• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número6"

Copied!
8
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Campomanesia

velutina

leaves

extracts

exert

hypouricemic

effects

through

inhibition

of

xanthine

oxidase

and

ameliorate

inflammatory

response

triggered

by

MSU

crystals

Marcela

C.P.M.

Araújo

a

,

Zilma

S.

Ferraz-Filha

a,b

,

Fernanda

C.

Ferrari

a

,

Dênia

A.

Saúde-Guimarães

a,∗ aLaboratóriodePlantasMedicinais,EscoladeFarmácia,UniversidadeFederaldeOuroPreto,OuroPreto,MG,Brazil

bDepartamentodeQuímica,InstitutoFederaldeMinasGerais,CampusOuroPreto,OuroPreto,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16February2016 Accepted11May2016 Availableonline25July2016

Keywords:

Campomanesiavelutina

Gout Hyperuricemia Inflammation Myricitrin Xanthineoxidase

a

b

s

t

r

a

c

t

Goutisadestructivearthritiswithahighprevalenceworldwide.However,theavailabletherapyisnot

abletoincreaselifequalityinmanypatients.Campomanesiavelutina(Cambess)O.Berg,Myrtaceae,is

usedinBrazilianfolkmedicinetotreatpain,inflammationandrheumatism.Theaimofthisstudywasto

evaluatethepotentialofethanolicandaqueousextractsfromC.velutinaleavestotreathyperuricemia

andinflammationingoutarthritismodel.Ethanolicextractofleavesandaqueousextractofleaveswere

invitroassayedonxanthineoxidaseinhibitoryeffectandinvivoonanexperimentalmodelof

oxonate-inducedhyperuricemiainmice,liverxanthineoxidaseinhibitionandmonosodiumuratecrystal-induced

pawedemamodel.Theextractsatbothtesteddoses(100and300mg/kg)reducedserumuratelevels.

Theywerealsoabletoinhibitxanthineoxidaseinvitroandinvivo,demonstratingthatthismightbethe

mechanismofactionunderlyingtheurate-loweringeffects.Inaddition,theextractsshowedsignificant

anti-inflammatoryactivityonmonosodiumuratecrystal-inducedpawedema,especiallyaqueousextract

(100and300mg/kg)thatreducededemaatallevaluatedtimes.Rutinandmyricitrinwereidentifiedin

ethanolicandinaqueousextracts.Inthisstudy,myricitrinwasabletoreduceserumuricacidlevelsand

inhibitliverxanthineoxidaseatthedoseof15mg/kg.Theanti-hyperuricemicactivityofrutinhasbeen

previouslyreported.Thus,rutinandmyricitrinseemtocontributetotheobservedeffectsofethanolic

andaqueousextracts.Theresultsdemonstratedtheabilityofaqueousandethanolicextractstolower

serumuratelevelsandtoreduceedemainducedbymonosodiumuratecrystals.Therefore,theymay

contributetothemanagementofgoutinthefuture.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen

accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Goutisaninflammatorydisorderthatariseswhen supersatu-rationofbodytissueswithurateoccurs,leadingtotheformation anddepositionofmonosodiumurate(MSU)crystalsinarticular andperiarticulartissues(RoddyandChoi,2014).Theprevalence of both hyperuricemia and gout has risen in the last decades andthereforetheburdenofgouthasincreased(Perez-Ruizetal., 2015).Clinicalmanifestationsofthisdiseaseincludeacutegouty arthritisflarescharacterizedbyseverepain,swelling,warmthand erythema.Ifhyperuricemiapersists,MSUcrystaldepositsfurther inducechronicinflammatoryresponsesthatmayleadtothe for-mationoftophaceousMSUcrystaldepositsinjointsandotherbody

∗ Correspondingauthor.

E-mail:saude@ef.ufop.br(D.A.Saúde-Guimarães).

tissues,chronicjointdamage,renalstoneformationwithpotential renalinsufficiencyandcardiovascularproblems(Perez-Ruizetal., 2015;RoddyandChoi,2014).

Thetherapiesfortreatinggout’spainandinflammationinclude nonsteroidal anti-inflammatories (NSAID), colchicine and oral corticosteroids (Edwards and So, 2014). However, MSU crystal depositsmustbeconsideredthemostimportanttargetforgout management.ByloweringMSUlevelsbelow6mg/dl,dissolution ofpathogenicMSUcrystalsisachievedanddisappearanceof clin-icalfeaturesofgoutcanbeobtained(Perez-Ruizetal.,2015).The urate-loweringtherapiesarebasedontheuseofallopurinoland probenecidsincede1960s.Recentstudieshaveshowedhow inad-equateisthetraditionalapproachtothisdestructivearthritis.After all,patientsdonotexperienceasignificantreductionofpainand intolerancetoallopurinolandprobenecidmeansthatthepatient wouldgountreated.Theseproblemshaveledtotherecognition that gout’s treatmentrequires better and more specific agents (EdwardsandSo,2014).

http://dx.doi.org/10.1016/j.bjp.2016.05.016

(2)

Plantshavebeenusedforcenturiestotreatnumerous patholog-icalconditionsanddiseasesandevennowadays,theystillprovide arichsourcefornewdrugdiscoveriesduetoatremendous chem-icaldiversity of compounds.Campomanesia species areused in Brazilianfolkmedicinetotreatawiderangeofclinicalconditions, includingtheirusetotreatrheumatism(Aliceetal.,1995;Cravo, 1994).Thetermrheumatismincludesawiderangeofdisorders markedby inflammation,degenerationand pain,affecting con-nectivetissuesstructures,speciallyjointsandrelatedstructures (Dorland’s MedicalDictionary, 2007).ThespecieCampomanesia velutina(Cambess)O.Berg,Myrtaceae,canbefoundintheBrazilian cerradobiomaandtherearereportsaboutitsusebythe popula-tionofitsoccurrencearea(DiasandLaureano,2009;Giraldiand Hanazaki,2010;Oliveiraetal.,2010).Previousstudieswiththis specieassesseditsanti-inflammatoryandantinociceptiveactivities invivoandleadtotheisolationoftheactiveconstituentmyricitrin fromtheethanolicextractofleaves(Micheletal.,2013).

Since Campomanesia species are used to treat rheumatism and previous studies demonstrated the anti-edematogenic and antinociceptiveactivityofthespecie,thisstudywasconductedin ordertoevaluatetheroleofC.velutinaingout,aknownand preva-lentrheumaticdisease.Thus,theaimofthisstudyistoevaluatethe biologicaleffectsofaqueousandethanolicextractsfromC.velutina leavesoverthehyperuricemiaandinflammationtriggeredbyMSU crystals.Theabilityofextractstoinhibitxanthineoxidase(XO)was alsoevaluatedbothinvitroandinvivo.Inaddition,itwas evalu-atedmyricitrinabilitytoinhibitXOandthusreduceuricacidlevels invivo.

Materialsandmethods

Chemicals

Xanthineoxidasefromcow’smilk,xanthine,potassiumoxonate, uric acid, allopurinol and indomethacin were purchased from Sigma–Aldrich(USA).Uricacidassaykitwaspurchasedfrom Bio-clin(Brazil).Ketamineand xylazinewereobtainedfromSespro IndustriaeComercioLtda(Brazil).Waterwaspurifiedusing Milli-Qapparatus fromMillipore(USA). Ethanol,dimethylsulphoxide (DMSO)andTween80wereofanalyticalgrade.HPLCsolventswere purchasedfromTedia(Brazil)andstandardswerepurchasedfrom Sigma–Aldrich(USA).

Plantmaterial

LeavesfromCampomanesiavelutina(Cambess.)O.Berg, Myr-taceae,werecollectedinLagoaSantacity,MinasGeraisstate,Brazil, inDecemberof2012,withpermissionofChicoMendesInstituteof BiodiversityConservation(InstitutoChicoMendesdeConservac¸ão daBiodiversidade–ICMBio/SistemadeAutorizac¸ãoeInformac¸ão emBiodiversidade–SISBIO),licenseno.17021-5.Theplant botan-icalidentificationwasrealizedbyDr.MarcosE.GuerraSobralfrom theDepartmentofNaturalSciences,FederalUniversityofSãoJoão Del-Rei(UniversidadeFederaldeSãoJoãoDel-Rei (UFSJ),Minas Gerais,Brazil.Avoucherspecimen(HUFSJ4637)wasdepositedat theherbariumofUFSJ.

Preparationofplantextracts

The leaveswere air-driedand powdered. Part of the leaves powder(540g)wasexhaustivelyextractedwithethanolatroom temperaturebypercolation.Solventwasremovedunderreduced pressure,at40◦C, yielding41gofthedriedethanolicextractof

leaves(EEL).Inordertoobtaintheaqueousextracts,450gofleaves powderwaspercolatedwith4.5lofwater.Thewaterwasremoved

bylyophilization, yielding19goftheaqueousextractof leaves (AEL).

CharacterizationoftheextractsbyHPLC-UV/DAD

HPLC-UV/DAD analysis were performed on a Waters Liquid Chromatography(modelAlliance2695)equippedwithavacuum degasser,aquaternarypump,anautosampler,adiodearray detec-tor(DADWaters2996)andreversedphaseC18column(Shimadzu ODS–250mm×4.6mm,5␮m).

Toassigncompoundstothepeaks,itwasusedtheretention timeandUVmaxofstandardselutedonthesameconditionsasthe

extracts.Thefollowingstandardswereused:oleanolicacid, chloro-genicacid,caffeicacid,galocatequin,quercetin,pinocembrin,rutin, kaempferol,crisinandmyricitrin.ToobtaintheHPLCprofiles,the UV-DADdetectorwassettorecordbetween200and400nmand UVchromatogramswererecordedat254nm.

Theextractsandthestandardsweresolubilizedinmethanolto yieldaconcentrationof5mg/mland1mg/ml,respectively.Then, theywerefilteredthrough a0.45␮mMillexsyringefilters.The volumeinjectedwas25␮l.EELwaselutedinasystemwith5% of methanoland 95% of water, taking60mintoreach100% of methanolandanother5mintoreturntotheinitialcondition.The flowratewaskeptconstantat1ml/min.AELwaselutedina sys-temwith100%ofwater,taking30mintoreach20%ofmethanol, another10mintoreach40%ofmethanoland15mintoreach100% ofmethanol.Thesystemwasreturnedtotheinitialconditionin 5min.Theflowratewaskeptconstantat0.8ml/min.Inbothcases, theseparationtemperaturewas25◦C.

InhibitionofXOactivityinvitro

Toevaluatetheeffectoftheextractsover XOactivity,itwas used the method described by Ferraz-Filha et al. (2006) with modifications.TheEELwasdissolvedin DMSO:Tween80:Water (1:1:8)and theAEL wasdissolvedin water. Theassay mixture consistedof500␮lofextractsolution,1125␮lof1/15Mphosphate buffer (pH 7.5) and 187.5␮l of enzyme solution (0.28units/ml inbuffer). Thereactionwasinitiated byadding1375␮lof xan-thinesubstrate solution(0.15mM in water).Theassay mixture wasincubatedat 25◦C and theabsorbance (295nm)was

mea-suredspectrophotometricallyeveryminutefor12minusingaCary 50BioSpectrophotometer(Varian–Australia).Ablank(0%ofXO inhibition)waspreparedwithouttheextractssolutions. Allopu-rinol wasusedasa positive control.XOinhibitory activitywas expressedasthepercentageofXOinhibitionintheassaymixture systemandcalculatedas:%inhibition=(1−testinclination/blank inclination)×100,where testinclinationisthelinearchangein absorbanceoftestmaterialperminuteandblankinclinationisthe linearchangeinabsorbanceofblankperminute.TocalculateIC50,

finalconcentrationsofextractswere10,20,30,40and50␮g/ml andfinalconcentrationsofallopurinolwere0.1,0.25,0.5,0.75and 1␮g/ml.Allassayswereperformedintriplicate.

Animals

(3)

Preparationofdrugsandtestsolutions

Allopurinol,indomethacin,myricitrin,Campomanesiavelutina extractsandpotassiumoxonatewerepreparedaccordingtothe averageweight ofeach experimentalgroup.Potassiumoxonate (250mg/kg) and MSU crystals (80mg/ml) were suspended in 0.9%sterilesaline.Allopurinol(10mg/kg),indomethacin(3mg/kg) andEEL (100and 300mg/kg)weresolubilized inDMSO:Tween 80:water(1:1:8).AEL(100and300mg/kg)wassolubilizedinwater andmyricitrin(15mg/kg)wassolubilizedinDMSO:water(5:95). Allsolutionsandsuspensionswerepreparedonthedayoftheir use.

Anti-hyperuricemiceffectsandinhibitionofliverXOresidual activityinoxonate-inducedhyperuricemicmice

Theanti-hyperuricemicactivityofmyricitrin,AELandEELwas evaluatedusinganexperimentalanimalmodelofhyperuricemia inducedbypotassiumoxonate,anuricaseinhibitor,aspreviously describedbyHalletal.(1990)andmodifiedbyothers(deSouza etal.,2012;Lemosetal.,2015).Animalsweredividedinto exper-imentalgroups(n=6)andfasted1hbeforedrugadministration. Potassiumoxonatewasadministratedintraperitoneallytoanimals inthefirstandthirddayoftheexperiment1hbeforeoral admin-istrationoftestsolutions.Miceofnormalcontrolgroupwerenot treatedwithpotassiumoxonate.Alltreatmentswereorally admin-isteredbygavageonceadayforthreeconsecutivedays.Miceof normalcontroland hyperuricemiccontrol groupsreceivedonly vehicle(DMSO:Tween80:wateror DMSO:Water).Animalsfrom treatedcontrolgroupreceivedallopurinol.Animalsofremaining groupsweretreatedwithmyricitrin,EELandAEL.Onthethirdday, 1hafterthelastoraltestadministration,micewereanesthetized withamixtureofketamineandxylasine(100and20mg/kg, respec-tively)andthebloodwascollectedthroughcardiacpuncture.The bloodwasallowedtoclotforapproximately45minatroom tem-peratureandthencentrifugedat3500×gfor10min.Serawere separatedandstoredat−20◦Cuntilassayforuricacid

quantifica-tion.Theliverwasremoved,washedin0.9%salineandstoredat −80◦C.

Uricacidassay

Serum uric acid concentration was spectrophotometrically (VarianCary50BioSpectrophotometer,Australia)determinedby enzymaticcolorimetricmethod(UOD-PAP)usingastandard diag-nostickit(Bioclin,Brazil)accordingtomanufacturer’sinstructions. Thistestisbasedonuricacidoxidationbyuricaseproducing allan-toinandhydrogenperoxidewhichisusedbyperoxidasetoproduce aredchromogenthroughthereactionof4-aminoantipyrinewith thehydroxyl-dichloro-benzenesulphonicacid(HDBS).Thecolor intensityisproportionaltotheconcentrationofuricacidinthe samplewithmaximumabsorptionat505nm.

LiverXOactivityassay

Enzymeextractionfromliverwascarriedoutaccordingto pre-viously described (Zhu et al., 2004; Haidari et al., 2008). Liver XOresidualactivitywasassayedspectrophotometricallyby mon-itoringuric acidformation fromxanthineaccording tomethod describedbyHalletal.(1990)andmodifiedbyothers(deSouza etal.,2012;Ferrarietal.,2016).Briefly,100␮lofliversfinal super-natant werepre-incubated for 15min at 37◦C with 5000l of

50mMphosphatebuffer(pH7.4)containing1mMofpotassium oxonate.Thepresenceofpotassiumoxonatepreventsthe oxida-tionofuricacidtoallantoin.Then,thereactionwasinitiatedby theadditionof 1200␮lof250mMxanthinesolution.The addi-tionof500␮lof0.6MHClsolutiontothereactionmediumafter

0and 30minstoppedthereaction.The reactionmixtureswere thencentrifugedat3000×gfor5min.Thesupernatantswere sep-aratedandtheabsorbancemeasuredat295nm(VarianCary50Bio Spectrophotometer,Australia).Theamountofuricacidformedwas quantifiedbythedifferenceofabsorbancefrom30and0minusing auricacidcalibrationcurve.XOresidualactivitywasexpressed as nanomolesof uric acidformed perminute per milligram of protein.Proteinconcentrationwasdetermined spectrophotomet-ricallyusingmethoddescribedbyBradford(1976).

Monosodiumuratecrystal-inducedinflammationinmice

Theanti-inflammatoryactivityofCampomanesiavelutinaleaves extractswasevaluatedonanexperimentalmodelofgout accord-ingtopreviouslydescribedby(RassolandVaralakshimi,2006)and modifiedbyothers(deSouzaetal.,2012;Lemosetal.,2015;Ferrari etal.,2016).Animalsweredividedintosevenexperimentalgroups (n=9)andfasted1hbeforedrugadministration.Inflammationwas inducedonthefirstdayoftheexperimentbyintradermal injec-tionof50␮lofMSUcrystalsuspensionintothemicerighthind paw.MSUcrystalswerepreparedaccordingtopreviouslydescribed method(RassolandVaralakshimi,2006).AllanimalsreceivedMSU injection,exceptthosefromnormalcontrolgroup(group1),which wereadministeredonlysaline.Alltreatmentswereorally admin-isteredbygavage1hbeforeMSUinjectiononthefirstdayand repeateddaily,atthesametime,forthreemoredays.Animalsfrom group1and2weretreatedwiththevehicleandservedasnormal controlgroupandMSU-inducedcontrolgroup,respectively.Mice ofgroup3weretreatedwiththestandardanti-inflammatorydrug indomethacin.Animalsofremaining groups(4–7) weretreated withEELandAEL(100and300mg/kg).Pawthicknesswas mea-suredwithacaliperrule(150mm–6in.,Vonder,China)beforeand 4,24,48and72hafterMSUinjection.Inflammatoryswellingwas expressedaspercentageofthicknessvariation.

Statisticalanalysis

ExperimentaldatawasanalyzedusingGraphPadPrism5.0 Soft-ware(Inc.,SanDiego,CA,USA). IC50 values werecalculated by

linearregressionofplotsonanXYgraphofinhibitionversus con-centration values, assuming a 95% confidence interval. Results frominvivoexperimentswerepresentedasmeanvalues±S.E.M. One-way analysis of variance (ANOVA) was used followed by Newman–Keuls’ multiple comparison test. p values<0.05 were consideredstatisticallysignificant.

Resultsanddiscussion

Brazilian traditional medicineuses Campomanesia speciesto treatpain,inflammationandrheumatism.Rheumatismisageneric termusedtodescribevariousclinicalconditionsthataffect mus-cles,bonesorarticulationscausingreductionorlossofmobility,as arthritis,gout,arthrosis,amongothers.

(4)

0.08

0.06

1

26 747 peak 1 28 028 peak 2

28 885 rutin 262.3

260.0 362.9

352.9

27 902 Myricitrin

44 583 rutin 46 183 Myricitrin

43 726 peak 1

260.0 351.7

261.1 352.9

254.0

255.2 355.3

354.1 45 527 peak 2

245.0

255.2

nm nm

nm 356.5

AU

AU

AU

AU

AU

AU

355.3 Ethanolic extract of leaves

(EEL)

Aqueous extract of leaves (AEL) 2

1

2 0.04

AU

AU

0.02

0.00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 nm

AU

AU

0.00 10.00 20.00 30.00

Minutes

Minutes

40.00 50.00 60.00

Fig.1.HPLCchromatogramat254nmofEELandAELofCampomanesiavelutinawithextractedUVspectrumofidentifiedandstandardssubstancesmyricitrinandrutin.

intendedtotreatgout(Ahmadetal.,2008),andinthiscontext, naturalproductsareapotentialsourceofnewagents(Kongetal., 2002).

Previous studies with Campomanesia velutina demonstrated that the specie possess antinociceptive and anti-inflammatory properties(Micheletal.,2013).Theaimofthisstudywasto eval-uate the ability of the specie tolower serum urate levels and investigatethemechanismsunderlyingthiseffect.Inaddition,was investigateditsabilitytoactovertheinflammatoryprocess trig-geredbyMSUcrystals.Thisway,theresultsobtainedmayhelp developanalternativetherapytotreatgout,sincethetraditional approachtothisdiseasehaslowefficacyandvarioussideeffects andrestrictions.

Flavonoids are naturally occurring plant compounds with antioxidant, anti-inflammatory and XO inhibitory properties (Nagao et al.,1999; Tunget al.,2015).Furthermore,their con-sumptionhasbeenassociatedwiththeprotectiveeffectsofcertain dietsandherbsagainstsomeofthecomplicationsofhyperuricemia andgout,suchascardiovasculardiseaseanddiabetes(Sampson etal.,2002).Astudyalsodemonstratedtheabilityoftheflavonoid quercetintopreventkidneyinjuryassociatedwithhyperuricemia (Wang et al., 2012). Asflavonoids possess important biological effectsininflammationandhyperuricemia,HPLCanalysiswas car-riedoutinordertoverifythepresenceofsomecommonflavonoids andcorrelatedphenolicsubstances.AELandEELprofileshowed atretention timeof approximately43and 30min,respectively, thepresence ofsubstances that absorbenergy at twodifferent wavelengths,likeflavonoids.Theextractionofthechromatograms at254nmand thecomparisonof retentiontime and UVmax of

thepeakswithstandardsrevealedthepresence oftwo distinct flavonoidsatthoseretentiontimes(Fig.1).Thepresenceofthe flavonoidmyricitrinwasconfirmedin EELandfoundinAEL. In addition,anotherflavonoid,rutin,wasfoundinEELandAEL.

Myricitrinandrutinhavebeenreportedtopossessawiderange ofbiologicalactivitiesandmanyoftheseactivitiesarerelatedto thebiologicaleffectsinvestigatedinthisstudy.Inpreviousstudies, myricetin-3-O-rhamnoside(myricitrin)wasabletomodulatethe releaseand/orproductionofNO,TNF-␣andIL-10onmacrophages

(Ferreiraetal.,2013;Micheletal.,2013).Invivo,myricitrinhas beenreportedasanitricoxide(NO)andproteinkinaseCinhibitor thatexertsantinociceptiveeffect(Meottietal.,2006)anditsoral administrationreducedTNF-␣andCOX-2expressioninmicelivers (Domitrovi ´cetal.,2015).Myricitrinalsoshowedinhibitoryeffects againstTNF-␣productioninRAW264.7macrophages(Shimosaki etal.,2011)andirreversiblyinactivatedmyeloperoxidaseactivity, closelyrelatedtotheprogressionofchronicinflammatorydiseases (Meottietal.,2011).

Rutin is a typical flavonoid with several biological effects demonstrated in vitroand in vivoincluding antioxidative, anti-inflammatory, anticancer,antidiabetic,antimicrobial,antifungal, anti-allergic,amongothers.Mostoftheseactivitiesareattributed tothepotentantioxidantpropertyofrutin,particularlyasafree radicalscavenger(Chua,2013).RutincaninhibitXODinvitro(Chen etal.,2011)andathree-dayoralpretreatmentwithrutinproduced adose-dependentdecreaseonserumuratelevelsinhyperuricemic miceandtheseeffects werepartlydue toinhibitionofXDH/XO activitiesinmouseliver(Zhuetal.,2004).Rutinalsohavethe abil-itytoinhibitNOproductioninducedbyLPS(Shenetal.,2002)and theanti-inflammatoryactivityofrutinwasfoundtobebeneficial forthetreatmentofrheumatoidarthritisandosteoarthritis(Umar etal.,2012).

XOistheenzymeresponsiblefortheconversionof hypoxan-thineinto xanthineand ofxanthine intouric acid.Assays with this enzyme are used to test compounds that may inhibit the enzymeandthus beusefultothetreatmentofgoutandothers diseasesrelatedtoXO(Haidarietal.,2008).Twodifferentextracts obtainedfromCampomanesiavelutinaleaves(EELandAEL)were assayedforXOinhibitoryactivityinvitro.Theresultsareshown inTable1.Atfinalconcentrationof100␮g/ml,thetwoextracts producedaninhibitiongreaterthan60%overXO.TheIC50values

weredeterminedforbothofthemsincetheextractspresentedan inhibitionbiggerthan25%at100␮g/ml.EELshowedanIC50value

of35.63␮g/ml.ForAEL,theIC50was47.33␮g/ml.AllopurinolIC50

was0.3287␮g/ml.AccordingtoSchmeda-Hirschmannetal.(1996), compoundswithIC50valueslowerthan50␮g/mlshouldbefurther

(5)

Table1

Xanthineoxidaseinhibitoryactivityofethanolicandaqueousextractsfrom Campo-manesiavelutinaleaves.

Extract Inhibitionat100␮g/ml (%±S.E.M.)

IC50␮g/ml

(Confidenceinterval–95%)

EEL 66.43±3.17 35.63(30.14to42.84)

AEL 66.82±1.19 47.33(45.06to49.89)

Allopurinol – 0.33(−0.5981to0.6105)

EEL,ethanolicextractofleaves;AEL,aqueousextractofleaves.

theactivityobservedinvitrowouldproduceimportantbiological effects.

Inmostmammals,uricaseisanenzymethatcatalysesthe con-versionofuricacidintoallantoin,thus,serumuricacidlevelsis typicallylow.However,humanandotherprimateslosttheability toexpressuricaseandtheresultishigherserumuricacidlevels. Potassiumoxonateis themostuseduricaseinhibitorin animal

modelsof hyperuricemia, since it is a low-costcompound and

producesarapideffect.Therefore,thehyperuricemicmodel pro-ducedbyoxonate isthemostsuitabletothepreliminarystudy ofnewdrugs(Kongetal.,2002).Thus,toassaythehypouricemic activityofCampomanesiavelutina,hyperuricemicoxonate-induced animalsweretreatedforthreedayswithEELandAELat100and 300mg/kg.Fig.2showstheresults.

Treatmentwith uricase inhibitor potassium oxonate signifi-cantlyincreased serum urate levelswhen compared to normal group,showing that the model waseffective to induce hyper-uricemia.A three-daytreatmentwiththetwo extracts,at both doses(100and300mg/kg)significantlyreducedserumuratelevels comparedtohyperuricemiccontrolgroup.Asobservedoninvitro assays,extractswerealsoabletoinhibitXOresidualactivityinvivo. AsshowninTable2,treatmentwithEELandAELforthreedays wasabletoinhibitliverXOresidualactivityinhyperuricemicmice atbothdoseswhencomparedtocontrolgroup.Sincethe reduc-tionofserumuricacidlevelswasfollowedbyXOinhibition,these resultsindicatethattheanti-hyperuricemicactivityoftheextracts isstronglyrelatedtoXOinhibitionandthismightbethe mecha-nismofaction.

Statistical analysis revealed that there were no differences betweenthedosesconcerninguricacidlevelsandXOinhibition, Thisisprobablybecausethemaximumresponsewasreachedwith

10 6

4

2

Ser

um ur

ic acid (mg/dl)

Anti-hyperuricemic activity

0

100 300 100 300

###

### ***

*** ***

*** ***

Normal control Hyperuricemic control

Allopurinol EEL AEL

Fig.2.Anti-hyperuricemiceffectsofethanolicandaqueousextractsfrom Campo-manesiavelutinaleavesinmicetreatedwithpotassiumoxonate.Datarepresents means±S.E.M.ofsixanimals.One-wayANOVAfollowedbyNewman–Keuls’ multi-plecomparisontestwasusedforstatisticalsignificance.***p<0.001comparedwith hyperuricemiccontrolgroup.###p<0.001comparedwithnormalcontrolgroup.

Table2

EffectsofethanolicandaqueousextractsfromCampomanesiavelutinaleavesonliver xanthineoxidaseresidualactivityafterathree-dayoraladministration.

Treatment Dose(mg/kg) XOD(nm/min/mgprotein) %Inhibition

Vehicle – 14.86±0.802 –

Allopurinol 10 4.21±0.429a 71.67

EEL 100 7.76±1.452a 47.78

300 7.49±0.496a 49.59

AEL 100 5.89±0.569a 60.36

300 5.28±0.345a 64.47

EEL,ethanolicextractofleaves;AEL,aqueousextractofleaves;nm,nanomolesof uricacid.

Data represents mean±S.E.M. of six animals. One-way ANOVA followed by Newman–Keuls’multiplecomparisontestwasusedforstatisticalsignificance.

ap<0.001comparedtohyperuricemiccontrolgroup.

thedoseof100mg/kg.Thisway,anincreaseinthedosedidnot produceabetterresponse.Inaddition,resultsofuricacidandXO inhibitionexhibitednostatisticaldifferencesbetweenAELandEEL. Thisprobablymeansthattheactivecompoundsarepresent on bothextracts.Infact,myricitrinandrutinwerefoundinAELand EEL.Previousstudieswithrutindemonstratedtheabilityofthis flavonoidtodecreaseserum uratelevelsinhyperuricemicmice

Anti-hyperuricemic activity

XO residual ctivity ###

***

***

***

*** ##

###

Dose (mg/kg)

Dose (mg/kg) 6

4

2

0

15

10

5

0

10 15

10 15

Ser

u

m ur

ic acid (mg/dl)

nm/min/mg protein

Normal control

Hyperuricemic control

Allopurinol

Myricitrin

Hyperuricemic control Allopurinol Myricitrin 15 mg/kg

(6)

4thhour

0 50 100 150

Dose (mg/kg)

Negative control Vehicle Indometacin AEL EEL

*** ** ***

*** **

Paw swelling, %

0 50 100 150

Dose (mg/kg)

*** *** ***

Paw swelling, %

48th hour

0 50 100 150

Dose (mg/kg)

* * **

Paw swelling, %

72th hour 24th hour

0 50 100 150

MSU - + + + + + + MSU - + + + + + +

MSU - + + + + + + MSU - + + + + + +

3 100 300 100 300 3 100 300 100 300

3 100 300 100 300 Dose 3 100 300 100 300

(mg/kg)

* * *

Paw swelling, %

Fig.4.EffectsofaqueousandethanolicextractsfromtheleavesofCampomanesiavelutinaonMSUcrystal-inducedpawedemainmice.Datarepresentsmeans±S.E.M.of nineanimals.One-wayANOVAfollowedbyNewman–Keuls’multiplecomparisontestwasusedforstatisticalsignificance.*p<0.05,*p<0.01and***p<0.001comparedwith vehiclecontrolgroup.

withathree-dayoralpretreatment(Zhuetal.,2004)andtoinhibit XOinvivo(Zhuetal.,2004)andinvitro(Chenetal.,2011).Because thelackofstudiesabouttheanti-hyperuricemicactivityof myric-itrin,thisflavonoidwasfurtherinvestigatedandtheresultsshowed thatmyricitrinwasabletosignificantlyreduceserumuricacid lev-elsandtoinhibitXOresidualactivityafterathree-daytreatment atthedoseof15mg/kg(Fig.3).Thus,itisreasonabletoassume thatmyricitrinandrutinarerelatedtotheeffectsofAELandEEL overserumuricacidlevelsandXOresidualactivity.However,other compoundscanalsocontributetotheobservedeffect,sincethefull compositionoftheextractsisnotknown.

Furthermore,theresultsofuricacidlevelsandXOinhibition fromanimalstreatedwiththeextractswerenotsignificantly dif-ferentofthoseobservedonnormalgroup.Allopurinol(10mg/kg) reducedserumuratelevelsofhyperuricemicmicetovalueslower thanthatfoundinnormalgroup(Fig.2)andinhibited71.67%of XOactivity(Table2).However,thefactthattheextractsdidnot producesuchreductioncanbeconsideredanadvantage.Despite elevatedserumuricacidlevelscantriggergoutandothermetabolic disorders,theantioxidantactivityofuricacid,particularlyitsability toinhibitDNAdamage,iswelldocumented(Stinefeltetal.,2005). Therefore,anexcessivedecreaseinuricacidlevelsmayevenbe harmful(Haidarietal.,2008).Thus,astheextractsreducedserum uratetothesamelevelsobservedinnormalanimals,apossible therapywiththemcouldleadtofewersideeffects.

PreviousstudieswithEEL demonstratedits abilitytoinhibit edemaformationafteracarrageenaninjection(Micheletal.,2013). However,therewerenodataconcerningtheaqueousextractor theroleofthespecieoveragout-likeinflammation.Therefore,AEL andEELweretestedabouttheirabilitytopreventedema forma-tiontriggeredbyMSUcrystals.MSUcrystalinjectionstartsalocal inflammatoryreactionwithsymptomssimilartothoseobserved clinically in gout, suggesting that this model is able topredict clinicalefficacyofnew agents(Gettingetal., 2002).MSU crys-talsstimulateinnateimmunesystemthroughtheproductionand

releaseofseveralinflammatorymediators,suchaskinins, inter-leukinsandTNF-␣.Someofthesemediatorsarechemotacticsand amplifytheinflammatoryresponseleadingtoneutrophil infiltra-tion followed bythe release of oxygenfree radicals, lysosomal enzymes,prostaglandin-E2,leukotrienesandinterleukin-1␤.Ifnot treated,theinflammationcanleadtostructuraldamage(Martinon etal.,2006).

MSU crystals injection caused a significant increase in paw thicknesswhencomparedtonegativecontrol(saline administra-tion). Indomethacin (3mg/kg) promoted a significantreduction onpawswellingobservedduringtheentireexperiment.Thetwo extractsatbothdosesreducededemaformationat4thhourafter MSUinjection,butonlyAEL(100and300mg/kg)wasableto main-taintheactivitythroughouttheexperiment.EELlimitedonlyinitial inflammatoryresponse,evaluated4hafterMSU-crystalinjection (Fig.4).TheseresultsindicatethatEELactsonlyontheinitialphase oftheinflammatoryprocessinitiatedbyMSUcrystalswhileAELcan actbothintheinitialandinthelatephasesoftheinflammatory pro-cess.Myricitrinandrutincanbeinvolvedintheanti-inflammatory activityoftheextractstoo.Aspreviouslydetailed,severalstudies demonstratedtheabilityoftheseflavonoidstoinhibitthe produc-tionand/orthereleaseofinflammatorymediators.

(7)

validtopointoutthattheseeffectswereobservedatthesamedoses andafteranoraltreatment,indicatingthattheactivesubstances arewellabsorbedin theintestinaltract.Thisway,aqueousand ethanolicextractsfromCampomanesiavelutinaleavescanactover crucialpointsofgoutmanagement:decreaseuricacidserum lev-elsbyinhibitingxanthineoxidaseactivityandreducepawedema inducedbyMSU.Therefore,theseextractsareapromising alter-nativetotreatgoutandcouldbeusedforthedevelopmentofan herbalmedicineorasasourceofnewmoleculestotreatthis dele-teriousdiseaseandthuscontributetoincreasethearmamentarium toachieveaproperlymanagementofgoutandagoodlifequality forthosepatients.However,morestudiesarenecessarytoestablish allthesubstancesintheextractsthatareresponsibleforthe activ-ity,identifyandproposethemolecularmechanismsunderthese effects.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authors’contributions

MCPMA(PhDstudent) contributedinrunningthelaboratory work,analysisofthedata anddraftedthepaper. ZSFFand FCF contributedtothedevelopment,implementationandrealization oftheassays.DASG raisedthenecessaryfundsfor work devel-opment,designedthestudy,supervisedthelaboratoryworkand contributedtocriticalreadingofthemanuscript.Alltheauthors readthefinalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Thisstudy wascarried outatUFOP. Theprojectwasfunded by FAPEMIG (grant APQ-01318-12 and APQ-00956-13), Rede TOXIFAR/FAPEMIG (Rede Mineira de Ensaios Toxicológicos e Farmacológicos/Fundac¸ão de Amparo à Pesquisa do Estado de Minas Gerais), grant CBB-RED-00008-14. PhD scholarship was providedbyCAPES.

References

Ahmad,N.S.,Farman,M.,Najmi,M.H.,Mian,K.B.,Hasan,A.,2008. Pharmacolog-icalbasisforuseofPistaciaintegerrimaleavesinhyperuricemiaandgout.J. Ethnopharmacol.117,478–482.

Alice,C.B.,Siqueira,N.C.S.,Mentz,L.A.,BrasileSilva,G.A.A.,José,K.F.D.,1995.Plantas Medicinaisdeusopopular:AtlasFarmacognóstico.ULBRA,Canoas.

Bradford,M.M.,1976.Arapidandsensitivemethodforthequantificationof micro-gramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding.Anal. Chem.72,248–254.

Chen, L., Yin, H., Lan, Z., Ma, S., Zhang, C., Yang, Z., Li, P., Lin, B., 2011.

Anti-hyperuricemicandnephroprotectiveeffectsofSmilaxchinaL.J. Ethnophar-macol.135,399–405.

Chua,L.S.,2013.Areviewonplant-basedrutinextractionmethodsandits pharma-cologicalactivities.J.Ethnopharmacol.150,805–817.

Cravo,A.B.,1994.Frutaseervasquecuram:panacéiavegetal.Hemus,SãoPaulo.

deSouza,M.R.,dePaula,C.A.,Resende,M.L.P.,Grabe-Guimarães,A.,deSouzaFilho, J.D.,Saúde-Guimarães,D.A.,2012.PharmacologicalbasisforuseofLychnophora trichocarpha in gouty arthritis: anti-hyperuricemic and anti-inflammatory effectsofitsextract,fractionandconstituents.J.Ethnopharmacol.142,845–850.

Dias,J.E.,Laureano,L.C.,2009.FarmacopéiaPopulardoCerrado.Articulac¸ãoPacari, Goiás.

Domitrovi ´c,R.,Rashed,K.,Cvijanovi ´c,O.,Vladimir-Kneˇzevi ´c,S., ˇSkoda,M.,Viˇsic,A., 2015.Myricitrinexhibitsantioxidant,anti-inflammatoryandantifibrotic activ-ityincarbontetrachloride-intoxicatedmice.Chem.Biol.Int.230,21–29.

Dorland’s Medical Dictionary for Health Consumers, 2007. http://medical-dictionary.thefreedictionary.com/rheumatism(accessedApril2016). Edwards,N.L.,So,A.,2014.Emergingtherapiesforgout.Rheum.Dis.Clin.N.Am.40,

375–387.

Ferraz-Filha,Z.S.,Vitolo,I.F.,Fietto,L.G.,Lombardi,J.A.,Saúde-Guimarães,D.A.,2006.

XanthineoxidaseinhibitoryactivityofLychnophoraspeciesfromBrazil(Arnica). J.Ethnopharmacol.107,79–82.

Ferrari,F.C.,Lemos,R.C.L.,Ferraz-Filha,Z.S.,Barros,C.H.,Araújo,M.C.P.M., Saúde-Guimarães,D.A.,2016.EffectsofPimentapseudocaryophyllusextractsongout: anti-inflammatoryactivityandanti-hyperuricemiceffectthroughxanthine oxi-daseanduricosuricaction.J.Ethnopharmacol.180,37–42.

Ferreira,L.C.,Grabe-Guimarães,A.,Paula,C.A.,Michel,M.C.P.,Guimarães,R.G., Rezende,S.A.,SouzaFilho,J.D.,Saúde-Guimarães,D.A.,2013.Anti-inflammatory andantinociceptiveactivitiesofCampomanesiaadamantium.J.Ethnopharmacol. 145,100–108.

Getting,S.J.,Christian,H.C.,Flower,R.J.,Perretti,M.,2002.Activationofmelanocortin type3receptorasamolecularmechanismforadrenocorticotropichormone efficacyingoutyarthritis.ArthritisRheum.46,2765–2775.

Giraldi,M.,Hanazaki,N.,2010.Usoeconhecimentotradicionaldeplantasmedicinais noSertãodoRibeirão,Florianópolis,SC,Brasil.ActaBot.Bras.24,395–406.

Hall,I.H.,Scoville,J.P.,Reynolds,D.J.,Simlot,R.,Duncan,P.,1990.Substitutedcyclic imidesaspotentialanti-goutagents.LifeSci.46,1923–1927.

Haidari,F.,Rashidi,M.R.,Keshavarz,S.A.,Mahboob,S.A.,Eshraghian,M.R.,Shahi, M.M.,2008.Effectsofoniononserumuricacidlevelsandhepaticxanthine dehydrogenase/xanthineoxidaseactivitiesinhyperuricemicrats.Pak.J.Biol. Sci.11,1779–1784.

Kong, L.D., Zhou, J., Wen, Y.L., Li, J.M., Cheng, C.H.K., 2002. Aesculin pos-sesses potent hypouricemic action in rodents but is devoid of xanthine oxidase/dehydrogenaseinhibitoryactivity.PlantaMed.68,175–178.

Lemos,R.C.L.,Ferrari,F.C.,deSouza,M.R.,Pereira,B.M.S.,dePaula,C.A., Saúde-Guimarães, D.A., 2015. Effects of extracts of leaves from Sparattosperma leucanthumonhyperuricemia andgouty arthritis.J. Ethnopharmacol. 161, 194–199.

Martinon,F.,Pétrilli,V.,Mayor,A.,Tardivel,A.,Tschopp,J.,2006.Gout-associated uricacidcrystalsactivatetheNALP3inflammasome.Nature440,237–241.

Meotti,F.C.,Luiz,A.P.,Pizzolatti,M.G.,Kassuya,C.A.,Calixto,J.B.,Santos,A.R.,2006.

Analysisoftheantinociceptiveeffectoftheflavonoidmyricitrin:evidencefora roleofthel-arginine–nitricoxideandproteinkinaseCpathways.J.Pharmacol. Exp.Ther.316,789–796.

Meotti,F.C.,Senthilmohan,R.,Harwood,D.T.,Missau,F.C.,Pizzolatti,M.G.,Kettle, A.J.,2011.Myricitrinasasubstrateandinhibitorofmyeloperoxidase: implica-tionsforthepharmacologicaleffectsofflavonoids.FreeRadicalBiol.Med.44, 109–120.

Michel,M.C.P.,Guimarães,A.G.,Paula,C.A.,Rezende,S.A.,Sobral,M.E.G.,Guimarães, D.A.S.,2013.ExtractsfromtheleavesofCampomanesiavelutinainhibits produc-tionofLPS/INF-␥inducedinflammatorymediatorsinJ774A.1cellsandexerts antiinflammatoryandantinociceptiveeffectsinvivo.Rev.Bras.Farmacogn.23, 927–936.

Nagao,A.,Seki,M.,Kobayashi,H.,1999.Inhibitionofxanthineoxidasebyflavonoids. Biosci.Biotechnol.Biochem.63,1787–1790.

Oliveira,F.C.S.,Barros,R.F.M.,MoitaNeto,J.M.,2010.Plantasmedicinaisutilizadas emcomunidadesruraisdeOeiras,semiáridopiauiense.Rev.Bras.PlantaMed. 12,282–301.

Perez-Ruiz,F.,Dalbeth,N.,Bardin,T.,2015.Areviewofuricacid,crystaldeposition diseaseandgout.Adv.Ther.32,31–41.

Rassol,M.,Varalakshimi,P.,2006.SuppressiveeffectofWithaniasomniferaroot pow-deronexperimentalgoutyarthritis:aninvivoandinvitrostudy.Chem.Biol. Interact.164,174–180.

Roddy,E.,Choi,H.K.,2014.Epidemiologyofgout.Rheum.Dis.Clin.N.Am.40, 155–175.

Sampson,L.,Rimm,E.,Hollman,P.C.,deVries,J.H.,Katan,M.B.,2002.Flavonoland flavoneintakesinUShealthprofessionals.J.Am.Diet.Assoc.102,1414–1420.

Shen,S.C.,Lee,W.R.,Lin,H.Y.,Huang,H.C.,Ko,C.H.,Yang,L.L.,Chen,Y.C.,2002.Invitro andinvivoinhibitoryactivitiesofrutin,wogoninandquercetinon lipopolysac-charideinducednitricoxideandprostaglandinE2production.Eur.J.Pharmacol. 446,187–194.

Shimosaki,S.,Tsurunaga,Y.,Itamura,H.,Nakamura,M.,2011.Anti-allergiceffectof theflavonoidmyricitrinfromMyricarubraleafextractsinvitroandinvivo.Nat. Prod.Res.25,374–380.

Schmeda-Hirschmann,G.,Zuniga,J.,Dutra-Behrens,M.,Habermehl,G.,1996. Xan-thineoxidaseinhibitoryactivityofflavonoidsandtanninsfromHexachlamys edulis(Myrtaceae).Phytother.Res.10,260–262.

Stinefelt,B.,Leonard,S.S.,Blemings,K.P.,Shi,X.,Klandorf,H.,2005.Freeradical scavenging,DNAprotection,andinhibitionoflipidperoxidationmediatedby uricacid.Ann.Clin.Lab.Sci.35,37–45.

(8)

oldhamii Maxim. leaf extracts reduce serum uric acid levels in potas-siumoxonate-inducedhyperuricemicmice.BMCComplement.Altern.Med.,

http://dx.doi.org/10.1186/s12906-015-0950-7.

Umar,S.,Mishra,N.K.,Pal,K.,Sajad,M.,NehaAnsari,M.M.,Ahmad,S.,Katiyar,C.K., Khan,H.A.,2012.Protectiveeffectofrutininattenuationofcollagen-induced arthritisinWistarratbyinhibitinginflammationandoxidativestress.IndianJ. Rheumat.7,191–198.

Wang, C., Pan, Y., Zhang, Q.Y., Wang, F.M., Kong, L.D., 2012. Quercetin and allopurinolamelioratekidneyinjuryinSTZ-treatedratswithregulationof

renalNLRP3inflammasomeactivationandlipidaccumulation.PLoSONE7, e38285.

Yao,X.,Ding,Z.,Xia,Y.,Wei,Z.,Luo,Y.,Feleder,C.,Dai,Y.,2012.Inhibitionof monosodiumuratecrystal-inducedinflammationbyscopoletinandunderlying mechanisms.Int.Immunopharmacol.14,454–462.

Imagem

Fig. 1. HPLC chromatogram at 254 nm of EEL and AEL of Campomanesia velutina with extracted UV spectrum of identified and standards substances myricitrin and rutin.
Fig. 3. Myricitrin effects over serum uric acid levels and XO residual activity in mice treated with potassium oxonate
Fig. 4. Effects of aqueous and ethanolic extracts from the leaves of Campomanesia velutina on MSU crystal-induced paw edema in mice

Referências

Documentos relacionados

A prospec- tive pharmacological review of medicinal herbs, Cucumis melo and Berberis vulgaris, commonly used in the treatment of renal diseases in Pakistan. Acta

Trans -phytyl-1-palmitate (Codioester) (1) and ␥ -tocopherol (2) and fraction F-13-14 exhibited cytotoxic activities against three cancer cell lines LS180 (human colon

All the compounds ( 1 – 9 ) were evaluated for their hepatoprotective activities, which were tested against d -galactosamine induced toxicity in WB-F344 cells by using.. the

In vitro effect of methanolic extract of algae Padina gymnospora in cell migra- tion and/or proliferation in fibroblasts L929.. The fibroblasts were cultivated until formed a

Antioxidant capacity of four polyphenol-rich Amazonian plant extracts: a cor- relation study using chemical and biological in vitro assays. In vitro antioxidant and

phenolic compounds from Vernonia condensata decoction. Distilled water

Additionally, this study also aims to examine the influence of co-extracted bioactive compounds (vitamin E, vitamin C and quercetin) in Capsicum fruit extracts on the cytotoxic

Percentage of Ehrlich ascites carcinoma cells in different phases of the cell cycle after treatment with 5% Tween 80 solution (control), EOC (100 mg/kg), EOC (150 mg/kg) and 5-FU