• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número6"

Copied!
5
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Bioassay

guided

purification

of

cytotoxic

natural

products

from

a

red

alga

Dichotomaria

obtusata

Amir

Reza

Jassbi

a,∗

,

Younes

Mirzaei

a

,

Omidreza

Firuzi

a

,

Jima

N.

Chandran

b

,

Bernd

Schneider

b aMedicinalandNaturalProductsChemistryResearchCenter,ShirazUniversityofMedicalSciences,Shiraz,Iran

bResearchGroupBiosynthesis/NMR,MaxPlanckInstituteforChemicalEcology,Jena,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21January2016

Accepted7June2016

Availableonline12August2016

Keywords:

Dichotomariaobtusata Redalgae

Trans-phytolpalmitate Tocopherol

Cytotoxicactivity

a

b

s

t

r

a

c

t

DifferentsolventextractsofDichotomariaobtusata(J.Ellis&Solander)Lamark,Galaxauraceae,ared algaecollectedfromthecoastofBushehrinthePersainGulf,wasinvestigatedforitscytotoxic prop-ertiesandchemicalconstituents.Thefreshalga,afterextractionwithmethanolanddichloromethane werecombinedandpartitionedbetweenwater,dichloromethaneandethylacetate.Theabovefractions werethentestedagainstMOLT-4(humanlymphoblasticleukemia)cancercellline.TheIC50valuesof thedichloromethaneandethylacetatelayersofthecrudeextractwere29.8±3.1and30.6±7.9␮g/ml againstMOLT-4cells,respectively,whilethewaterlayershowedaweekactivitywithIC50>50␮g/ml. Afterfractionationoftheactiveextractsusingopencolumnchromatographyoversilicageland prepar-ativethinlayerchromatographypurification,twoterpenoidderivedcompounds,trans-phytolpalmitate and␥-tocopherolwereisolatedfromthedichloromethaneandethylacetateextracts.Thestructuresof thecompoundswereelucidatedusingdifferentspectraldataincluding1HNMR,13CNMR,HSQC,HMBC andEI-MS.TheIC50valuesofcompoundstrans-phytolpalmitate,␥-tocopherolandanundetermined mix-tureofcompounds(F-13-14)weredeterminedas43.4±1.6,–and20.3±6.2␮g/mlagainstLS180(human colonadenocarcinoma);53.2 ± 9.3,>100and27.6± 6.9␮g/mlagainstMCF-7(humanbreast adenocarci-noma)and40.0±4.1,48.8±1.8and15.9±0.3␮g/mlagainstMOLT-4celllines,respectively,whichwere comparabletotheIC50valuesofstandardanticanceragent,cisplatinagainstthesamecelllines.Thered algaecollectedfromthePersianGulfcontainedsubstancesthatcouldinhibitthegrowthofhumancancer celllinesandmayrepresentanaturalsourceforthediscoveryofnovelanticanceragents.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

ThenortherncoastsofthePersianGulfandtheGulfofOman intheIranianterritoryaresuitednaturalhabitatsforthegrowth of differenttypesof marineorganisms suchasred, brownand green algae. Dichotomaria obtusata (J. Ellis & Solander) Lamark is a redalga from thefamily Galaxauraceae reportedin differ-entcoastalareafromIndianandpacificoceansinKenyan(Bolton etal.,2007)andCubancoastalarea(Vázquezetal.,2011;Delgado etal.,2013)andalsofromGavaterandJoudintheGulfofOman (SohrabipourandRabei,2008).Theredandbrownalgaeareknown asasourceofbiologicallyactivenaturalproductswithcytotoxic, and antimicrobial activity against cancer cells, and pathogenic bacteria and fungi, respectively. For instance, different solvent extractsofHypneaflagelliformis,CystoseiramyricaandSargassum

Correspondingauthor.

E-mail:jassbiar@sums.ac.ir(A.R.Jassbi).

boveanumshowedantimicrobialactivityagainstbothgram pos-itive andgramnegativebacteriaand alsoexhibitedantioxidant potentialinan1,1-diphenyl-2-picrylhydrazyl(DPPH)freeradical scavengingassay(Jassbietal.,2013).Thephytochemicalanalyses ofthealgalextractsresultedinidentificationandquantificationof theirfattyacidsandsteroids(Jassbietal.,2013).

An aqueous extract of a fresh collection of D. obtusata has shownantineoceptiveandantiinflammatoryactivitiesinamouse modelof12-O-tetradecanoylphorbolacetate-inducedearedema and aceticacidwrithingin adose-dependent manner(Vázquez etal.,2011).Thepresenceofdifferentkindsofnaturalproducts in thealgal water extract, liketerpenoids, coumarins, lactones, phenolics and polysaccharides has been explored by chemical tests(Vázquez etal.,2011).Furthermore,theanalgesiceffectof amethanolicextractofD.obtusatahasalsobeenexaminedinthe crotonoil-inducedearedemamodelanditsphospholipaseA2 inhi-bitionhasbeenstudied(Delgadoetal.,2013).Thephytochemical analysesofdifferentsolventextractsshowedthepresenceof triter-penoids, flavonoids,phenolics,steroidsand fats(Delgadoetal.,

http://dx.doi.org/10.1016/j.bjp.2016.06.008

0102-695X/©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

2013).However,tothebestofourknowledge,nofurther phyto-chemicalinvestigationhasbeenperformedonthisalgaspecies.

Wereportherethechemicalconstituentsandcytotoxicactivity ofaDCM-EtOAcextractofD.obtusataanditschemicalconstituents collectedfromthecoastsofBushehrintheNorthernpartsofthe PersianGulfofIran.

Materialsandmethods

Instrumentsandadsorbents

NMR spectra of the purified compounds were recorded on a Bruker Avance 500 spectrometer (Bruker Biospin, Karlsruhe, Germany),operatingatresonancefrequenciesof500.13MHzfor 1H and 125.75MHz for 13C, respectively. The NMR

spectrome-terwas equippedwitha 5mm TCI cryoprobe.Standard Bruker pulsesequenceswereusedformeasuring1HNMR,13CAPT,1H–1H COSY,1H–13CHSQCand1H–13CHMBCspectra.Tetramethylsilane (TMS)wasusedasaninternalstandardforreferencing1Hand13C NMRspectra.NMRtubes(5mmi.d.and2mmi.d.)wereusedfor measurements.Dataacquisitionandprocessingwasaccomplished usingBrukerTopspin2.1.EI-MSwasrecordedonanAgilent5975C inertGC/MSinstrument.The chromatography separationswere performedusingopenCCusingsilicagel60(0.2–0.04mmparticle size),FCCusingsilicagel60(0.040–0.063mmparticlesize)andTLC usingsilicagel60F254pre-coatedplates(0.25mmfilmthickness). TheadsorbentswerepurchasedfromMerck,Darmstadt,Germany.

Algalmaterialandextractionprocedure

AllpartsofDichotomariaobtusata(J.Ellis&Solander)Lamarck, Galaxauraceae,werecollectedinApril2011fromthecoastalarea ofBushehrCityatthecoordinate(28◦5842′′N;504953′′E)in thewestpartofthecoastofBushehr)inthePersianGulf,Iran,and wasidentifiedbyDr.JelvehSohrabipour(taxonomist).Avoucher specimen(PC-94-6-7-1.1) hasbeendeposited attheherbarium ofMNCRC.Thefreshalga(9.5kg)wasmaceratedfortwodaysin methanol(MeOH;2×10l)followedbythesamevolumeofDCM successivelyatroomtemperature.TheDCMandMeOHextracts weremixedand afterremovaloftheirsolventsinvacuum sub-jectedtoliquidextractiontoaffordDCM(3.1g),EtOAc(18.6g)and watersoluble(180g)extracts.

Isolationandpurificationoftheplantextracts

ThebioactiveDCMandEtOAcextracts(21.4g)werepooledand subjectedtocolumn(60×3.5cm)chromatographyoversilicagel (100g,0.2–0.04mm).Thecolumnwaselutedusingn-hexanewith gradientofDCMupto100%andthenfollowedbyincreasingthe polarityofthemobilephase withMeOH toafford27 fractions. Thefractionseluted fromthecolumn werecheckedby TLCfor theirpurityandsimilarfractionswerepooled.Thefractionswere subjectedtoacytotoxicitybioassayonMOLT-4celllinesandthe followingfractionswerefoundtobeactive(F7-F9=2.164g), (F10-F12=10g),(F13-F15=0.942g)and(F16-F21=0.918g).F-7-F9was subjectedtosilicagelFCCusinghexane–EtOAcasthemobilephase toafford25fractions.Thepurecompound(1)wasobtainedasa gummymaterialfrom fractionsF7-12,104mg.The F13-15was analyzedbythesameFCCmethodasforF97-F9andthepurityof thetwosubstancesF13-13(2,52.8mg)andF-13-14(80mg)were checkedbysilicagelTLC.AlthoughF-13-14detectedasasingle spotonsilicagelTLC(CHCl3:MeOH;9:1),aftersparingand subse-quentheatingat110◦C,by1%vanillineinH

2SO4/ethanolreagent, butboth13Cand1HNMRspectraldata(dataarenotshown)and

RP-18TLC(MeOH:H2O;6:4)analysesshowedthatthemixtureis consistedofatleastfour–fivecompounds.

Transesterficationofcompound1andGC-MSanalysesofthe resultingfattyacidmethylester

Compound1(1mg)wastransesterifiedusing250␮lofa10%BF3 inMeOHasdescribedpreviously(Jassbietal.,2013).TheGC–MS analysesoftheresultingesterwasperformedona7890AGC cou-pledtoHP-6890massspectrometeroperatinginEImodeat70eV. ThecolumnwasaDB-5MS(J&WScientificcolumn,30m×0.25mm i.d.,0.25␮mfilmthickness).Onemicroliterofthefattyacidmethyl estersinahexane solutionwasanalyzedinthesamecondition describedpreviously;theoventemperaturewassetat150◦Cand after4min,roseto250◦Cat4C/minandkeptfor10minat250C (Jassbietal.,2013).

Spectroscopicdata

Trans-phytylpalmitate(codioester,1):EI-MSm/z(rel.int.%): 534[C36H70O2]+(trace),296[M-palmitate]+(1),292(3),278(6), 256(45),227(5),213(18),185(11),157(10),123(32),111(20), 97(31),71(100),55(54).1HNMR(500MHz,CDC1

3):ı5.40(1H,t,

J=7.1Hz,H-2),4.16(2H,d,J=7.0Hz,H-1,1′),2.33(2H,t,J=7.6Hz, H-2′), 1.2–1.65 (20 H, m, CH

2), 1.66(3H, s, H-3a),0.88 (3H, t,

J=7.0Hz,H-16′),0.84(12H,d,J=6.5Hz,H-7a,11a,15a,16).13C NMR(125MHz,CDC13):ı179.9(C-1′),140.4(C-3),122.9(C-2),59.4 (C-1),39.88(C-4),39.4(C-14),37.45(C-10),37.37(C-8),37.3(C-12), 36.75(C-6),34.12(C-2′),32.81(C-11),32.73(C-7),29.78–29.02 (C-3′-13),28.01(C-15),24.82(C-13),25.1(C-5),24.51(C-9),22.72 (C-15a),22.68(C-16),19.71(C-11a),19.76(C-7a),16.2(C-3a),14.14 (C-16′).

-Tocopherol (2): EI-MS m/z (rel. int.): 416 [M]+ (100), 191 [C12H15O2]+ (20), and 151 [C9H11O2]+ (85).1H NMR (500MHz, CDCl3):ı6.94(1H,s,H-5),2.50(2H,m,H-4),2.09(s,C7-CH3),2.00 (s,C8-CH3),1.58(2H,m,H-3),1.54(m,H-12′),1.50(m,H-1′),1.4(m, 4H,H-9′,8,7,3),1.33(m,H-2),1.27(m,H-10),1.22(m,H-6),1.15 (m,H-11′),1.08(2H,m,H-4,5),1.07(s,C-2-CH

3),0.88(d,J=6.6Hz, H-13′,C12-CH

3), 0.86(d,J=6.6Hz,C-8′-CH3), 0.85(d,J=6.6Hz, C-4′-CH

3)(BakerandMyers,1991).13CNMR(125MHz,CDCl3):ı 149.3(C-9),142.3(C-6),128.8(C-7),125.3(C-8),119.7(C-5),118.3 (C-10),75.8(C-2),40.9(C-1′),39.4(C-11),37.59(C-3),37.6(C-7), 37.5(C-5′),37.3(C-9),32.8(C-4),32.8(C-8),31.1(C-3),28.0 (C-12′),24.8(C-10),24.5(C-6),23.5(C2-CH

3),22.7(C12′-CH3),22.6 (C-13′),21.9(C-4),21.0(C-2),19.7(C8-CH

3),19.6(C4′-CH3),13.0 (C7-CH3),11.9(C8-CH3)(BakerandMyers,1991).

Statisticalanalyses

TheIC50 values inTable1 aretheaverageof 3–5replicates. One-wayanalysesofvariance(ANOVA)andposthocmultiple com-parisontestswereusedfordeterminationofsignificationp≤0.05 betweendifferentmeasurementsusingSPSS(version11.5for win-dows)software.

Cytotoxicityassay

Celllines

(3)

Table1

Cytotoxicactivityofthealgalextracts,fractionsfromcolumnchromatographyandtheisolatedpurecompoundsagainstselectedhumancancercelllines.

Algalextracts/fractions/purecompounds IC50LS180A IC50MCF-7 IC50MOLT-4

Aqueousfraction –B >50A

Ethylacetatefraction – – 30.6±7.9bcC

Dichloromethanefraction – – 29.8±3.1bc

F7-9 – – 21.8±2.2cd

F10-12 – – 25.1±3.4c

F13-15 – – 27.1±4.8c

F16-21 – – 28.4±4.1c

F7-12(1) 43.4±1.6a 53.2±9.3a 40.0±4.1b

F13-13(2) – >100 48.8±1.8a

F13-14 20.3±6.2b 27.6±6.9b 15.9±0.3d

Doxorubicin 0.017±0.006c 0.036±0.004c 0.013±0.002e

Cisplatin 1.7±0.7c 2.4±0.8c 0.7±0.4e

AIC

50valuesareexpressedas␮g/mlandarethemean±S.D.of3–4experiments.

B Notdetermined.

C Valuesthatdonotshareanyletterhaveastatisticallysignificantdifferenceatp<0.05.

100units/mlpenicillin-Gand100␮g/mlstreptomycin.Thepassage numberafterthawingcellswaskeptbelowtwelve.

Cellviabilityfollowingexposuretoplantextractswasmeasured bytheMTTreductionassay(Firuzietal.,2010;Mosmann,1983). Briefly,5000cells wereseededin96-wellmicroplatesandafter overnightincubation,3–4differentconcentrationsoftheextracts orpurecompounds(5,10,25 and50␮g/ml)wereaddedtothe wellsinduplicate.Extractsorisolatedcompoundswerefirst dis-solvedindimethylsulfoxide(DMSO)andthendilutedinthegrowth mediumatthedesiredconcentration.DMSOconcentrationinthe wellswaskeptunder0.25%.Cellswerefurtherincubatedfor72h andtheirgrowthmediumwasreplacedwithfreshmedium con-taining0.5mg/mlMTTandincubatedfor4hat37◦C.Themedia wasremovedandtheformazancrystalsweredissolvedbyadding 200␮lDMSOtoeachwell.Theabsorbancewasmeasuredat570nm withbackgroundcorrectionat655nmusingaBio-Radmicroplate reader(Model680).ForMOLT-4cellsthatgrowinsuspension,the plateswerecentrifugedat500×gfor10minbeforeeachstepthat totalorpartialremovalofthemediawasnecessary.Thepercent inhibitionofviabilityforeachconcentrationoftheextractorpure compoundwascalculatedwithreferencetotheuntreatedcellsand IC50valueswerecalculatedwiththesoftwareCurveExpertversion 1.34forWindows(Fig.1).Eachexperimentwasrepeated3–4times. Knowncytotoxicagents,doxorubicinandcisplatinweretestedas positivecontrols.

Resultanddiscussion

ThecytotoxicactivityofEtOAc,waterandDCMsolublepartsof theDCM-MeOHextractofD.obtusatawereassayedagainst MOLT-4celllineinMTTcolorimetricassay.TheEtOAcandDCMextracts could effectively lower the viability of cancer cells with IC50s of30.6±7.9 and29.8±3.1(mean±S.D.),respectively andwere moreeffectivethantheaqueousphase(IC50>50␮g/ml)(Table1). Therefore,wecombinedbothDCMandEtOAcextractsand sub-jectedthemtodifferentchromatographytechniquestoseparate thebioactiveconstituentsoftheextractsinbioassayguided purifi-cation(Table1).

Trans-phytyl-1-palmitate(Codioester)(1)and␥-tocopherol(2) andfractionF-13-14 exhibitedcytotoxicactivitiesagainstthree cancercell lines LS180 (human colon adenocarcinoma), MCF-7 (humanbreastadenocarcinoma)andMOLT-4cells(humanacute lymphoblasticleukemia)withIC50srangingfrom15.9tomorethan 100␮g/ml(Table1).Allof2compoundsandF-13-14showed activ-itiesthatweresignificantlylowerthanstandardcytotoxicagents, doxorubicinandcisplatin.

Compounds1and2werepurifiedusingsilicagelCC,flash col-umnchromatography (FCC) and preparative TLC. The chemical

structuresofthecompoundswereelucidatedusingdifferent spec-traldataincluding1Dand2DNMRandEI-MSandcomparingtheir spectraldatawiththosedescribedintheliterature(Alietal.,2001; BakerandMyers,1991).

Briefly, compound 1 (104mg) was purified as a white pre-cipitate and thensubjected toEIMS exhibiting ionsat m/z296 (M+-C

16H32O2),278,71(100%)andm/z256suggestingtheterpene fragments(C20H38),(C5H11)andtheacylmoiety(C16H32O2)ofthe molecule.Howeverthemolecularion[C36H70O2]+atm/z534in thespectrumwasdetectedastracepeakduetoeasylossofthe esterfragmentfromthemolecule.Inthe1HNMRspectrumofthe compound1,agroupofmultipletsatı0.84–0.88represented15 hydrogenatomsoffourisoprenoidmethylgroupsandoneterminal methylgroupofthelongchainacylgroup.Asingletatı1.66for theolefinicmethylgroup,atripletofH-2atı5.41(J=7.1Hz)and adoubletatı4.16(J=7.0Hz)ofthephytolhydroxymethylenepart ofmoleculecompletedtheassignments.Theconfigurationatthe phytoldoublebondwasdeterminedusingtheattachedprotontest (APT)13CNMRspectrumbyobservingsignalsatı59.4(C-1),122.9 (C-2)and140.4(C-3)recordedpreviouslyfortrans-phytol palmi-tate(Codioester)isolatedfromagreenalgaeCodiumiyengarii(Ali etal.,2001).Compound1wastransesterifiedtoitsmethylester using10%BF3 inmethanolasdescribedpreviously(Jassbietal.,

2013).TheGC–MSanalysisoftheresultingfattyacidmethylester ofthecompoundresultedindetectionofmethylpalmitate.

(4)

Concentration (µM)

60 50 40 30 20 10 0

%

V

ia

vil

it

y

-20 0 20 40 60 80 100 120

LS180 cells

60 50 40 30 20 10 0

% V

ia

b

ili

ty

0 20 40 60 80 100 120 140

60 50 40 30 20 10 0

% V

ia

b

ili

ty

0 20 40 60 80 100 120

MCF-7 cells

MOLT-4 cells

Fig.1.Assessmentofcytotoxicityofcompounds1,3andF-13-14againsthuman

cancercelllines.Cytotoxicactivityoftheisolatedcompoundsincludingcompound1

(),compound2(䊉)andF-13-14()weretestedatdifferentconcentrationsagainst

LS180,MCF-7andMOLT-4cancercelllinesbyMTTreductionassay.

singletat1.13(3H)suggestedasaturatedacyclicditerpenemoiety inthemolecule.TheAPT13CNMRspectrumwasmoreinformative withrepresenting29signalsconsistingoffivequaternarycarbons, fourmethynes,fourteen methyleneand sixmethyl signals.The quaternarycarbons atı 149.3,142.3,128.6,125.3,118.3and a methyneat ı119.7suggested a fivecarbon substitutedphenyl groupinthemolecule.Adownfieldsignalatı75.8togetherwith itsHMBCcorrelationwiththe methylsignalatı 1.13and two methylenesignalsatı21.9and31.18wereapartofachromane system.AnHMBCcorrelationbetweentheH-5andC-4confirmed thestructureofthecompound2asgammaisomeroftocopherol (Fig.2).Theabovementionedspectraldatawerecompatiblewith the␥-tocopherol(␥T)structurebiosynthesizedbydifferentalgae (BakerandMyers,1991).Howeverthereweredifferencesbetween

HO

O

Fig.2. TheHMBCcorrelations(500MHz,CDCl3)forassignmentofthesubstitution

andchemicalshiftsof1Hand13CNMRsignalsof-tocopherol(2).

chemical shiftsof thearomaticringof compound2 withthose recordedford-␥T(BakerandMyers,1991).

Severalbiological activitiesincluding antioxidant,anticancer andanti-inflammatoryactivitieshavebeenreportedforvitamin Eincluding␣T,␤T,␥T,␦Tandalsotheirmetabolicproductssuch astocopherylquinines(Hensleyetal.,2004).Ourresultsthatshow theabundantpresenceof␥TinD.obtusatamayexplainthe anti-inflammatory and antinociceptive activity of themethanol and aqueousextractsofthisalgapreviouslyreportedforacollection fromCuban coasts(García Delgadoet al.,2013; Vázquez etal., 2011).

Inarecentstudy,phytolalcoholhasshownanticanceractivityin hepatocellularcarcinomacells(Kimetal.,2015).Phytol’s cytotox-icityhasalsobeenreportedagainstseveralothercancercelllines (Pejinetal.,2014).Thismaysuggestthatthecytotoxicactivityof compound1ismainlyduetothepresenceofitsditerpenoidpart ratherthanitsfattyacidmoiety.However,tothebestofour knowl-edge,thisisthefirstreportonthecytotoxicactivityofaphytolester againstcancercells.

Conclusion

TheredalgaecollectedfromthePersianGulfcontained com-pounds1and2andotherunidentifiedsubstances(F-13-14)that couldinhibitthegrowthofhumancancercelllinesandmay repre-sentanaturalsourceforthediscoveryofnovelanticanceragents. Our primary cytotoxic bioassays showed that we still need to characterizethestructuresofthephytochemicalsofotheractive fractions(F-13-14)inthefuture.

Authors’contribution

ARJ:supervisingtheresearch,analyzingdataanddetermining thestructuresofnaturalproducts,writingthepaper,YM:chemical analyzingofthealgalmaterial,OF:performingbiologicalactivity, preparationofthemanuscript;JNC:performingNMRspectroscopy andhelpinginstructuralelucidationofnaturalproducts,BS: help-inginstructuralelucidationofnaturalproductsandeditingthe manuscript.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Conflictsofinterest

(5)

Acknowledgements

WewouldliketoexpressouracknowledgmenttoIranNational ScienceFoundation(ResearchGrantNo.88000545)andVice Chan-cellorforResearch,ShirazUniversityofMedicalSciencesforthe financialsupportofthisproject. Theauthorsalsowish tothank ProfessorIrajNabipourandDr.JelvehSohrabipourforcollection andidentificationofthealgalmaterialrespectively.

References

Ali,M.S.,Saleem,M.,Ahmad,V.U.,Shameel,S.,2001.Phytolandglycerolderivatives

fromthemarinegreenalgaCodiumiyengariioftheKarachiCoast(ArabianSea). Z.Naturforsch.B56,837–841.

Baker,J.,Myers,C.,1991.One-dimensionalandtwo-dimensional1H-and13

C-nuclearmagneticresonance(NMR)analysisofvitaminErawmaterialsor analyticalreferencestandards.Pharmacol.Res.8,763–770.

Bolton,J.J.,Oyieke,H.A.,Gwada,P.,2007.TheseaweedsofKenya:checklist,history

ofseaweedstudy,coastalenvironment,andanalysisofseaweeddiversityand biogeography.S.Afr.J.Bot.73,76–88.

Delgado,N.G.,FríasVázquez,A.I.,Sánchez,H.C.,delValle, R.M.S.,Gómez, Y.S.,

SuárezAlfonso,A.M.,2013.Anti-inflammatoryandantinociceptiveactivitiesof

methanolicextractfromredseaweedDichotomariaobtusata.Braz.J.Pharm.Sci. 49,65–74.

Firuzi,O.,Asadollahi,M.,Gholami,M.,Javidnia,K.,2010.Compositionand

biolog-icalactivitiesofessentialoilsfromfourHeracleumspecies.FoodChem.122, 117–122.

GarcíaDelgado,N.,FríasVázquez,A.I.,CabreraSánchez,H.,delValle,S.,Menéndez,

R.,SierraGómez,Y.,Alfonso,S.,María,A.,2013.Anti-inflammatoryand

antinoci-ceptiveactivitiesofmethanolicextractfromredseaweedDichotomariaobtusata. Braz.J.Pharm.Sci.49,65–74.

Hensley,K.,Benaksas,E.J.,Bolli,R.,Comp,P.,Grammas,P.,Hamdheydari,L.,Mou,

S.,Pye,Q.N.,Stoddard,M.F.,Wallis,G.,2004.Newperspectivesonvitamin

E:␥-tocopherolandcarboxyethylhydroxychromanmetabolitesinbiologyand medicine.FreeRadic.Biol.Med.36,1–15.

Jassbi,A.R.,Mohabati,M.,Eslami,S.,Sohrabipour,J.,Miri,R.,2013.Biologicalactivity

andchemicalconstituentsofredandbrownalgaefromthePersianGulf.IranJ. Pharm.Res.12,339–348.

Kim,C.W.,Lee,H.J.,Jung,J.H.,Kim,Y.H.,Jung,D.B.,Sohn,E.J.,Lee,J.H.,Woo,H.J.,

Baek,N.I.,Kim,Y.C.,Kim,S.H.,2015.Activationofcaspase-9/3andinhibitionof

epithelialmesenchymaltransitionarecriticallyinvolvedinantitumoreffectof phytolinhepatocellularcarcinomacells.Phytother.Res.29,1026–1031.

Mosmann,T.,1983.Rapidcolorimetricassayforcellulargrowthandsurvival:

appli-cationtoproliferationandcytotoxicityassays.J.Immunol.Methods65,55–63.

Pejin,B.,Kojic,V.,Bogdanovic,G.,2014.Aninsightintothecytotoxicactivityof

phytolatinvitroconditions.Nat.Prod.Res.28,2053–2056.

Sohrabipour,J.,Rabei,R.,2008.RhodophytaofOmanGulf(SouthEastofIran).Iran

J.Bot.14,70–74.

Vázquez, A.I.F., Sánchez, C.M.D., Delgado, N.G., Alfonso, A.M.S., Ortega, Y.S.,

Sánchez,H.C.,2011.Anti-inflammatoryandanalgesicactivitiesofredseaweed

Imagem

Fig. 2. The HMBC correlations (500 MHz, CDCl 3 ) for assignment of the substitution and chemical shifts of 1 H and 13 C NMR signals of ␥-tocopherol (2).

Referências

Documentos relacionados

Cytotoxic activity of diterpenes 1, 3, 4, 7-11 against three human cancer cell lines was evaluated.. No compounds showed cytotoxic potential with IC 50 values greater than 25

The diynes were evaluated as potential cytotoxic agents against three tumor cell lines: human ovarian adenocarcinoma (OVCAR-8), human metastatic prostate cancer (PC-3M) and

( )-Massoilactone, 1 displayed moderate cytotoxic activity against all tested cancer cell lines, being more active against NCI- H292 and HL-60 cancer cells lines ( Table 2 , entry

The cytotoxic activity against HCT-116, OVCAR-8, HL-60 and SF-295 cancer cell lines showed formosanin C ( 5 ) as the most active against all cell lines, while compounds 1 and 2

The compounds 3a-f were tested against three human cell lines where only of compounds 3c , 3e and 3f exhibited moderate antiproliferative activity against HL-60 cancer cell lines

The methanolic extract showed significant in vitro cytotoxic activity against four human cancer cell lines such as colon (DLD-1, SW-620), breast (MCF-7), head and neck (FaDu)..

The synthesized compounds I (a – d) and II (a – d) were screened in vitro for their antitumor activities against SK-LU-1, SPC-A-1 and 95D human lung cancer cell lines using the

The in vitro antitumor activities of 1, 2 and their corresponding organic ligands Py, L 1 , and L 2 were studied and evaluated, in which three human skin cancer cell lines