

th

(

%

)

Conc

entration

(

µ

g/ml)

Conc

entration

(

µ

g/ml)

U251 MCF7 NCI/ADR-RES 786-0 NCI-H460 PC-3 HT29 K-562 HaCaT

0.25 2.5 25 250

A

10

–3

10

–2

10

–1

10

0

10

1

10

2

–10

0

–75

–50

–25

0

25

50

75

100

Ce

ll gr

ow

th

(%

)

U251 MCF7 NCI/ADR-RES 786-0 NCI-H460 HT29 K-562 HaCaT PC-3 OVCAR-3

0.25

2.5

25

250

B

Fig.2. Invitroantiproliferativeeffectsof5,6-dehydrokavain(A)andpinostrobin(B)isolatedfromAlpiniazerumbetleaves.A:5,6-dehydrokavain;B:pinostrobin;concentration range:0.25–250␮g/ml;expositiontime:48h;humantumorcelllines:glioblastoma(U-251),breast(MCF-7),ovarianexpressingtheresistancephenotype(NCI/ADR-RES),

786-O(kidney),non-smallcellslung(NCI-H460),prostate(PC-3),ovarian(OVCAR-3),colon(HT-29),andleukemia(K-562);humanimmortalizedcellline:keratinocytes (HaCat).

kaempferol-3-O-glucuronide,andkaempferol-3-O-rutinosidehave beenisolated fromA.zerumbetleaves(Mpalatinos etal., 1998; Victórioetal.,2009).

Inthisstudy,fourcompoundswereisolatedfromA.zerumbet

leaves,namelyDDK(1),DK(2),kaempferol(3),andPTB(4).DDK (1),andDK(2),whicharecommonconstituentsofthegenusAlpinia

(Pugiallietal.,1993;Iwashina,2000),havebeenidentifiedinthe rootsandleavesofA.zerumbet(Mpalatinosetal.,1998;Kusteretal., 1999;Chompooetal.,2011).However,thisisthefirstreportof kaempferol(3)andPTB(4)isolationfromA.zerumbetleavesand,

thus,contributestothechemotaxonomicinformationrelatedto

Alpiniaspecies.

According to the literature, alcoholic extracts from other

Alpinia species have shown antiproliferative effects against

MCF-7 cells. A methanolic extract of A. officinarum rhizomes (85␮g/ml) inhibited MCF-7 cell proliferation by inducing

pro-grammed celldeathand arrestingthecell cycleat theSphase (Ghil, 2013). Moreover, a 48h treatment with an ethanolic extract ofA. galanga (L.) Willd. rhizomesat 250␮g/ml reduced

(6)

Table2

ValuesofGI50andTGI(␮g/ml)for5,6-dehydrokavain(DK)andpinostrobin(PTB)

isolatedfromAlpiniazerumbetleavesagainstdifferentcelllines.

Celllines GI50(␮g/ml) TGI(␮g/ml)

DK PTB DK PTB

U-251 0.25 27.33 4.43 228.40

MCF-7 2.85 <0.25 17.28 17.67

NCI/ADR-RES 4.95 4.35 106.64 a

786-0 5.03 12.11 28.08 221.63

NCI-H460 2.04 27.41 25.96 a

PC-3 4.19 34.81 31.26 a

OVCAR-3 a 3.97 a

HT-29 24.77 89.70 79.03 a

K-562 2.81 0.91 9.79 235.62

HaCat 1.53 30.76 150.60 a

Note:Human tumorcelllines: glioblastoma (U-251),breast (MCF-7), ovarian expressingtheresistancephenotype(NCI/ADR-RES),786-O(kidney),non-small cellslung(NCI-H460),prostate(PC-3),ovarian(OVCAR-3),colon(HT-29),leukemia (K-562);humanimmortalizedkeratinocyte(HaCat).GI50,50%growthinhibition;

TGI,totalinhibitionofgrowth.

aEffective concentration higher than the highest tested concentration

(250␮g/ml).

phosphatidylserineresidueexposureandplasmamembrane per-meation(Samarghandianetal.,2014).

Here,basedontheantiproliferativeactivity,wedemonstrated that successive extraction with an increasingly polar solvent resultedin theconcentrationof bioactive compoundsfromthe DEAextractbutnotfromtheHEAextractofA.zerumbetleaves.A possiblereasonisthatthemorelipophilicchemicalconstituents present in extracts of lower polarity have greater affinity and greatereaseof permeationacrosscellularmembranes (Lee and Houghton,2005).UndertheconditionsdescribedbyFoucheetal. (2008),theHEAextractshowedaweakcytostaticeffectagainst lung (NCI-H460, GI50=12.17␮g/ml) and ovary tumor cell lines

(OVCAR-3,GI50=18.39␮g/ml).However,inourexperiments,the

HEA extractactivelyinhibitedtheproliferationof immortalized keratinocytes(HaCat,GI50=0.93␮g/ml),suggestingpossibletoxic

effectsonnon-tumortissues.Inaddition,theDEAextractshowed moderateantiproliferativeeffectsagainstleukemia(K-562),ovary (OVCAR-3andNCI-ADR/RES),lung(NCI-H460),andbreasttumor celllines(MCF-7)andagainstimmortalizedhumankeratinocytes (HaCat)(Table1).

Amongtheisolatedcompounds,DKandPTBwereevaluated againsttumor and non-tumorcell lines(Table2).Accordingto Fouche et al. (2008), compounds with TGI values<6.25␮g/ml

show potent antiproliferative activity. Thus, DK had a potent antiproliferativeeffectagainstglioblastomacells(U-251)withTGI value=4.43␮g/ml,whichwasabout33-foldhigherthanthatfor

theimmortalizedkeratinocytecellline(HaCat;TGI=150.60),and withtwicethepotencyofdoxorubicinusedasapositivecontrol, indicatingpossibleselectivity.ThemainmetabolicpathwayofDK inratsandhumansisthehydroxylationoftheC-12inthearomatic ringtoproducep-hydroxy-5,6-dehydrokavain.Thismetabolitewas detectedinbloodandurineinthefirstfewhoursafterabsorption, producingbydesmethylationofthe4-methoxygroupofthe lac-toneringthecompoundo-desmethyl-hydroxy-5,6-dehydrokavain. Inrats,approximately50–75%ofadministeredkavalactonesare excretedintheurine, mostly asglucuronideand sulphate con-jugates.Approximately15%is excretedin thebile(Roweetal., 2011).

WithregardtotheGI50results,PTBshowedapotentcytostatic

effect(GI50<0.25␮g/ml)againstbreast carcinomacells(MCF-7)

anda219-foldselectivitywhencomparedtothatforimmortalized keratinocytes(HaCat,GI50=30.76␮g/ml).Accordingtothe

litera-ture,PTBdemonstratedastrongantitumoractivityinmammary carcinomacells,whichwaspartiallyexplainedbytopoisomerase

Iinhibition (Sukardimanet al.,2000).Thisenzymeis responsi-ble for DNAstrandbreak repair, allowingthebroken strandto rotateontheintactoneandreducingthetorsionaltensionofthe molecule(Brandãoetal.,2010)duringtheprocess.The antiprolif-erativeeffectofPTBonmammarytumorscouldalsobeattributed toananti-aromataseeffectratherthanantiestrogenicactivity,as demonstratedbyLeBailetal.(2000).Becausearomataseis respon-siblefortheconversionoftestosteronetoestrogen,inhibitionofthe enzymecouldreduceestrogenlevels,andthereforetheprobability ofhormone-relatedcancer(LeBailetal.,2000).

In addition, PTB presented a potent cytostatic effect on the leukemiacellline(K-562,GI50=0.91␮g/ml)(Table2),whichisin

agreementwiththeresultsdescribedbySmolarzetal.(2006).PTB alsoinhibitedendothelialcellproliferation,probablybypromoting membrane celldepolarization,suggestinga potential antiangio-genic effect (Siekmann et al., 2013). Due to its lipolyphilicity (LogP=3.1),PTBinratsshowedhighabsorptionwithamaximum concentrationtime of about2h. A largevolumeof distribution has been observed, and the metabolism appears to be essen-tiallyhepatic.Basedonclearancevaluesthiscompoundismainly excretedvianon-renal,withserumhalf-lifeofapproximately7h (Sayreetal.,2012,2015).

Cancerchemotherapycanoftenprolonglife,andprovide tem-poraryrelieffromsymptomsandoccasionallycompleteremission. Asuccessfulanticancermoleculeshouldkillorincapacitatecancer cellswhilehavingreducedtoxicitytowardnormaltissues(Sharma etal.,2016).Inthisstudy,DKandPTBshowedhighselectivityand potentantiproliferativeorcytostaticeffectsagainstglioblastoma andbreastcancercelllines,implicatingapotentialrolein inhibi-tingcancerprogression.Theseresultsaddtotheliteratureshowing thatanumberofherbalcompoundsarecytostaticandinducecell cyclearrest,therebyshowinganimportantmechanismusefulfor developmentofnewantineoplasticdrugs(Sharmaetal.,2014).

Conclusions

DKandPTBisolatedfromtheleavesofA.zerumbethad antipro-liferativeeffectsinvitrowithhighpotencyandselectivityagainst glioblastoma(U-251)andbreastcarcinoma(MCF-7)tumorlines and are potential candidates for development of antineoplasic drugs.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent.Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authorscontribution

WARJ,DBG,BZ,APS,andKAPDcontributedinallstepsofthis study.TPB,ALTGR,andJECcontributedtoantiproliferativestudies. AN,andABcontributedtochemicalanalyses.CAMScontributedto designofthestudy.Alltheauthorshavereadthefinalmanuscript andapprovedthesubmission.

Conflictsofinterest

(7)

Acknowledgments

ThisworkwassupportedbytheUnochapecó[modalityArt.170 and171–FUMDES].

References

Almeida,E.R.,1993.Plantasmedicinaisbrasileiras:conhecimentospopularese cien-tíficos.Hemus,SãoPaulo.

Almeida,V.L.,Leitão,A.,Reina,L.C.B.,Montanari,C.A.,Donnici,C.L.,Lopes,M.T.P., 2005.Câncereagentesantineoplásicosciclo-celularespecíficoseciclo-celular nãoespecíficosqueinteragemcomoDNA:umaintroduc¸ão.Quim.Nova28, 118–129.

Apaya,M.K.,Chang,M.T.,Shyur,L.F.,2016.Phytomedicinepolypharmacology: can-certherapythroughmodulatingthetumormicroenvironmentandoxylipin dynamics.Pharmacol.Ther.162,58–68.

Bevilaqua,F.,Mocelin, R.,Grimm Junior,C.,daSilvaJunior,N.S.,Buzetto,T.L., Conterato,G.M.,RomanJunior,W.A.,Piato,A.L.,2016.Involvementofthe cate-cholaminergicsystemontheantidepressant-likeeffectsofAlpiniazerumbetin mice.Pharm.Biol.54,151–156.

Brandão,N.H.,David,J.P.,Couto,R.D.,Nascimento,J.A.P.,David,J.M.,2010.Química efarmacologiadequimioterápicosantineoplásicosderivadosdeplantas.Quim. Nova33,1359–1369.

Chompoo,J.,Upadhyay,A.,Kishimoto,W.,Makise,T.,Tawata,S.,2011.Advanced glycationendproductsinhibitorsfromAlpiniazerumbetrhizomes.FoodChem. 12,709–715.

Correa,A.J.C.,Lima,C.E.,Costa,M.C.C.D.,2010.Alpiniazerumbet(Pers.)B.L.Burtt& R.M.Sm(Zingiberaceae):levantamentodepublicac¸õesnasáreasfarmacológica equímicaparaoperíodode1987a2008.Rev.Bras.Pl.Med.12,113–119. Costa-Lotufo,L.V.,Montenegro,R.C., Alves,A.P.N.N.,Madeira,S.V.F.,Pessoa,C.,

Moraes,M.E.A.,Moraes,M.O.,2010.Contribuic¸ãodosprodutosnaturaiscomo fontedenovosfármacosanticâncer:estudosnoLaboratórioNacionalde Oncolo-giaExperimentaldaUniversidadeFederaldoCeará.Rev.Virtual.Quim.2,47–58. Elkady,A.I.,Hussein,R.A.,El-Assouli,S.M.,2016.Harmalextractinducesapoptosis ofHCT116humancoloncancercells,mediatedbyinhibitionofnuclear factor-(Bandactivatorprotein-1signalingpathwaysandinductionofcytoprotective genes.AsianPac.J.CancerPrev.17,1947–1959.

Elzaawely,A.A.,Xuan,T.D.,Koyama,H.,Tawata,S.,2007.Antioxidantactivityand contentsofessentialoilandphenoliccompoundsinflowersandseedsofAlpinia zerumbet(Pers.)B.L.Burtt&R.M.Sm.FoodChem.104,1648–1653.

Fouche,G.,Cragg,G.M.,Pillay,P.,Kolesnikova,N.,Maharaj,V.J.,Senabe,J.,2008. InvitroanticancerscreeningofSouthAfricanplants.J.Ethnopharmacol.119, 455–461.

García-Lafuente,A.,Guillamón,E.,Villares,A.,Rostagno,M.A.,Martínez,J.A.,2009. Flavonoidsasanti-inflammatoryagents:implicationsincancerand cardiovas-culardisease.Inflamm.Res.58,537–552.

George,V.C.,Dellaire,G.,Rupasinghe,H.P.V.,2017.Plantflavonoidsincancer chemo-prevention:roleingenomestability.J.Nutr.Biochem.45,1–14.

Ghil,S.,2013.AntiproliferativeactivityofAlpiniaofficinarumextractinthehuman breastcancercelllineMCF-7.Mol.Med.Rep.7,1288–1292.

Harvey,A.L.,Edrada-Ebel,R.A.,Quinn,R.J.,2015.There-emergenceofnatural prod-uctsfordrugdiscoveryinthegenomicsera.Nat.Rev.DrugDiscov.14,111–129. Hema,P.S.,Nair,M.S.,2009.Flavonoidsandotherconstituentsfromtherhizomesof

Alpiniacalcarata.Biochem.Syst.Ecol.37,52–54.

Itokawa,H.,Morita,M.,Mihashi,S.,1981.Phenoliccompoudsfromtherhizomesof Alpiniaspeciosa.Phytochemistry20,2503–2506.

Iwashina,T.,2000.Thestructureanddistributionoftheflavonoidsinplants.J.Plant Res.113,287–299.

Krishna,B.M.,Chaganty,R.B.,1973.Cardamoninandalpinetinfromtheseedsof Alpiniaspeciosa.Phytochemistry12,238–242.

Kristo,A.S.,Klimis-Zacas,D.,Sikalidis,A.K.,2016.Protectiveroleofdietaryberries incancer.Antioxidants5,37.

Kumagai,M.,Mishima,T.,Watanabe,A.,Harada,T.,Yoshida,I.,Fujita,K.,Watai,M., Tawata,S.,Nishikawa,K.,Morimoto,Y.,2016.5,6-DehydrokawainfromAlpinia zerumbetpromotesosteoblasticMC3T3-E1celldifferentiationIrecommenda shortmorphologicaldescriptionofA.zerumbet.Biosci.Biotechnol.Biochem.7, 1425–1432.

Kuster,R.M.,Mpalantinos,M.A.,Holanda,M.C.,Lima,P.,Brand,E.T.,Parente,J.P., 1999.Determinationofkava-pyronesinAlpiniazerumbetleaves.J.HighResolut. Chromatogr.22,129–130.

Lahlou,S.,Interaminense,L.F.,Leal-Cardoso,J.H.,Duarte,G.P.,2003. Antihyperten-siveeffectsoftheessentialoilofAlpiniazerumbetanditsmainconstituent, terpinen-4-ol,inDOCA-salthypertensiveconsciousrats.Fundam.Clin. Pharma-col.17,323–330.

Laranja,S.M.R.,Bergamaschi,C.M.,Schor,N.,1991.Evaluationofacute administra-tionofnaturalproductswithpotentialdiureticeffects,inhumans.Mem.Inst. OswaldoCruz86,237–240.

LeBail,J.C.,Aubourg,L.,Habrioux,G.,2000.Effectsofpinostrobinonestrogen metabolismandestrogenreceptortransactivation.CancerLett.156,37–44.

Lee,C.C.,Houghton,P.,2005.CytotoxicityofplantsfromMalaysiaandThailandused traditionallytotreatcancer.J.Ethnopharmacol.100,237–243.

Lin,L.Y.,Peng,C.C.,Liang,Y.J.,Yeh,W.T.,Wang,H.E.,Yu,T.H.,Peng,R.Y.,2008.Alpinia zerumbetpotentiallyelevateshigh-densitylipoproteincholesterollevelin ham-sters.J.Agric.FoodChem.56,4435–4443.

Lorenzi,H.,Matos,F.J.A.,2002.PlantasmedicinaisnoBrasil:nativaseexóticas. Insti-tutoPlantarum,NovaOdessa.

Lorenzi,H.,Souza,H.A.M.,2008.PlantasornamentaisnoBrasil:arbustivas,herbáceas etrepadeiras,4ed.InstitutoPlantarum,NovaOdessa.

Markham,K.R.,Ternai,B.,Stanley,R.,Geiger,H.,Mabry,T.J.,1978.Carbon-13NMR studiesofflavonoids.III.Naturallyoccurringflavonoidglycosidesandtheir acyl-atedderivatives.Tetrahedron34,1389–1397.

McGuire,S.,2016.WorldCancerReport2014.Geneva,Switzerland:WorldHealth Organization,InternationalAgencyforResearchonCancer,WHOPress,2015. Adv.Nutr.7,418–419.

Mendonc¸a,V.L.M.,Oliveira,C.L.A.,Craveiro,A.A.,Rao,V.S.,Fonteles,M.C.,1991. Phar-macologicalandtoxicologicalevaluationofAlpiniaspeciosa.Mem.Inst.Oswaldo Cruz86,93–97.

Mohamad,H.,Abas,F.,Permana,D.,Lajis,N.H.,Alib,A.M.,Sukaric,M.A.,Hinc,T.Y.Y., Kikuzakid,H.,Nakatanid,N.,2004.DPPHfreeradicalscavengercomponents fromthefruitsofAlpiniarafflesianaWall.ex.Bak.(Zingiberaceae).Z.Naturforsch. 59,11–12.

Monks,A.,Scudiero,D.,Skehan,P.,Shoemaker,R.,Paull,K.,Vistica,D.,Hose,C., Langley,J.,Cronise,P.,Vaigro-Wolff,A.,Gray-Goodrich,M.,Campbell,H.,Mayo, J.,Boyd,M.,1991.Feasibilityofahigh-fluxanticancerdrugscreenusingadiverse panelofculturedhumantumorcelllines.J.Natl.CancerInst.83,757–766. Mpalatinos,M.,Moura,R.S.,Parente,J.P.,Kuster,R.M.,1998.Biologicallyactive

flavonoidsandkavapyronesfromtheaqueousextractofAlpiniazerumbet. Phy-tother.Res.12,442–444.

Newman,D.J.,Cragg,G.M.,2016.Naturalproductsassourcesofnewdrugsoverthe period1981–2014.J.Nat.Prod.79,629–661.

Pinto,N.V.,Assreuy,A.M.,Coelho-de-Souza,A.N.,Ceccatto,V.M.,Magalhães,P.J., Lahlou,S.,Leal-Cardoso,J.H.,2009.Endothelium-dependentvasorelaxanteffects oftheessentialoilfromaerialpartsofAlpiniazerumbetanditsmainconstituent 1,8-cineoleinrats.Phytomedicine16,1151–1155.

Prakash,O.,Kumar,A.,Pawan,K.,2013.Anticancerpotentialofplantsandnatural products:areview.Am.J.Pharmacol.Sci.1,104–115.

Pugialli,H.R.L.,Kaplan,M.A.C.,Gottlieb,O.R.,1993.Chemotaxonomyofsuperorder Zingiberiflorae(sensuDahlgren)I.Flavonoids.ActaBot.Bras.7,135–148. Ramirez,J.,Cartuche,L.,Morocho,V.,Aguilar,S.,Malagon,O.,2013.Antifungal

activ-ityofrawextractandflavanonsisolatedfromPiperecuadorensefromEcuador. Rev.Bras.Farmacogn.23,370–373.

Rowe,A.,Zhang,L.Y.,Ramzan,I.,2011.Toxicokineticsofkava.Adv.Pharmacol.Sci. 1,1–6.

Saboo,S.S.,Chavan,R.W.,Tapadiya,G.G.,Khadabadi,S.S.,2014.Anorganized assess-mentofspeciesofplantsofAlpiniagenera,belongingtofamilyZingiberaceae. Am.J.Ethnomed.2,102–108.

Samarghandian,S.,Hadjzadeh,M.A.,Afshari,J.T.,Hosseini,M.,2014. Antiprolifera-tiveactivityandinductionofapoptoticbyethanolicextractofAlpiniagalanga rhizhomeinhumanbreastcarcinomacellline.BMCComplement.Altern.Med. 14,1–9.

Sayre,C.L.,Zhang,Y.,Stephanie,E.,Martinez,S.E.,Takemoto,J.K.,Davies,N.M.,2012. Stereospecificanalyticalmethoddevelopmentandpreliminaryinvivo pharma-cokineticcharacterizationofpinostrobinintherat.Biomed.Chromatogr.27, 548–550.

Sayre,C.L.,Alrushaid,S.,Martinez,S.E.,Anderson,H.D.,Davies,N.M.,2015. Pre-clinicalpharmacokineticandpharmacodynamiccharacterizationofselected chiralflavonoids:pinocembrinandpinostrobin.J.Pharm.Pharm.Sci.4,368–395. Sharma,A.K.,Kumar,S.,Chashoo,G.,Saxena,A.K.,Pandey,A.K.,2014.Cellcycle inhibitoryactivityofPiperlongumagainstA549celllineanditsprotectiveeffect againstmetal-inducedtoxicityinrats.IndianJ.Biochem.Biophys.51,358–364. Sharma,U.K.,Sharma,A.K.,Pandey,A.K.,2016.Medicinalattributesofmajor

phenyl-propanoidspresentincinnamon.BMCComplement.Altern.Med.16,156. Siegel,R.L.,Miller,K.D.,Jemal,A.,2016.Cancerstatistics.CACancerJ.Clin.66,7–30. Siekmann,T.R.,Burgazli, K.M.,Bobrich,M.A., Nöll, G.,Erdogan, A.,2013. The antiproliferativeeffectofpinostrobinonhumanumbilicalveinendothelialcells (HUVEC).Eur.Rev.Med.Pharmacol.Sci.17,668–672.

Smolarz,H.D.,Mendykb,E.,Bogucka-Kockaa,A.,Kocki,J.,2006.Pinostrobin–an anti-leukemicflavonoidfromPolygonumlapathifoliumL.ssp.nodosum(Pers.) Dans.Z.Naturforsch.61,64–68.

Sukardiman,H.,Darwanto,A.,Tanjun,M.,Darmadi,M.O.,2000.Cytotoxic mecha-nismofflavonoidfromTemuKunci(Kaempferiapandurata)incellcultureof humanmammarycarcinoma.Clin.Hemorheol.Microcirc.23,185–190. Topcul,M.,Cetin,I.,2014.Endpointofcancertreatment:targetedtherapies.Asian

Pac.J.CancerPrev.15,4395–4403.

Victório,C.P.,Kuster,R.M.,Moura,R.S.,Lagel,C.L.S.,2009.Vasodilatoractivityof extractsoffieldAlpiniapurpurata(Vieill)K.SchumandA.zerumbet(Pers.)Burtt etSmithculturedinvitro.Braz.J.Pharm.Sci.45,507–514.

Imagem

Fig. 1. In vitro antiproliferative effects of Alpinia zerumbet leaves extracts. (A) Hydroalcoholic extract (HEA); (B) dichloromethane extract (DEA); concentration range:
Fig. 2. In vitro antiproliferative effects of 5,6-dehydrokavain (A) and pinostrobin (B) isolated from Alpinia zerumbet leaves

Referências

Documentos relacionados

A literacia financeira é um tópico que tem ganho acuidade no passado recente, principalmente após a crise financeira global. O presente trabalho move-se entre dois objectivos

the redox centre does not a ff ect the overall activity and selec- tivity of the lapachone imine derivatives and it was described as an alternative in the search for new

cascavella for its cytotoxic activity against tumor cell lines and normal cells, as well as, its related mechanism of cell death induction.. MATERIAL

The compounds 3a-f were tested against three human cell lines where only of compounds 3c , 3e and 3f exhibited moderate antiproliferative activity against HL-60 cancer cell lines

We herein report the antitumor activity of several substituted ␣ - and ␤ -dihydrofuran naphthoquinones against 4 human tumor cell lines, HL-60 (leukemia), SF-295 (CNS), HCT-8

Reflexão permanente do educador sobre sua realidade, e acompanhamento, passo a passo, do educando, na sua trajetória de construção do conhecimento (HOFFMANN, 1998,

Furthermore, the samples were screened, using in vitro assays, against different human tumor cell lines, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer),

The desired antibody was produced using the hybridoma technology and tested against to tumor cell lines: a breast cancer cell line (MDA-MB-231) and an osteosar- coma cell