• Nenhum resultado encontrado

Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis

N/A
N/A
Protected

Academic year: 2021

Share "Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis"

Copied!
8
0
0

Texto

(1)

ht t p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Fusarium

culmorum

affects

expression

of

biofilm

formation

key

genes

in

Bacillus

subtilis

Maryam

Khezri

a,b,c

,

Gholamreza

Salehi

Jouzani

a,∗

,

Masoud

Ahmadzadeh

b

aMicrobialBiotechnologyandBiosafetyDepartment,AgricultureBiotechnologyResearchInstituteofIran(ABRII),AREEO,3135933151,

Karaj,Iran

bDepartmentofPlantProtection,CollegeofAgricultureandNaturalResources,UniversityofTehran,Karaj31587-11167,Iran cDepartmentofPlantProtection,FacultyofAgriculture,UrmiaUniversity,Urmia,Iran

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26November2014 Accepted28July2015

AssociateEditor:AndréRodrigues

Keywords: Bacillussubtilis Biofilm Sinr Tasa Fusariumculmorum

a

b

s

t

r

a

c

t

Itisknownthatthereiscorrelationbetweenbiofilmformationandantagonisticactivities ofBacillussubtilisstrains;but,themechanismofthiscorrelationisnotclear.So,theeffectof theplantpathogen(Fusariumculmorum)onthebiofilmformationinaB.subtilisstrainwith highantagonisticandbiofilmformationactivitieswasstudied.TheexpressionofsinRand

tasAgenesinvolvedinthebiofilmformationwasstudiedinbothsinglecultureofbacterium (B)andco-culturewithF.culmorum(FB)usingreal-timePCR.Theresultsrevealedthatthe expressionofthesinRgeneinbothBandFBconditionswascontinuouslydecreasedduring thebiofilmformationperiodand,after24h(B4andFB4),itreached1%and0.3%atthe planktonicphase(B1),respectively,whereastheexpressionofthetasAwascontinuously increasedandwas5.27and30timesmorethanthatattheplanktonicphase(B1)after 24h,respectively.So,theexpressionreductionrateforsinR(3times)andtheexpression increasingratefortasA(6times)weresignificantlyhigherinFBconditionsthantheBones. TherelativeexpressionofsinRinFB1(planktonicphase),FB2(8h),FB3(12h),andFB4(24h) timeswas0.65,0.44,0.35,and0.29,whereasthetasAgeneexpressionwas2.98,3.44,4.37,and 5.63-foldoftheoneatcoordinatetimepointsinBconditions,respectively.Thesignificant expressionreductionofsinRandincreaseoftasAconfirmedthatthepresenceofpathogen couldstimulatebiofilmformationintheantagonisticbacterium.

©2015SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Bacillussubtilisisknownasoneofthemostimportant antago-nistic(biocontrolagent)andplant-growthpromotingbacteria (PGPR)thatisisolatedfromrhizosphereofdifferentkindsof

Correspondingauthor.

E-mail:gsalehi@abrii.ac.ir(G.S.Jouzani).

plants.1–4B.subtilisstrainshavethepotentialtoproducemore

than twodozensofdifferentantimicrobialcompounds and antibioticswithanamazingvarietyofstructures5andalsoare

abletoformmulticellularstructuresorbiofilm.6–8Biofilm

for-mationoccursinmanybacterialspeciesinresponsetodiverse environmental conditions such as nutrient depletion and

http://dx.doi.org/10.1016/j.bjm.2015.11.019

1517-8382/©2015SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

drought,anditismediatedbymanymechanical, biochemi-cal,andgeneticfactors.8–10Commonly,amixtureofpolymeric

compounds(e.g.extracellularpolysaccharides,proteins,and DNA)andanaggregationofdifferentmicroorganismscanbe foundinbiofilms.11,12Abilitytoformbiofilmisassociatedwith

numerousbenefitsforitsbacteria.Forinstance,antibioticsare themostcommontoolstoremovebacteria;but,theyarenot efficientinthebiofilmstructure.6,13,14

Biofilmformationdependsontwomatrix geneoperons, includingyqxM(tapA-sipW-tasAgenes)andepsA-O(15genes) which are directly controlled by a repressor SinR and are responsible forthe synthesisofamyloid-like fibers and an exopolysaccharide astwo major biofilm components.2,15–19

DerepressionistriggeredbysinIwhichisactivatedby phos-phorylated Spo0A (Spo0A∼P) as a master and important regulatory protein in biofilm formation process.2 The tasA

geneintheoperonyqxMisthemajorgenewhichencodesthe proteininvolvedinantimicrobialactivities,sporecoat assem-bly,andgermination.Itisalsofoundinthestationaryphase, sporulatingcultures,andthebiofilmmatrix.16,17,20–22

The environmental conditions and presence of other organisms like plant pathogens, symbionts, commensal-ism organisms, and plant hosts can affect biofilm for-mation; therefore, different biofilm structures such as plaques,slimes, pellicles, andcoloniesare seenunder var-iousconditions.1,18,21,23,24 Previously,someresearchershave

shownthatthereispositivecorrelationbetweenbiofilm for-mationaswellasPGPRandantagonisticactivitiesofB.subtilis

strains.1,2,25,26Baisetal.1demonstratedthataB.subtilisstrain

(ATCC6051)wasabletoformbiofilm-likestructuresonthe rootsofArabidopsisplantsandprotectArabidopsisfrom infec-tionsbyPseudomonassyringae.Chenetal.2showedthatplant

protectionbyantagonisticB.subtilisstrainsagainstRalstonia solanacearumdependedonwidelyconservedgenesrequired forbiofilmformation,includingregulatorygenesandgenes formatrixproduction;so,theyprovidedevidencesuggesting thatmatrixproductioniscriticalforbacterialcolonizationon plantrootsurfaces.

Previously,we isolatedand selectedsomenative B. sub-tilisstrainswhichhadhigh biofilmformationpotentialand antagonisticcapabilityagainstFusariumculmorum,thecausal agent of foot and root rot on wheat. Finally, the strains withhighbiofilm productionand biocontrolpotentialwere selected.TheB.subtilisstrainBs12isolatedfromsugarbeet fieldsinKermanshahregion(Iran)showedhighbiofilm for-mation,volatileproduction,proteaseactivity,and79.4%and 83% inhibitoryeffect againstF. culmorum atlaboratory and greenhouselevels,respectively.27 Itwasshownthatvolatile

andproteaseproductionaswellasbiofilmformationbythis strainandalsootherselectedstrainshadsignificantlypositive correlation with their antagonistic ability,27 which

coordi-nated with the previous reports.1,2 The principal purpose

ofthis investigation was to find apart ofthe mechanism forcorrelation betweenbiofilm formationand antagonistic effect at molecular level; therefore, the effects of a plant pathogenicfungus(F.culmorum)onformingbiofilminB. sub-tilis(Bs12)were evaluated.Todoso,expressionofthetasA

and sinR genes in the strain Bs12 was investigated using real-timePCRmethodbothinthepresenceand absenceof

F.culmorum.

Materials

and

methods

Microorganismsandcultureconditions

Thenative B. subtilis strainBs12(GenBank accession num-berHQ234328)withhighpotentialinbiofilmformationand antagonisticactivityagainstF.culmorumwasused.27The

bac-terial strain was routinely grownon nutrient agar (NA) or Luria-Bertanibroth(LB)at37◦C.Forlongmaintenance,sterile 40%glycerolwasusedaccordingtoWellerandCooks28and,

then,transferredto−20◦C.TheF.culmorumstrainwaskindly

providedbyPlantProtectionResearchInstituteofIran(PPRI), cultivatedonpotatodextroseagar(PDA)at27◦Cforroutine experiments, and transferredto4◦C forlong time mainte-nance.

Primersdesigning

Two specificprimerspairs,TasA-F(CAAGCCGTTCCACTG TGTAG)/TasA-R(AACCGCTCCTGAATATGATGG)and SinR-F(AAAGGCTACTCACTATCAGAAC)/SinR-R(TCTAATTGA CCA TCGTATTCGG),were designedusingOligo (National BioscienceInc.,version5)softwareforconductingthe real-timePCRexperiments. Theseprimersamplified181bpand 188bpDNAfragmentsoftasAandsinRofB.subtilis, respec-tively.Theprimerpairs,16SrRNA-F(GTAACCTGCCTGTAA GACTGG)/16SrRNA-R(CTGTAAGTGGTAGCCGAAGC),with the PCRproductlengthof110bpwereusedastheinternal control.Primersweredesignedinordertohavethelengthof about20–22bases,G/Ccontentbetween40.9%and55%,and Tmofabout56–59◦C.LengthofthePCRsecondarystructures anddimerformationwascontrolledusingOligoAnalyzer1.0.3 software.TheprimersweresynthesizedbyMWG(Ebersberg, Germany).

Toevaluatethespecificityoftheprimers,aPCRwas per-formedusinggenomicDNAofB.subtilis(Bs12)andF.culmorum.

Genomic DNA ofthe bacterium and fungus was extracted usingGenEluteTMBacterialGenomicDNAKit(Sigma–Aldrich,

Zwijndrecht,NL)andCore-oneTMkit(CoreBio,USA),

respec-tively.

Co-cultureofB.subtilisandF.culmorum

Bs12cellsweregrowninbiofilmgrowthmedium(BGM) con-taininganLB-basedmediumplus0.15Mammoniumsulphate, 100mM potassiumphosphate, pH7,34mMsodiumcitrate, 1mMMgSO4,and0.1%glucose,asdescribedbyHamonand

Lazazzera.29Samplingwasperformedunderbacterial

plank-tonicandbiofilmformationconditions,accordingtoStanley et al.11 To obtain planktoniccells, the bacterial cells were

grown overnight in BGM mediumat37◦C withshaking at 200rpm. Afterwards, the medium containing bacteria was dividedintotwoparts,oneco-culturedwithsuspension con-taining106sporespermLofF.culmorumandanotherwithout

anyfungaltreatment(asnegativecontrol).Bothbeakerswere put in the above growth conditions for three more hours (OD600=2.5forcontrol).Atthistime, thebacterialmedium

wasdilutedwithanOD600=0.1infreshmediumand,then,the

(3)

thesame amountoffreshmedium.Analiquot ofcontents ofeachbeakerasplanktoniccellpopulation(6mL)was har-vested by centrifugation at 8000rpm for 10min for RNA isolation. Inthe second step,both beakers were incubated at37◦Cwithoutshaking;theseconditionswerenecessaryto inducebiofilmformationinbacteria.Thenextsamples con-taining6mLtakenfromeachbeakerwereharvested8,12,and 24hafterincubationbycentrifugationat8000rpmfor10min. Allthetakensampleswereimmediatelyputat−80◦Cuntil

RNAextraction.Tonormalizetheexperiments,100␮Lofthe mediacontainingmicroorganismswereculturedonNAand bacterialCFUwascountedineachsampleafter24hat37◦C. BeforeRNAisolation,normalizationwasperformedby dilut-ingthesamplescontainingmorebacterialcells asthefinal bacterialCFUwasthesameforallthetreatments.

TotalRNAisolationandcDNAsynthesis

TotalRNAwasextractedfrom theharvestedsamplesusing Aurum Total RNA Mini Kit (Bio-Rad, USA) according to the manufacturer’s instructions.The concentrationofRNA wasquantified using aspectrophotometer (NanoDrop 1000 spectrophotometer-Thermo Scientific). PCR was performed usingRNA(0.6␮g)asthetemplatetoensuretheabsenceof genomicDNAcontaminationintheRNAsamples.The tem-peratureprofileforPCRconsistedofafirstdenaturationstep of 5min at 94◦C, followed by 40 cycles of 94◦C/1min for denaturation,60◦C/1minforannealing,and72◦C/1minfor extension.Afinalextensionwascarriedoutat72◦C/5min.

Total RNA was transformed into cDNA using iScriptTM

cDNA SynthesisKit (Bio-Rad, USA)following the manufac-turer’sprotocol.ThetemperatureprogramforcDNAsynthesis was25◦C/5minfortheattachmentofprimers,42◦C/45minfor cDNAsynthesis,and85◦C/5minforenzymeinactivating.

Real-timePCR

Real-timePCRwascarriedoutusingiCycleriQrealtimePCR (Bio-Rad,USA)usingIQTMSYBR®GreenSupermixKit(Bio-Rad,

USA)in96-wellplates.AfterthedilutionofcDNA,1␮L(20ng) wasadded to24␮LofPCR mixture(12.5␮LofIQTM SYBR®

GreenSupermix,1␮Lofeachprimerat10pmol/␮Land9.5␮L ofRNase-freewater).SpecificcDNAswereamplifiedby real-timePCRusingthespecificprimers.Thereal-timePCRcycling conditionsweredesignatedasfollows:initialdenaturationat 95◦Cfor2min,followedby40cyclesof95◦Cfor20s, 60◦C for30s,and72◦Cfor20s,andthefinalextensionwas car-riedoutat72◦Cfor5min.Fluorescencemeasurementswere recordedduringeachannealingstep.Toestablishamelting curveandconfirmtheprimers’specificity,anadditionalstep startingfrom50to95◦Cwasperformed.Thisstepincluded ninety10scycles, ineach ofwhichthere wastemperature increaseby0.5◦Cand, atthe end ofeach10s, the emitted fluorescencewasrecorded.Theefficienciesofamplifications weredeterminedbyrunningastandardcurve bytheserial dilutions ofcDNA. Efficiency can be calculated bythe for-mula:E=[10(1/−s)−1]×100,wheresistheslopeofstandard curve.Foreachmeasurement,athresholdcyclevalue(CT)was

determined.CT isdefinedasthenumberofcycles required

forthefluorescentsignaltopassthethreshold(i.e.exceeds

the backgroundlevel). Finally, theexpressionofgenes was calculatedbyformula2−Ct.30Theresultswerenormalized

usingB.subtilis16SrRNAgeneastheinternalgene.The ultra-purewaterwasusedinsteadofcDNAasanegativecontroland thegeneexpressionlevelswerecomparedwiththenegative control.

Statisticalanalysis

MeasuresweretakenforeachconditionbycDNAsynthesized fromRNAextractedfromthreeindependentculturesand per-formedintriplicateforeachgene.Real-timePCRdataanalysis wasperformedusingBio-Radsoftwarebasedonthe thresh-oldcycle(CT).Analysisofvariance,comparisonofmeans,and

scoreoftreatmentgroupswereobtainedusingSAS(version 9.1)andDuncanMultipletest(p<0.01).

Results

Primerspecificityandreal-timePCRoptimization

Toevaluatespecificityofthedesignedprimers,PCRwas car-riedoutusinggenomicDNAofB.subtilis(Bs12)andF.culmorum.

WhenbacterialgenomicDNAwasusedasthetemplate, TasA-F/TasA-RandSinR-F/SinR-Rprimersamplified181and188bp fragments,respectively.Inaddition,thePCRproductof inter-nalcontrolprimerwasa110bpfragment.NoPCRproductwas observedwhenthefungalgenomicDNAornegativecontrol wasused.AftersamplingandRNAextraction,PCRwas per-formedusingthesamplesofRNAand16SrRNA-F/16SrRNA-R. Nofragmentwasamplifiedinthesamples.Theseresults con-firmed that there was no DNA contamination in the RNA samples. To determine the amplification efficiency, differ-entserialdilutionsofcDNAwereusedforeachprimer.For instance,fivedilutionsofcDNAfrom 1to0.0001wereused for 16SrRNA primersand, finally,cycle threshold, Tm, and standardcarverswereobtained.Accordingtothisexperiment, theefficiencyof16SrRNA,TasA,andSinRprimerswas deter-minedas92.75%,99.98%,and96.78%,respectively.

EvaluatingeffectofpathogenpresenceonsinRexpression

RelativeexpressionlevelsofsinRgeneinthestrainwere calcu-latedintheabsence(B)andpresenceofthefungus(FB)from threeindependentculturesintriplicate.Theresultsindicated thatthemaximumexpressionofsinRwasobservedwhenthe bacterialcellswereintheplanktonicphaseintheabsenceof

F.culmorum(B1)(Fig.1(a)).Byenteringthebiofilmformation phase, theexpressionofthe genewas criticallydecreased, whichwascontinuedoverthetimefromB1toB4(24hafter enteringthebiofilmformationperiod).Themaximum reduc-tionrateofthegeneexpressionwasobserved8hafterstarting thebiofilmformationcomparedwithplanktonicphase(about 80%reductions)andtheminimumexpressionwasobserved 24hafterstartingbiofilmformation(B4)whichwasabout1% oftheexpressionlevelinplanktonicphase(Fig.1(a)).When thebacterialcellswereco-culturedwithF.culmorum,thesinR

expressionreductiontrendwascriticallyincreased.Similar totheexperimentsinwhichplantpathogenwasabsent,the

(4)

1.2 1 0.8 0.6 0.4 0.2 0 1.2 a a b b c c c d 1 0.8 0.6 0.4 0.2 0 Planktonic phase Relativ e e xpression Relativ e e xpression Planktonic phase

Times after starting biofilm formation phase Time after starting biofilm formation phase

8 h 12 h 24 h 8 h 12 h 24 h

a

b

Fig.1–RelativeexpressionofthesinRgeneduringbiofilmformationperiodcomparedwiththeplanktonicphase(a)inthe

singlecultureofB.subtilisstrain(B),(b)intheco-cultureofbacteriaB.subtilisandF.culmorum(FB).Differentlettersindicate

significantdifference(p<0.05).

maximumexpressionintheco-culturesystemoccurredwhen thebacterialcellswereinplanktonicphase(FB1).Itwas con-tinuouslyreduced8(FB2),12(FB3),and24(FB4)hafterentering thebiofilmformationphaseandreached3%oftheexpression levelinplanktonicphase(FB1)(Fig.1(b)).

Themaximumreductionrateofthegeneexpressionwas observed8hafterstartingthebiofilmformation(about64% reductions).Comparisonoftheresultsofbothtreatments(B andFB)showedthattherelativeexpressionofsinRinFB con-ditionwassignificantlylowerthanthatofBconditioninthe samegrowthconditionsandtimepoints(Fig.2(a)).The rela-tiveexpressionforFB1,FB2,FB3,andFB4was0.65,0.44,0.35, and0.29comparedwithB1,B2,B3,andB4,respectively,and byincreasingthetimeduringthebiofilmformationperiod, thereductionrateofthesinRgeneexpressioninFBcondition wascontinuouslyincreasedcomparedwiththatofB condi-tioninthesamegrowthconditionsandtimepoints(Fig.2(a)). TherelativeexpressionofthesinRgeneduringtheplanktonic andbiofilmformationperiodinBandFBconditionscompared

withtheplanktonicphaseofBconditionisshowninFig.3(a). Themaximumandminimumexpressionswereobservedin theplanktonicphaseofBcondition(100%)and24hafter start-ingthebiofilmformationinFBtreatment(0.3%),respectively (Fig.3(a)).

Evaluatingeffectofthepathogenpresenceonexpression oftasAgene

TheresultsofquantitativePCRshowedthattheexpressionof

tasAgenecontinuouslyincreasedfromplanktonictothefinal biofilm formationphasesinBcondition(B1–B4).The maxi-mumgeneexpressionwasobservedwhenthebacterialcells wereat24hafterstartingthebiofilmformationperiodinthe absenceofF.culmorum(B4),whichwas5.27timesmorethan thatintheplanktonicphase(B1)(Fig.4(a)).Byentering the biofilm formationphase,thegeneexpressionwascritically increased,whichwascontinuedoverthetimefromB1toB4 phases.Themaximumincreasingrateofthegeneexpression

7 6 5 4 3 2 1 0 0 Planktonic phase Relativ e e xpression Relativ e e xpression 8 h 12 h 24 h Planktonic phase

Time after starting biofilm formation phase Time after starting biofilm formation phase

8 h 12 h 24 h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 a b c d d c b a

a

b

Fig.2–RelativeexpressionofthesinR(a)andtasA(b)genesduringplanktonicphaseandbiofilmformationperiodsinthe

co-cultureofB.subtilisandF.culmorum(FB)comparedwithitsexpressionpointwhenthepathogenisabsentateachtime

(5)

Planktonic phase Planktonic phase Relativ e e xpression Relativ e e xpression 8 h 12 h 24 h 8 h 12 h 24 h

Time after entering biofilm formation Time after starting biofilm formation phase

1.2 35 30 25 20 15 10 5 0 1 0.8 0.6 0.4 0.2 0 a a b b c c e d e d f g g gh g f B FB B FB

a

b

Fig.3–RelativeexpressionofthesinR(a)andtasA(b)genesduringbiofilmformationperiodinbothsingle(B)and

co-culture(FB)conditionscomparedwiththeplanktonicphaseinthesingleculturecondition.Differentlettersindicate

significantdifference(p<0.05). 0 Planktonic phase Relativ e e xpression Relativ e e xpression 8 h 12 h 24 h Planktonic phase

Time after starting biofilm formation phase Time after entering to biofilm formation phase

8 h 12 h 24 h 1 2 3 4 5 6 3.5 3 2.5 2 1.5 1 0.5 0 4 a b c d d c b a

a

b

Fig.4–RelativeexpressionofthetasAgeneduringbiofilmformationperiodcomparedwiththeplanktonicphase(a)inthe

singlecultureofB.subtilisstrain(B),and(b)intheco-cultureofbacteriumB.subtilisandF.culmorum(FB).Differentletters

indicatesignificantdifference(p<0.05).

wasobservedat24hafterstartingthebiofilmformationin whichtheexpressionofthegenewasincreasedupto315% comparedwiththephaseB3,whereastheminimum increas-ingratewasobservedat8hafterstartingbiofilmformation (B2)inwhichthe expressionofthe genewas increasedby about18%comparedwiththepreviousphase(B1)(Fig.4(a)).

Whenthe bacterialcellswere co-cultured withF. culmo-rum,thetasAexpressionwassignificantlyandcontinuously increased, which was critically increased during different phasesfromFB1toFB4(Fig.4(b)).Thisincreasingratewas sig-nificantlymorethanthatofthetreatmentscontainingonly bacterialcells.ThelevelsofexpressionofthetasAgene8,12, and24hafterenteringbiofilmformationphasewere1.59,2.99, and3.26timesmorethanthoseoftheplanktonicphase(FB1) (Fig.4(b)).

TheexpressionofthetasAgeneinFB1toFB4phaseswas 2.98,3.44,4.37,and5.63-foldoftheoneatsimilartimepoints inB(B1toB4)conditions,respectively(Fig.2(b)).Theseresults suggestedthatthepathogenicfungusstimulatedthe expres-sionoftasAgene.Fig.3(b)showstherelativeexpressionofthe

tasAgeneduringtheplanktonicandbiofilmformationperiods

intreatmentsBandFBcomparedwiththeplanktonicphaseof treatmentB(B1).Themaximumexpressionwasobserved24h afterstartingthebiofilmformationintreatmentFB,whichwas 30timesmorethanthatoftheplanktonicphaseoftreatment B(3000%increase)(Fig.3(b)).

Discussion

Wecharacterized30IraniannativeB.subtilisstrainsisolated from the rhizosphere of various hosts in different regions of Iran. The results of laboratory and greenhouse experi-mentsshowedthatvolatileandproteaseproductionaswell asbiofilmformationbysomestrainshadsignificantlypositive correlationwiththeirantagonisticabilityand,finally,themost powerfulantagoniststrainswithhighbiofilmproductionwere selected.StrainBs12isolatedfromsugarbeetfieldsin Kerman-shahregionshowed79.4%and83%inhibitoryeffectagainst

F.culmorumatlaboratoryandgreenhouselevels,respectively, andhighbiofilmformation,volatileproduction,andprotease activity; therefore, it was selected forthe present study.27

(6)

Previously, it has been shown that many different factors suchas different fungal compounds (fungal culture super-natant), pH, temperature, nutrient compounds,31 indole,13

complexpolysaccharides,32andoxygenrateaffectthebiofilm

formation.So,toexplorethedetailedmechanismsof differ-entfactorsonbiofilmformationinB.subtilis,itisnecessary to perform detailed studies covering all bioticand abiotic environmentalfactors.Different geneticpathwaysthat are inducedbyenvironmentalsignalsareinvolvedinthe inter-action of cells and abiotic surfaces. These factors can be changedintheamountortypeofnutrientcontent,osmotic factor,pH,temperature,iron,oxidativestress,andsubstrate type.33,34StanleyandLazazzera35showedthat

environmen-talsignalsand regulatoryproteinsaffecttheinitialstepsof bacterialbiofilmformationandthenatureofmaturebiofilm structure.So,surfaceattachment andbiofilmformationon differentbioticandabioticsubstratesareinfluencedbynature andvarious environmentalstimulations.24 Thepresenceof

otherorganisms,suchaspathogens,isknownasoneofthe factors affecting the biofilm formation and structurein B. subtilis;but,themechanismisnotwellknown.1,25,26So,the

principalpurposeofthisinvestigationwastofindapartof themechanismforcorrelationbetweenbiofilmformationand antagonisticeffectatmolecularlevel;therefore,theeffectsof aplantpathogenicfungus(F.culmorum)onformingbiofilmin

B.subtilis(Bs12) were evaluated.Todoso,real-time PCRas asensitiveandquantitativetechniquewasusedtomeasure theexpressionprofilesoftwoimportantgenes(sinRandtasA)

involvedinthebiofilmformationprocessofthebacteriain thepresenceandabsenceofF.culmorum,thecausalagentof wheatcommonrootrot.B.subtilisiscommonlyisolatedfrom rhizosphereofdifferentplants,showsantagonisticactivities againstplantpathogens,and maybeusedasplant-growth promotingbacteria.1,3,4Variousmicroorganismscanbefound

togetherintherhizosphere.Thepresenceandproductionof metabolitesbyothermicroorganismscanbeveryeffectivefor biofilmformationintargetbacteria.Ourresultsindicatedthat theexpressionofsinRwassignificantlyreducedinthe pres-enceofthepathogenicfungus.Expressionofthisgenewas atahigh levelintheplanktonicphaseofbacterialgrowth; but,itdecreaseduponenteringtheproductionofbiofilm,as was expected. Several previousstudies have demonstrated thatsinRasoneofthemostimportantregulatorygeneshasa directnegativecontrolonbiofilmformationofB.subtilis.17,20,21

Leimanetal.36showedthatpointmutationsinthesinRgene

resultedina significant increaseinbiofilm formation inB. subtilisandconfirmedthatitisakeymatrixregulatorygene forbiofilmformation. Previously,thissubjecthasbeenalso confirmedbyotherresearchers.37,38Synthesisofmain

compo-nentsofbiofilmmatrix,suchasextracellularpolysaccharides andproteins,ismediatedbytwooperonsof15-geneepsand three-gene yqxM,respectively.16 Both of these operons are

underdirectnegativecontrolofthesinR gene.Indeed,this repressorproteinbindstomultiplesiteswithinthepromoter regionforthementionedoperons,therebyrepressingits tran-scription.Whenthisnegativeregulatorisactive,expression ofthese18importantgeneswillbesuppressed.So,sinRgene isknownasamasternegativeregulatorinthebiofilm forma-tionprocessofB.subtilis.17TranscriptionofthesinRgeneis

controlledbyanothergenecalledsinI.Whenbacteriaarein

biofilmformationconditions,suchasenvironmentalstress, shortageofsomenutrient sources,etc.,transcriptional fac-torSpoAbecomesphosphorylatedandactivatesexpression ofsinI.ActivatedsinIcanbepreventedfromsinRexpression. Thus,epsandyqxMoperonsareactivatedand,consequently, the genesinvolvedinbiofilm formationareexpressed.20 In

the present study, it was observed that the expressionof

sinRwasdecreasedinthebiofilmcomparedwiththephase ofplanktonic cells inbothtreatments. On theother hand, expressionofsinRinfree-swimmingcellswashigherthanthat ofthesessileonesinthepresenceorabsenceofF.culmorum.

TheexpressionofsinRinFBconditionwaslessateachtime pointcomparedwithBcondition.Inplanktoniccells,thegene expressionlevelwasdecreasedintheco-culturesystem(FB1) comparedwithsinglecultureofbacterium(B1).This diminu-tionratewasrepeatedateachtimepointofbiofilmformation phase,namelyFB2,FB3,andFB4samplescomparedwithB2, B3,andB4samples,respectively.Theseresultssuggestedthat thepresenceoffungusinBs12growthmediumcauseda sig-nificantreductionofsinRgeneexpressioninbothplanktonic andsessilecells.

InthecaseoftasAgene,opposite resultswereobtained. Inthe planktonicphase,expressionofthegenewasatthe lowest level. By entering thebiofilm productionphase, the expressionofthetasAgenewasincreasedand,atfinaltime pointofbiofilmformation(B4),itreachedthehighestlevels of5.28-fold.Previously,someotherresearchershavereported theseresultsandshownsignificantincreaseintheexpression oftasAgeneduringbiofilmformation.20,39,40Thisincreasing

ratewasobservedinbacterialgrowthphasesinbothsingle andco-cultureconditions;but,theincreasingrateinFBwas significantlymorethanthatoftreatmentsB.Brandaetal.16

showedthatTasAisamajorproteininbiofilmextracellular matrix and the absence of this proteinresults in a resid-ualmatrix.TasAhasbeendetectedinstationaryphaseand sporulatingcultures.ItappearsthatTasAhasseveralother functions;forinstance,itactsasabroad-spectrum antibac-terialfactorandseemstohaverolesinsporecoatassembly and germination.40,41 Evaluation of the relative expression of tasAgene showed that the expressioninFB treatments was significantlyincreasedcomparedwithBtreatmentsat eachtimepoint.Similarresultswereobservedinplanktonic andallbiofilmformationlevels.Basedonthesedata, expres-sion oftasA gene increasedin the presenceof pathogenic fungus. Many transcriptionalfactors inphysiological activ-ities ofbacteria are regulated byenvironmental stress;for instance,biofilm formationbyB.subtilisstimulatedin non-optimal growth conditions. As F. culmorum is a pathogenic fungus, its presence in growth medium of the antagonist bacteriahasprovidedanon-optimalcondition;consequently, inducedandenhancedbiofilmformationdown-regulatesinR

andup-regulatingtasAgenes.

Inadditiontothementionedkeygenesinvolvedinbiofilm formationinB.subtilis,ithasbeenrecentlydemonstratedthat otherdifferentgenesandfactorsaffectbiofilmformation.For instance,ithasbeenshownthatthegenesencoding antimi-crobialproteins,suchassurfactinandbacillomycinwhichare involved inthe antagonisticactivities ofbacteriumagainst plant pathogens, significantly and positively affect biofilm formation.25,26 Gerwig et al.42 confirmed that the protein

(7)

tyrosinekinasesEpsBandPtkAdifferentiallyaffectedbiofilm formationinB.subtilis.

Also, it has been shown that the RapP-PhrP Quorum-sensingsystemofB.subtilisaffectsbiofilmformationthrough multipletargets dueto anatypical signal-insensitiveallele of RapP.43 Recently, complete genome of some

biofilm-formingB.subtilisstrainswithantagonisticactivitieshasbeen sequenced. Also,moredetailed information about the cor-relation of antagonistic activities and biofilm formation is expectedtobeexplored.44

Inconclusion,accordingtoourresults,forthefirsttime, itwasshownthatthemajorgenes,includingsinRandtasA

involvedinbiofilmformationinB.subtilis,weresignificantly affectedbytheinteractionofbacteriaandfungus.Also,the presenceof F. culmorum stimulated biofilm formation inB. subtilis.Thesefindingsconfirmedthatthepresenceofother organisms,suchasplantpathogensintheenvironmentofthe bacterium,stimulatedbiofilmformation.Thepresentstudy couldbethefirststeptodeterminethemechanismof relation-shipbetweenantagonisticactivitiesandabiofilmformation. But,tocharacterizethedetailedmechanisms,itisnecessary toperformmoredetailedstudiesinthisfield.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

The authors wish tothank all the staff of Department of MicrobialBiotechnologyandBiosafety,Agricultural Biotech-nologyResearchInstituteofIran(ABRII),fortheir technical assistance.Thisworkwassupportedbyagrantfrom Agricul-turalResearch,EducationandExtensionOrganization(AREEO) (Grantnumber:2-05-05-8711).

r

e

f

e

r

e

n

c

e

s

1.BaisHP,FallR,VivancoJM.BiocontrolofBacillussubtilis

againstinfectionofArabidopsisrootsbyPseudomonas

syringaeisfacilitatedbybiofilmformationandsurfactin

production.PlantPhysiol.2004;134:307–319.

2.ChenY,YanF,ChaiY,etal.Biocontroloftomatowiltdisease

byBacillussubtilisisolatesfromnaturalenvironments

dependsonconservedgenesmediatingbiofilmformation.

EnvironMicrobiol.2013;15:848–864.

3.MohammadipourM,MousivandM,SalehiJouzaniG,

AbbasalizadehS.Molecularandbiochemical

characterizationofIraniansurfactin-producingBacillus

subtilisisolatesandevaluationoftheirbiocontrolpotential

againstAspergillusflavusandColletotrichumgloeosporioides.

CanJMicrobiol.2009;55:395–404.

4.WaewthongrakW,PisuchpenS,LeelasuphakulW.Effectof

Bacillussubtilisandchitosanapplicationsongreenmold

(PeniciliumdigitatumSacc.)decayincitrusfruit.PostharvestBiol

Technol.2015;99:44–49.

5.SteinT.Bacillussubtilisantibiotics:structures,synthesesand

specificfunctions.MolMicrobiol.2005;56:845–857.

6.CairnsLS,HobleyL,Stanley-WallNR.Biofilmformationby

Bacillussubtilis:newinsightsintoregulatorystrategiesand

assemblymechanisms.MolMicrobiol.2014;93:587–598.

7.JamilB,HasanF,HameedA,AhmedS.IsolationofBacillus

subtilisMH-4fromsoilanditspotentialofpolypeptidic

antibioticproduction.PakJPharmSci.2007;20:26–31.

8.MorikawaM,KagihiroS,HarukiM,etal.Biofilmformation

byaBacillussubtilisstrainthatproduces␥-polyglutamate.

Microbiology.2006;152(Pt9):2801–2807.

9.SawhneyR,BerryV.Bacterialbiofilmformation,

pathogenicity,diagnosticsandcontrol:anoverview.IndianJ

MedSci.2009;63:313–321.

10.ZhangW,SeminaraA,SuarisM,BrennerMP,WeitzDA,

AngeliniTE.NutrientdepletioninBacillussubtilisbiofilms

triggersmatrixproduction.NewJPhys.2014;16:015028.

11.StanleyNR,BrittonRA,GrossmanAD,LazazzeraBA.

Identificationofcataboliterepressionasaphysiological

regulatorofbiofilmformationbyBacillussubtilisbyuseof

DNAmicroarrays.JBacteriol.2003;185:1951–1957.

12.VuB,ChenM,CrawfordRJ,IvanovaEP.Bacterialextracellular

polysaccharidesinvolvedinbiofilmformation.Molecules.

2009;14:2535–2554.

13.HuM,ZhangC,MuY,ShenQ,FengY.Indoleaffectsbiofilm

formationinbacteria.IndianJMicrobiol.2010;50:362–368.

14.MorrisCE,MonierJM.Theecologicalsignificanceofbiofilm

formationbyplant-associatedbacteria.AnnuRevPhytopathol.

2003;41:429–453.

15.KearnsDB,ChuF,BrandaSS,KolterR,LosickR.Amaster

regulatorforbiofilmformationbyBacillussubtilis.Mol

Microbiol.2005;55:739–749.

16.BrandaSS,ChuF,KearnsDB,LosickR,KolterR.Amajor

proteincomponentoftheBacillussubtilisbiofilmmatrix.Mol

Microbiol.2006;59:1229–1238.

17.ChuF,KearnsDB,BrandaSS,KolterR,LosickR.Targetsof

themasterregulatorofbiofilmformationinBacillussubtilis.

MolMicrobiol.2006;59:1216–1228.

18.Mielich-SüssB,LopezD.Molecularmechanismsinvolvedin

Bacillussubtilisbiofilmformation.EnvironMicrobiol.2014,

http://dx.doi.org/10.1111/1462-2920.12527.

19.StoweSD,OlsonAL,LosickR,CavanaghJ.Chemicalshift

assignmentsandsecondarystructurepredictionofthe

masterbiofilmregulator,SinR,fromBacillussubtilis.Biomol

NMRAssign.2014;8:155–158.

20.KearnsDB.DivisionoflabourduringBacillussubtilisbiofilm

formation.MolMicrobiol.2008;67:229–231.

21.KobayashiK.Bacillussubtilispellicleformationproceeds

throughgeneticallydefinedmorphologicalchanges.J

Bacteriol.2007;189:4920–4931.

22.VlamakisH,ChaiY,BeauregardP,LosickR,KolterR.Sticking

together:buildingabiofilmtheBacillussubtilisway.NatRev

Microbiol.2013;11:157–168.

23.DanhornT,FuquaC.Biofilmformationbyplant-associated

bacteria.AnnuRevMicrobiol.2007;61:401–422.

24.MolinaMA,RamosJL,UrgelME.Plant-associatedbiofilms.

RevEnvironSciBiotechnol.2003;2:99–108.

25.LuoC,ZhouH,ZouJ,etal.BacillomycinLandsurfactin

contributesynergisticallytothephenotypicfeaturesof

Bacillussubtilis916andthebiocontrolofricesheathblight

inducedbyRhizoctoniasolani.ApplMicrobiolBiotechnol.

2014:1–14.

26.ZeriouhH,deVicenteA,Pérez-GarcíaA,RomeroD.Surfactin

triggersbiofilmformationofBacillussubtilisinmelon

phylloplaneandcontributestothebiocontrolactivity.

EnvironMicrobiol.2014;16:2196–2211.

27.KhezriM,AhmadzadehM,SalehiJouzaniGH,etal.

Characterizationofsomebiofilm-formingBacillussubtilis

strainsandevaluationoftheirbiologicalpotentialagainst

(8)

28.WellerDM,CookRJ.Suppressionoftake-allofwheatbyseed

treatmentwithfluorescentpseudomonades.Phytopathology.

1983;73:463–469.

29.HamonMA,LazazzeraBA.Thesporulationtranscription

factorSpo0AisrequiredforbiofilmdevelopmentinBacillus

subtilis.MolMicrobiol.2001;42:1199–1209.

30.LivakKJ,SchmittgenTD.Analysisofrelativegeneexpression

datausingreal-timequantitativePCRandthe2(−DeltaDelta

C(T))Method.Methods.2001;25:402–408.

31.O’TooleG,KaplanHB,KolterR.Biofilmformationas

microbialdevelopment.AnnuRevMicrobiol.2000;54:

49–79.

32.BeauregardPB,ChaiY,VlamakisH,LosickR,KolterR.Bacillus

subtilisbiofilminductionbyplantpolysaccharides.ProcNatl

AcadSciUSA.2013;110:E1621–E1630.

33.VeeningJW,KuipersOP,BrulS,HellingwerfKJ,KortR.Effects

ofphosphorelayperturbationsonarchitecture,sporulation,

andsporeresistanceinbiofilmsofBacillussubtilis.JBacteriol.

2006;188:3099–3109.

34.VillaF,RemelliW,ForlaniF,GambinoM,LandiniP,Cappitelli

F.Effectsofchronicsub-lethaloxidativestressonbiofilm

formationbyAzotobactervinelandii.Biofouling.

2012;28:823–833.

35.StanleyNR,LazazzeraBA.Environmentalsignalsand

regulatorypathwaysthatinfluencebiofilmformation.Mol

Microbiol.2004;52:917–924.

36.LeimanSA,ArboledaLC,SpinaJS,McLoonAL.SinRisa

mutationaltargetforfine-tuningbiofilmformationin

laboratory-evolvedstrainsofBacillussubtilis.BMCMicrobiol.

2014;14:301.

37.TerraR,Stanley-WallNR,CaoG,LazazzeraBA.Identification

ofBacillussubtilisSipWasabifunctionalsignalpeptidase

thatcontrolssurface-adheredbiofilmformation.JBacteriol.

2012;194:2781–2790.

38.ChaiY,BeauregardPB,VlamakisH,LosickR,KolterR.

Galactosemetabolismplaysacrucialroleinbiofilm

formationbyBacillussubtilis.MBio.2012;3:e00184–e212.

39.HamonMA,StanleyNR,BrittonRA,GrossmanAD,Lazazzera

BA.IdentificationofAbrB-regulatedgenesinvolvedinbiofilm

formationbyBacillussubtilis.MolMicrobiol.2004;52:847–860.

40.StöverAG,DriksA.Secretion,localization,andantibacterial

activityofTasA,aBacillussubtilisspore-associatedprotein.J

Bacteriol.1999;181:1664–1672.

41.SerranoM,ZilhãoR,RiccaE,OzinAJ,MoranCPJr,Henriques

AO.ABacillussubtilissecretedproteinwitharolein

endosporecoatassemblyandfunction.JBacteriol.

1999;181:3632–3643.

42.GerwigJ,KileyTB,GunkaK,Stanley-WallN,StülkeJ.The

proteintyrosinekinasesEpsBandPtkAdifferentiallyaffect

biofilmformationinBacillussubtilis.Microbiology.2014;160(Pt

4):682–691.

43.OmerBendoriS,PollakS,HiziD,EldarA.TheRapP-PhrP

quorum-sensingsystemofBacillussubtilisstrainNCIB3610

affectsbiofilmformationthroughmultipletargets,duetoan

atypicalsignal-insensitivealleleofRapP.JBacteriol.

2015;197:592–602.

44.Sanchez-VizueteP,TanakaK,BridierA,etal.Genome

sequencesoftwonondomesticatedBacillussubtilisstrains

abletoformthickbiofilmsonsubmergedsurfaces.Genome

Referências

Documentos relacionados

(Unioeste 2013) “... esta palavra, Filosofia, significa o estudo da sabedoria, e por sabedoria não se deve entender apenas a prudência nos negócios, mas um conhecimento perfeito

The antibiofilm activity of chalcogenoesters was determined on biofilm formation and preformed biofilms by biofilm mass quantification (by crystal violet staining) and colony

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

O que significa que para uma topologia em cascata assimétrica operando sob uma estratégia de modu- lação na qual o módulo de menor tensão opera com modulação PWM, a

1997 avaliaram o grau de severidade da ramulose em cinco genótipos de algodão e em 20 híbridos F1, em condições de campo em Viçosa-Minas Gerais e constataram que a variedade

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and