• Nenhum resultado encontrado

J. Aerosp. Technol. Manag. vol.4 número2

N/A
N/A
Protected

Academic year: 2018

Share "J. Aerosp. Technol. Manag. vol.4 número2"

Copied!
6
0
0

Texto

(1)

INTRODUCTION

The sustained increase of air transportation over the last GHFDGHVKDVOHGWRWUDI¿FVDWXUDWHGVLWXDWLRQV7RPDQDJH VDIHO\ DQG HI¿FLHQWO\ VXFK WUDI¿F QHZ PDQHXYHULQJ capabilities are needed on board civil aviation aircraft to SHUIRUPDGYDQFHG'WUDMHFWRULHVZKLOHSUHGLFWLYHWRROV JLYHQUHIHUHQFH'WUDMHFWRULHVDUHQHFHVVDU\WRHVWLPDWH DFFXUDWHO\WKHLULPSDFWVLQWHUPVRIEXUQHGIXHODQGQRLVH HPLVVLRQV%RWKREMHFWLYHVUHTXLUHWKHDELOLW\RISHUIRUP LQJDLUFUDIWÀLJKWG\QDPLFVLQYHUVLRQ'LIIHUHQWLDOÀDWQHVV a concept introduced by the school of Fontainebleau (Fliess et al KDV SURYLGHG QHZ RSSRUWXQLWLHV WR GHVLJQ DGYDQFHG PDQDJHPHQW DQG VXSHUYLVLRQ VFKHPHV IRU QRQOLQHDU V\VWHPV $FFRUGLQJ WR WKLV WKHRU\ JLYHQ WKH GHVLUHG WUDMHFWRU\ IRU ZKDW LV FDOOHG D ÀDW RXWSXW LW EHFRPHVVWUDLJKWIRUZDUGWRGHULYHWKHFRUUHVSRQGLQJLQSXW 6RPH DXWKRUV KDYH DOUHDG\ JLYHQ VRPH LQVLJKW LQWR WKH

GLIIHUHQWLDO ÀDWQHVV RI DLUFUDIW ÀLJKW G\QDPLFV /DYLJQH et al0DUWLQZKLOHRWKHUVKDYHFRQVLGHUHG LWVSRWHQWLDODSSOLFDWLRQVWRDLUFUDIWWUDMHFWRU\PDQDJHPHQW /Xet al

,QWKLVFRPPXQLFDWLRQ¿UVWO\DVLPSOL¿HGSURRIRIWKH LPSOLFLW GLIIHUHQWLDO ÀDWQHVV RI ÀLJKW JXLGDQFH G\QDPLFV LV GLVSOD\HG 6HFRQGO\ D IHHGIRUZDUG QHXUDO QHWZRUN VWUXFWXUHLVGHYHORSHGWRLQYHUWWKHÀLJKWJXLGDQFHG\QDP LFV,VVXHVUHODWHGWRWKHHIIHFWLYHWUDLQLQJRIVXFKVWUXFWXUH DUHGLVFXVVHGDQGQXPHULFDOUHVXOWVUHODWHGWRDUHIHUHQFH DLUFUDIW PRGHO DUH GLVSOD\HG7KHVH UHVXOWV VKRZ WKDW WKH SURSRVHGDSSURDFKDOORZVWKHLGHQWL¿FDWLRQRIÀDWQHVVSURS HUW\RIÀLJKWJXLGDQFHG\QDPLFVUHVXOWLQJLQDQXPHULFDO WRROIRUQHZDLUFUDIWWUDMHFWRU\PDQDJHPHQWDSSOLFDWLRQV

DIFFERENTIAL FLATNESS OF NONLINEAR SYSTEMS

7ZRGH¿QLWLRQVRIGLIIHUHQWLDOÀDWQHVVDUHLQWURGXFHGRQH UHODWHGWRV\VWHPVIRUZKLFKFDXVDOUHODWLRQVKLSVRILQWHUHVW DUHDQDO\WLFDOO\GLVSOD\HGDQGDQRWKHURQHZKHUHWKHVHFDXVDO

Neural Networks Modelling for Aircraft Flight Guidance

Dynamics

Wen-Chi Lu1, Walid El-Moudani2, Téo Cerqueira Revoredo3,*, Felix Mora-Camino4 1DWLRQDO)RUPRVD8QLYHUVLW\<XQOLQ±7DLZDQ

/HEDQHVH8QLYHUVLW\)DFXOW\RI%XVLQHVV7ULSROL±/HEDQRQ

8QLYHUVLGDGHGR(VWDGRGR5LRGH-DQHLUR5LRGH-DQHLUR5-±%UD]LO eFROH1DWLRQDOGHO¶$YLDWLRQ&LYLOH7RXORXVH±)UDQFH

Abstract: The sustained increase of the air transportation sector over the last decades has led to traffic satu-rated situations, inducing higher costs for airlines and important negative impacts for airport surrounding communities. The efficient management of air traffic supposes that aircraft trajectories are fully mastered and their impacts can be accurately forecasted. Inversion of aircraft f light dynamics, which are essentially nonlinear, appears necessary. Aircraft f light dynamics is shown to be differentially f lat, which is a property that has enabled the development of new numerical tools for the management of complex nonlinear dynamic systems. However, since in the case of aircraft f light dynamics this differential f latness property is implicit, a neural network is introduced to deal with its numerical inversion. Results related to the developed neural network training are displayed, while potential uses of the proposed tool are discussed.

Keywords:1HXUDOQHWZRUNV'LIIHUHQWLDOÀDWQHVV$LUFUDIWÀLJKWG\QDPLFV

5HFHLYHG $FFHSWHG

DXWKRUIRUFRUUHVSRQGHQFHWHRUHYRUHGR#\DKRRFRPEU

'HSDUWPHQWR GH (OHWU{QLFD H 7HOHFRPXQLFDo}HV ± )DFXOGDGH GH (QJHQKDULD±8(5-±5XD6mR)UDQFLVFR;DYLHUQƒ

(2)

UHODWLRQVKLSV DUH LQWURGXFHG WKURXJK LPSOLFLW IXQFWLRQV$ JHQHUDOQRQOLQHDUV\VWHPZKRVHG\QDPLFVDUHJLYHQE\(T

ZKHUHFLVDVPRRWKPDSSLQJH[SOLFLWO\ÀDWZLWKUHVSHFWWRWKH output vector ZLIZ is an mthRUGHUYHFWRUZKLFKFDQEHH[SUHVVHG DQDO\WLFDOO\DVDIXQFWLRQRIWKHFXUUHQWVWDWHWKHFXUUHQWLQSXWDQG its derivatives and also such as the state and the input vectors can EHDQDO\WLFDOO\H[SUHVVHGDVDIXQFWLRQRIZDQGLWVGHULYDWLYHV 7KHUHDUHVPRRWKPDSSLQJVGxGu and GzDVLQ(T

, , ,

Z G X U U( )

z f p

= ^ h D

, , ,

X G Z Z Z( )

x f q

= ` o j E

, , ,

U G Z Z Z( )

U f q 1

= ` o + j

F

ZKHUHp and qDUHLQWHJHUQXPEHUV9HFWRUZLVFDOOHGDÀDW RXWSXWIRUWKHQRQOLQHDUV\VWHP$OWKRXJKWKHUHLVQRV\VWHP DWLFDOZD\WRGHWHUPLQHWKHÀDWRXWSXWWKHFRPSRQHQWVRIWKH ÀDWRXWSXWXVXDOO\SRVVHVVVRPHSK\VLFDOPHDQLQJ

7KHH[SOLFLWÀDWQHVVSURSHUW\LVRISDUWLFXODULQWHUHVWIRUWKH VROXWLRQRIDPDQDJHPHQWSUREOHPZKHQDPHDQLQJIXOÀDWRXWSXW FDQEHUHODWHGWRLWVREMHFWLYHVIRULQVWDQFHLQPDQ\VLWXDWLRQV WKH PDQDJHPHQW SUREOHP FDQ EH IRUPXODWHG DV D ÀDWRXWSXW WUDMHFWRU\WUDFNLQJSUREOHP+RZHYHUIRUPDQ\V\VWHPVQR FRPSOHWHDQDO\WLFDOPRGHOVDUHDYDLODEOHWRGHVFULEHWKHLUIXOO G\QDPLFV6RPHRIWKHLUFRPSRQHQWVPDNHXVHRILQSXWRXWSXW QXPHULFDOWDEOHVGHULYHGERWKIURPWKHRU\DQGIURPH[SHULPHQWDO GDWD,QWKHVHFDVHVWKHDYDLODEOHWKHRU\SURYLGHVLQJHQHUDOWKH PDLQPDWKHPDWLFDOSURSHUWLHVRIWKHVHLPSOLFLWIXQFWLRQVZKLOH H[SHULPHQWDOGDWDDUHXVHGWREXLOGDFFXUDWHLQSXWRXWSXWQXPHUL FDOGHYLFHV7KLVKDSSHQVIRULQVWDQFHZKHQÀLJKWG\QDPLFV PRGHOLQJLVFRQVLGHUHGHLWKHUIRUFRQWURORUVLPXODWLRQSXUSRVHV VLQFH LQ SUDFWLFH WKH LQYROYHG DHURG\QDPLF FRHI¿FLHQWV DUH REWDLQHGWKURXJKLQWHUSRODWLRQDFURVVODUJHVHWVRIORRNXSWDEOHV $QRQOLQHDUV\VWHPJLYHQE\DJHQHUDOLPSOLFLWnth order GLIIHUHQWLDOUHSUHVHQWDWLRQ(T

( , , ) , ,

F X X Uo =0 X!R Un !Rm

ZKHUHF LV D UHJXODU LPSOLFLW PDSSLQJ ZLWK UHVSHFW WRX ̙ ZKLFKLVVDLGLPSOLFLWO\ÀDWRYHUDQLQWHULRUQRQHPSW\GRPDLQ ¨ŽRn+mLILWLVSRVVLEOHWR¿QGDQmth order vector ZWKDWPHHWV FRQGLWLRQ(TVDQGDDQGFRQGLWLRQLQ(T/pYLQH

( , , , , , ) 0

G X U Z Zo f Z( )r =

ZKHUHGLVORFDOO\LQYHUWLEOHRYHU¨ZLWKUHVSHFWWRX and U rLVDQLQWHJHU$JDLQYHFWRUZLVVDLGWREHDÀDWRXWSXW7KH local invertibility of GLVJXDUDQWHHGLIWKHGHWHUPLQDQWRIWKH -DFRELDQRIGLVQRW]HURDFFRUGLQJWRWKHWKHRUHPRILPSOLFLW IXQFWLRQVOLNHLQ(T/pYLQH

( / ( , )

det 2G 2 X U !0

,QWKLVFDVHJLYHQDWUDMHFWRU\RIWKHÀDWRXWSXWZLWLV SRVVLEOHWRPDSLWQXPHULFDOO\LQWRWKHLQSXWVSDFHWRGHULYH FRUUHVSRQGLQJFRQWUROVLJQDOVVRWKDWRQHRIWKHPRUHLQWHUHVW LQJSURSHUWLHVRIGLIIHUHQWLDOO\ÀDWV\VWHPVLVVWLOOPDLQWDLQHG

FLIGHT GUIDANCE DYNAMICS AND

DIFFEREN-TIAL FLATNESS

,QWKLVVWXG\RQO\WKHJXLGDQFHG\QDPLFVRIWUDQVSRU WDWLRQ DLUFUDIW LH WKH WHPSRUDO WUDMHFWRU\ IROORZHG E\ LWVFHQWHURIJUDYLW\LVFRQVLGHUHG,WLVDVVXPHGWKDWWKH DLUFUDIWLVHTXLSSHGZLWKDEDVLFDXJPHQWDWLRQV\VWHPDQG DXWRSLORWZKLFKGHDOHI¿FLHQWO\ZLWKLWVIDVWG\QDPLFVDQG FRQWUROVLWVDWWLWXGHDQJOHVșzȥZLWKUHVSHFWWRDORFDO (DUWKIUDPHDVZHOODVLWVWKUXVWUHJLPH1+HUHWKH ÀLJKWYDULDEOHVDQG1DUHWDNHQDVWKHLQSXWVIRUWKHJXLG DQFHG\QDPLFV)LJXUHGLVSOD\VWKHUHVXOWLQJVWUXFWXUHIRU WKHZKROHÀLJKWJXLGDQFHG\QDPLFV

7KXV LQ VWHDG\ ZLQG FRQGLWLRQV WKH ÀLJKW JXLGDQFH G\QDPLFV FDQ EH H[SUHVVHG LQ WKH DHURG\QDPLFV UHIHUHQFH IUDPHDV(T/Xet al

cos cos

xo =Va } c D

sin cos

yo=Va } c E

sin

zo= -Va c F

Flight guidance dynamics

ș

x

y

z

N

1

z

(3)

ZKHUHȖLVWKHJURXQGSDWKDQJOH7KHPRGXOXVRIWKHLQHUWLDO DQGWKHDHURG\QDPLFVSHHGVDUHJLYHQE\(T

Va x y z

2 2 2

= o + o + o D

( ) ( )

Va x wx y wy z wz

2 2 2

= ^o- h + o- + o- E

ZKHUHwxwy and wzDUHWKHZLQGFRPSRQHQWV

$VVXPLQJWKDWWKHVLGHVOLSDQJOHȕLVYHU\VPDOODQGWKDWș and zYDU\VORZO\WKHIROORZLQJHTXDWLRQVFDQEHZULWWHQDV(T

/ cos

cos sin sin cos cos

V D T m

g

a a

a i a z i

= - +

- - +

o ^

^

h

h D

( ) / ( )

( / ) ( )

sin

sin sin cos cos cos

L T mV

g V

a a

a

c a

a i a z i

= +

- +

o

E

ZKHUHȖaLVWKHDHURG\QDPLFSDWKDQJOHZKLFKLVUHODWHG to ȖE\(T

sin sin

Va c-wz=Va ca

,QFRRUGLQDWHGWXUQPDQHXYHUWKHKHDGLQJUDWHLVUHODWHG WRWKHEDQNDQJOHWKURXJKWKHIROORZLQJUHODWLRQ(T

( / ) tang Va

}o = z

7KHGUDJDQGWKHOLIWIRUFHVD and LDUHUHVSHFWLYHO\ FRQVLGHUHG WR EH IXQFWLRQV RI DOWLWXGHz DLUVSHHGVa DQG DQJOHRIDWWDFNĮ:KLOHWKHWKUXVW7FDQEHFRQVLGHUHGIXQF WLRQRIDOWLWXGH]DLUVSHHGDQGHQJLQHUHJLPH1(T

( , , )

( , , )

( , , )

D D z V

L L z V

T T z V N

a a a 1 a a = = =

)RU ORFDO JXLGDQFH SXUSRVHV WKH ÀLJKWSDWK DQJOHȖ is XVXDOO\WDNHQDVWKHFRQWUROSDUDPHWHU:KHQȕLVVPDOOșz ȕ and ȖDUHUHODWHGE\(T

( )

sin sin cos cosVcos sin V W

a

a z

c= i a- z i a - D

ZKLFKLVUHGXFHGWR

a=i-c E

WKDWLVLQJHQHUDOWKHFDVHIRUDWUDQVSRUWDWLRQDLUFUDIW$ XQLTXHVROXWLRQLQĮ corresponds to values of ș and z

Once x(ty(tDQGz(tDUHNQRZQLWLVSRVVLEOHWRXVHWKHPDQG WKHLUGHULYDWLYHVWRH[SUHVVDOOWKHJXLGDQFHYDULDEOHVDVIROORZV %\UHDUUDQJLQJWKHNLQHPDWLFDOHTXDWLRQV(TVDEDQG FLWLVSRVVLEOHWRH[SUHVV(TVDQG

( / ) sin z Va

1 c=- - o

( / ) tan 1 y x }= - o o

The state variables VaȖ and ȥ can obviously be functions RILQHUWLDOSRVLWLRQRIWKHDLUFUDIWZKLOHWKHFRQWUROYDULDEOHV VDWLVI\WKHUHODWLRQVLQ(T

( ) /

( )

cos

cos sin sin cos cos

V D T m

g 0

a a

a i a z i

- - + + - + = o D ( ) / ( ) ( / ) ( ) sin

sin sin cos cos cos

L T mV

g V 0

a a

a

c a

a i a z i

- +

+ + =

o

E

( / ) tang Va 0

}o - z= F

ZKHUHĮ and ȖaFDQEHH[SUHVVHGDVIXQFWLRQVRIzș and Ȗ DFFRUGLQJWRWKHUHODWLRQVLQ(TVDQG

7KHIROORZLQJQRWDWLRQVDUHDGRSWHGIRUWKHSRVLWLRQRIWKH FHQWHURIJUDYLW\RIWKHDLUFUDIWDQGIRUWKHJXLGDQFHLQSXWV(T

( , , ) and ( , , )

Z x y z T U N

1 i z

= =

2QFHWKHYDULDEOHVLQ(TDUHUHSODFHGZLWKWKHLUH[SUHV sions in ZDQGWKHLU¿UVWWZRGHULYDWLYHVWKHVHHTXDWLRQVFDQ EHUHZULWWHQDVLQ(T

( , , , , )

GN1 Z Z Z U W =0

o p D

( , , , , )

Gi Z Z Z U Wo p =0 E

( , , , , )

Gz Z Z Z U Wo p =0 F

(4)

G G G G G G N G N G N G

N N N

1

1

1

1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 i i i z z z i z i z i z  D 2QFHWKLVFRQGLWLRQLVHTXLYDOHQWWR

. ( .sin .cos ) . , N

T

T D L 0

1 2 2 2 2 2 2 2 2 !

a a a a i

a

- +` + j E

ZKLFKLVVDWLV¿HGVLQFHLQJHQHUDODOORILWVWHUPVDUHGH¿QLWH SRVLWLYH

+HQFHZ=(x,y,tTLVDÀDWRXWSXWYHFWRUIRUWKHFRQVLGHUHG ÀLJKWJXLGDQFHG\QDPLFV7KHWLPHHYROXWLRQRIWKHVHÀDW RXWSXWVUHSUHVHQWVWKHWUDMHFWRU\IROORZHGE\WKHFHQWHURI JUDYLW\RIWKHDLUFUDIW7KHQDFFRUGLQJWRWKLVWKHRU\IURPWKH NQRZOHGJHRIWKLVWUDMHFWRU\LWVKRXOGEHSRVVLEOHWR¿QGWKH FRUUHVSRQGLQJLQSXWV

NEURAL NETWORK INVERSION OF THE FLIGHT

GUIDANCE DYNAMICS

$VDFRQVHTXHQFHRIWKHÀDWQHVVSURSHUW\JLYHQDVPRRWK UHIHUHQFHWUDMHFWRU\IRUWKHÀDWRXWSXWVVXFKDV

, ( ), ( ) , , ,

Zc xc yc zc t t

T 0

!

x = x x x x

^ h ^ ^ h h 6 @

WKH FRUUHVSRQGLQJ UHIHUHQFH LQSXW YDOXHV DW WKH LQVWDQWt Uc(t zc(tșc(tNc(tTDUHWKHVROXWLRQV

( (), ( ), ( ), ( ))

GN1 Z tc Z tc Z tc Uc t =0

o p

D

( ((, ( ), ( ), ( )) Gi Z tc Z tc Z tc Uc t =0

o p

E

( ( ), ( ), ( ), ( )) Gz Z tc Z tc Z tc Uc t =0

o p

F

:KHUHZc(tZ

̙ c(tDQGZ ̙̙ c(tDUHWKHFXUUHQWSDUDPHWHUV ,QJHQHUDOLWZLOOEHYHU\GLI¿FXOWWRREWDLQDQRQOLQHQXPHUL FDOVROXWLRQWRWKLVVHWRILPSOLFLWHTXDWLRQVVRLWLVXVHIXOWRJHW DQDGHTXDWHQXPHULFDOGHYLFHWRVROYHLW7KLVDGHTXDF\FDQEH VSHFL¿HGPDLQO\LQWHUPVRIFRPSOH[LW\DQGDFFXUDF\ 7KHGLIIHUHQWLDOÀDWQHVVSURSHUW\RIDG\QDPLFDOV\VWHP SRLQWVRXWLQDUHYHUVHZD\WKHFDXVDOUHODWLRQEHWZHHQLWV LQSXWVDQGHYHQWXDOO\ÀDWRXWSXWV6LQFHQHXUDOQHWZRUNVDUH SDUWLFXODUO\ZHOODGDSWHGWRUHSURGXFHFDXVDOUHODWLRQVHYHQ LQWKHFDVHRIYHU\FRPSOH[V\VWHPVLWLVLQWHUHVWLQJWRWU\ EXLOGLQJDQHXUDOQHWZRUNZLWKWKLVREMHFWLYH2QFHFRUUHFWO\ WUDLQHGWKHQHXUDOQHWZRUNVKRXOGEHDQLQSXWRXWSXWGHYLFH ZKHUHWKHLQSXWVDUHSURYLGHGE\WKHUHIHUHQFHWUDMHFWRU\ZKLOH WKHRXWSXWVDUHWKHQRPLQDOÀLJKWFRQWUROSDUDPHWHUV)LJ 0XOWLOD\HUQHXUDOQHWZRUNV0/11KDYHEHHQVKRZQWR EHDEOHWRSHUIRUPJHQHUDOIXQFWLRQDSSUR[LPDWLRQWKURXJK WKHVHOHFWLRQRIDQHXUDOQHWZRUNVWUXFWXUHDVVRFLDWHGZLWK D OHDUQLQJ SURFHVV +D\NLQ 7KH VHOHFWLRQ RI WKH VWUXFWXUH DQG RI D OHDUQLQJ DOJRULWKP VWURQJO\ GHSHQGV RQ HPSLULFDOUXOHVZKLOHQXPHURXVFDQGLGDWHQHXUDOQHWZRUNV VWUXFWXUHVDQGOHDUQLQJDOJRULWKPVDUHDYDLODEOH,QRUGHUWR DFKLHYHDQDFFHSWDEOHDFFXUDF\DQGDVXI¿FLHQWJHQHUDOL]D WLRQFDSDELOLW\DODUJHDPRXQWRIWUDLQLQJGDWDLVQHFHVVDU\ +HUHLQWKHWUDLQLQJGDWDDUHFRPSRVHGRIVHWVRIWUDMHFWRULHV for Z and UZKLFKFDQEHSURYLGHGIURPHLWKHUÀLJKWWHVWGDWD RUHYHQIURPFRPPHUFLDOÀLJKWGDWDLQZKLFKPDQHXYHUVDUH SHUIRUPHGPDQXDOO\RUE\WKHDXWRSLORWHQJDJHGLQDEDVLF DWWLWXGHKROGLQJPRGHLQRUGHUWKDWQRJXLGDQFHORRSLVDFWLYH DWWKDWWLPH0RUD&DPLQR 6LQFHIRUPRGHUQDLUFUDIWRQERDUGQDYLJDWLRQV\VWHPVDUH DEOHWRHVWLPDWHZLWKJRRGDFFXUDF\WKHFXUUHQWDLUFUDIWSRVLWLRQ LQHUWLDOVSHHGDQGZLQGVSHHGWKHLUUHFRUGVFDQEHXVHGDVDEDVLV IRUWKHWUDLQLQJRIWKHQHXUDOQHWZRUN$VLPXODWLRQPRGHORID OLJKWDLUFUDIWWKH1DYLRQ6FKPLGWZLWKDSLVWRQSURSHOOHU HQJLQHDQGDEDVLFFRQWUROOHUIRUDWWLWXGHKROGLQJKDVEHHQXVHG IRU WKH JHQHUDWLRQ RI WUDLQLQJ GDWD DQG YDOLGDWLRQ SXUSRVHV 3UHOLPLQDU\VLPXODWLRQUHVXOWVKDYHEHHQREWDLQHGLQWKHFDVHRI PDQHXYHUVLQWKHYHUWLFDOSODQH,QWKLVVWXG\WKHFRQYHQWLRQDO (UURU%DFN3URSDJDWLRQQHXUDOQHWZRUNZLWKRQO\RQHKLGGHQ OD\HUKDVEHHQVHOHFWHGWRSHUIRUPWKHLQYHUVLRQRIÀLJKWJXLG DQFHG\QDPLFVDOWKRXJKPDQ\RWKHUQHXUDOQHWZRUNVWUXFWXUHV KDYHEHHQLQYHVWLJDWHG/X)LJXUHGLVSOD\VVRPHRIWKH WUDMHFWRULHVWKDWKDYHEHHQFRQVLGHUHGWRJHQHUDWHWUDLQLQJGDWD 7KHVWUXFWXUHRIWKHUHWDLQHGQHXUDOQHWZRUNFRPSULVHV VHYHQLQSXWVQRGHVDERXWQHXURQVLQWKHKLGGHQOD\HU ZLWK D K\SHUEROLF WDQJHQW DFWLYDWLRQ IXQFWLRQ DQG WKUHH RXWSXW QRGHV ZLWK OLQHDU WUDQVIHU IXQFWLRQV 7KH VHYHQ

(

t

)

(

t

)

(

t

)

(5)

LQSXWVDUHDOWLWXGHWKUHHFRPSRQHQWVRILQHUWLDOYHORFLW\ DQGWKUHHFRPSRQHQWVRILQHUWLDODFFHOHUDWLRQ7KHWKUHH

outputs are the pitch șWKHUROOz and N

WKHHQJLQHUHJLPH

)LJXUHVDQGGLVSOD\H[DPSOHVRIWUDLQLQJSHUIRUPDQFHV IRUGLIIHUHQWVWUXFWXUHVDQGVL]HVRIWKHWUDLQLQJGDWDEDVH 2QFH WKH ZHLJKWV RI D QHXUDO QHWZRUN KDYH EHHQ RSWLPL]HGWKHWUDLQLQJRIWKHQHXUDOQHWZRUNPXVWEHYDOL GDWHGXVLQJDQLQGHSHQGHQWYDOLGDWLRQGDWDEDVH7DEOH GLVSOD\V DQ H[DPSOH RI YDOLGDWLRQ GDWD SHUIRUPDQFHV ZKHUHL(ELVWKHWRWDOPHDQVTXDUHHUURURIWKHQHXUDO

QHWZRUNIRUDJLYHQLQWHUQHXURQVZHLJKWLQJSDWWHUQDQG FRPSXWHGHLWKHURYHUWUDLQLQJGDWDRUYDOLGDWLRQGDWDS

LVWKHQXPEHURIQHXURQVLQWKHKLGGHQOD\HUDQGn is the

QXPEHURIHIIHFWLYHFRQQHFWLRQVEHWZHHQQHXURQV

7DEOH ([DPSOHRIWUDLQLQJDQGYDOLGDWLRQGDWD

S n L(EWUDLQLQJ L(E9DOLGDWLRQ

î î

î î

î î

î î

î î

$UHOHYDQWYDOLGDWLRQRIWKHQHXUDOQHWZRUNLVREWDLQHG ZKHQLQQRPLQDOFRQGLWLRQVQRPLQDOÀLJKWPRGHOQRZLQG YDULDWLRQWKHRXWSXWVRIWKHQHXUDOQHWZRUNVDUHVXEPLWWHGDV UHIHUHQFHYDOXHVWRDQDXWRSLORWRSHUDWLQJLQEDVLFPRGHVDWWL WXGHDQJOHVDQGHQJLQHUHJLPHWUDFNLQJ)LJXUHGLVSOD\VWKH UHVXOWLQJUHIHUHQFHDQGUHVSRQVHWUDMHFWRULHVRIWKHVLPXODWHG DLUFUDIWDVZHOODVWKHWUDMHFWRU\HUURU

)LJXUH $VHWRIWUDLQLQJWUDMHFWRULHV

)LJXUH 7UDLQLQJSHUIRUPDQFHZLWKGLIIHUHQWQXPEHURIQHXURQV LQWKHKLGGHQOD\HU

)LJXUH 7UDLQLQJSHUIRUPDQFHIRUGLIIHUHQWVL]HVRIWKHWUDLQLQJ GDWDEDVH

(6)

CONCLUSIONS

7KLVSDSHUKDVVKRZQKRZQHXUDOQHWZRUNVFDQEHXVHG WRWDNHSUR¿WRIWKHLPSOLFLWGLIIHUHQWLDOÀDWQHVVSURSHUW\RI WKHDLUFUDIWÀLJKWJXLGDQFHG\QDPLFV'LIIHUHQWLDOÀDWQHVVLV DFKDUDFWHULVWLFVKDUHGE\PDQ\QRQOLQHDUV\VWHPVDQGLQ WKHFDVHRIFRPSOH[V\VWHPVWKLVSURSHUW\PD\DSSHDULQDQ LPSOLFLWZD\,QWKLVVWXG\WRPDNHWKLVSURSHUW\YDOXDEOHIRU DLUFUDIWWUDMHFWRU\PDQDJHPHQWDIHHGIRUZDUGQHXUDOQHWZRUN VWUXFWXUH KDV EHHQ SURSRVHG WR LQYHUW WKH ÀLJKW JXLGDQFH G\QDPLFV7KHSHUIRUPHGQXPHULFDOH[SHULPHQWVVKRZWKDW E\DGRSWLQJFODVVLFDOQHXUDOQHWZRUNVVWUXFWXUHVDQGOHDUQLQJ VFKHPHVLWLVSRVVLEOHWRDFKLHYHTXLWHHDVLO\WKLVREMHFWLYH 7KLVDSSURDFKDOORZVDQDGHTXDWHLGHQWL¿FDWLRQRIWKHLQYHUVH LQSXWRXWSXWUHODWLRQVDVVRFLDWHGZLWKWKHÀDWQHVVSURSHUW\RI ÀLJKWJXLGDQFHG\QDPLFV

7KLVDSSURDFKUHVXOWVLQDXVHIXOQXPHULFDOWRROIRUPDQ\ DSSOLFDWLRQV VXFK DV QHZ WUDMHFWRU\ WUDFNLQJ ÀLJKW FRQWURO VWUXFWXUHVDVGLVSOD\HGLQ)LJDQGQHZVRXQGH[SRVXUHOHYHO FRPSXWDWLRQVFKHPHVVXFKDVWKHRQHVGLVSOD\HGLQ)LJ +RZHYHUPDQ\LVVXHVUHPDLQRSHQIRUIXUWKHUUHVHDUFKZRUNV ‡ GH¿QLWLRQRIDPLQLPXPVHWRIWUDMHFWRULHVIRUJHQHUDWLRQ

RIDGHTXDWHWUDLQLQJGDWD

‡ VHDUFK IRU PRUH HI¿FLHQW G\QDPLFV LQYHUVLRQ QHXUDO QHWZRUNVWUXFWXUHV

‡ VHWWLQJRIDFOHDUEDODQFHEHWZHHQWKHQHXUDOLQYHUVLRQ DFFXUDF\DQGWKHDPRXQWRIFRPSXWDWLRQIRUWUDLQLQJDQG ‡ JHQHUDWLRQRIHI¿FLHQWUHIHUHQFHWUDMHFWRULHV

REFERENCES

)OLHVV 0et al ³)ODWQHVV DQG GHIHFW RI QRQOLQHDU

V\VWHPV WKHRU\ DQG H[DPSOHV´ ,QWHUQDWLRQDO -RXUQDO RI &RQWURO9RO1RSS

+D\NLQ6³1HXUDO1HWZRUNVD&RPSUHKHQVLYH)RXQ

GDWLRQ´0DFPLOODQ3XEOLVKLQJ&RPSDQ\1-/DYLJQH/et al³0RGHOLQJRI/RQJLWXGLQDO'LVWXUEHG

$LUFUDIW0RGHOE\)ODWQHVV$SSURDFK´LQ$,$$*XLGDQFH1DYL JDWLRQDQG&RQWURO&RQIHUHQFHDQG([KLELW7H[DV$XVWLQ86$

/pYLQH-³2QQHFHVVDU\DQGVXI¿FLHQWFRQGLWLRQVIRU GLIIHUHQWLDO ÀDWQHVV´ $SSOLFDEOH $OJHEUD LQ (QJLQHHULQJ &RPPXQLFDWLRQDQG&RPSXWLQJ9RO1RSS

/X:&³&RQWULEXWLRQDX6XLYL$XWRPDWLTXHGH7UDMHF WRLUHVSDUXQ$YLRQ&RPPDQGH3ODWHHW5pVHDX[GH1HXURQHV´ 3K'7KHVLVeFROH1DWLRQHOHGHO¶$YLDWLRQ&LYLOH)UDQFH

/X :&et al ³)OLJKW 0HFKDQLFV DQG 'LIIHUHQ

WLDO )ODWQHVV´ LQ ',1&21 ,OKD 6ROWHLUD %UD]LO SS

/X :&et al ³1HXUDO *XLGDQFH &RQWURO IRU

$LFUDIW %DVHG RQ 'LIIHUHQWLDO )ODWQHVV´$,$$ -RXUQDO RI *XLGDQFH &RQWURO DQG '\QDPLFV 9RO 1R SS

0DUWLQ 3 ³&RQWULEXWLRQ j O¶pWXGH GHV V\VWqPHV GLIIpUHQWLHOV SODWV´ 3K' 7KHVLV eFROH GHV 0LQHV GH 3DULV)UDQFH

0RUD&DPLQR)³$YLRQLTXH´OHFWXUHQRWHV(1$&

6FKPLGW /9 ³,QWURGXFWLRQ WR $LUFUDIW )OLJKW '\QDPLFV´$,$$(GXFDWLRQ6HULHV

Neural network

Trajectory generation

Flight dynamics Auto pilot

Fast control feedback

ș

z

N

1c

x

c

y

c

z

c

x y z

)LJXUH 7UDMHFWRU\WUDFNLQJLQFOXGLQJQHXUDOLQYHUVLRQ

Neural inversion of flight mechanics

Aircraft attitude and thrust

Receiver position

Sound exposure level computation

Sound exposure level Aircraft trajectory

and position

Referências

Documentos relacionados

It is observed that the results of simulation and analytical models do not diverge signiicantly until the level of the received signal is weak and the tracking error is above the

The process consists of generating random numbers for a i and crack growth curve rate, change the inspection interval and compute the probability of detection

Abstract: Climatological features of convective parameters (K index, IK; 950 hPa K index, IK950; Showalter index, IS; lifted index, ILEV; total totals index, ITT; and convective

2QHUHFHQWLQLWLDWLYHWRLQWHJUDWHWKHGLVFXVVLRQDFURVVVHYHUDOOHYHOVZDVWKH6HFRQG%UD]LOLDQ0HHWLQJRQ5HVHDUFK

and a new performance index obtained from Eqs. For this set of parameters, the second variation.. method requires less iterations than the steepest descent method,

DQG6KHQDQG/LXIRUWKH'RQH,WFRQVLVWVRIFOXVWHULQJ boundary elements at different spatial lengths and using multipole expansions to evaluate the interactions among clusters, which are

The main error sources in the inertial navigation computation are associated with the sensor biases and scale factors, as well as the overall misalignments of the

Abstract: TKis work KDs prHsHntHd tKH ¿rst stDgH pHrforPDnFH Dt dHsign Dnd offdHsign opHrDting points of Dn DxiDO turEinH, witK two stDgHs using D nuPHriFDO siPuODtion