• Nenhum resultado encontrado

Antileishmanial activity and chemical composition from Brazilian geopropolis produced by stingless bee Melipona fasciculata

N/A
N/A
Protected

Academic year: 2022

Share "Antileishmanial activity and chemical composition from Brazilian geopropolis produced by stingless bee Melipona fasciculata"

Copied!
7
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original Article

Antileishmanial activity and chemical composition from Brazilian geopropolis produced by stingless bee Melipona fasciculata

Richard Pereira Dutra

a

, Jeamile Lima Bezerra

a

, Mayara Cristina Pinto da Silva

b

, Marisa Cristina Aranha Batista

a

, Fernando José Brito Patrício

b

,

Flavia Raquel Fernandes Nascimento

b

, Maria Nilce Sousa Ribeiro

a,∗

, Rosane Nassar Meireles Guerra

b

aLaboratóriodeFarmacognosia,CentrodeCiênciasBiológicasedaSaúde,UniversidadeFederaldoMaranhão,SãoLuís,MA,Brazil

bLaboratóriodeImunofisiologia,CentrodeCiênciasBiológicasedaSaúde,UniversidadeFederaldoMaranhão,SãoLuís,MA,Brazil

a r t i c l e i n f o

Articlehistory:

Received30September2018 Accepted18February2019 Availableonline11May2019

Keywords:

Apidae Meliponini Geopropolis Leishmaniasis Gallicacid Ellagicacid

a b s t r a c t

GeopropolisisproducedbysomestinglessbeespeciessuchasMeliponafasciculataandconsistsofa mixtureofplantresins,salivarysecretionsofthebee,wax,andsoil.Thisstudyevaluatedtheantileish- manialactivityinvitro,cytotoxicityandchemicalcompositionofgeopropolisproducedbyM.fasciculata inthesavannahregionofMaranhão,Brazil.Thegeopropolisextractwasobtainedthroughmaceration usingin70%ethanol.Thehydroalcoholicextractofgeopropolisafterliquid–liquidpartitionyieldedthe hexane,chloroformic,ethylacetateandhydroalcoholicfractions.Antileishmanialactivitywasevaluated againstpromastigoteandintracellularamastigoteofLeishmaniaamazonensis.Cytotoxicwasrealizedin BALB/cmiceperitonealmacrophages.Chemicalanalysiswasperformedbygaschromatography–mass spectrometryandhighperformanceliquidchromatographycoupledtoanultraviolet–visibledetector.

ThegeopropolisinhibitedtheL.amazonensispromastigotesgrowthandwaseffectiveinreducingthe infectionofmurinemacrophagessincethenumberofinternalizedamastigotesweresmallerincells treatedwiththegeopropolisextractinrelationtotheuntreatedgroup.Theethylacetatefractionwas themostactiveandshowedthehighestindexofselectivityasantileishmanialproduct.Thegeopropolis fromM.fasciculatahadanantileishmanialeffect,mainlyaftertheobtentionoftheethylacetatefraction thatimprovedtheactivitywithoutincreasingthecytotoxicityagainstmurinemacrophages.Analysisfor gaschromatography-massspectrometeridentifiedasmaincompoundsthegallicandellagicphenolic acids,eitherintheextractorintheactivefraction.Theresultsobtainedbyhighperformanceliquidchro- matographyitwaspossibletoconfirmthepresenceandquantifytheconcentrationgallicandellagic acideitherintheextractorintheactivefraction.Theseresultssuggestthattheantileishmanialactivity ofgeopropolisisrelatedtothepresenceofderivativesofthesephenolicacids,mainlygallicandellagic acids.

©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Leishmaniasisisaninfectiousdiseasethatoccursincountries with tropical and temperate climates and it is transmitted to humansbythebiteofsandfliesinfectedwithprotozoaofthegenus Leishmania.Thisdiseaseaffectsapproximately2millionpeoplein theworldeveryyear(WHO,2018).

The severity of disease varies ranging from cutaneous or mucosal to visceral or diffuse cutaneous infection. Leishmania amazonensis,aspeciestransmittedmainlyintheAmazonregion,

Correspondingauthor.

E-mail:mnribeiro@ufma.br(M.N.Ribeiro).

which is associated with localized cutaneous lesions. In Brazil occur both visceral leishmaniasis (VL) and tegumentary leish- maniasis (TL), endemic disease in Northern and Northeastern Brazil,mainlyinthestatesofBahia,Ceará,Maranhão,andPiauí (Marzochietal.,2009).

Currently,thedrugsusedtotreatleishmaniasisincludepentava- lentantimonial,amphotericinB,andpentamidine,presentvariable efficacyagainstdifferentLeishmaniaspecies,elevatedtoxicityand caninduce resistanceoftheparasite (Croft and Coombs,2003;

Silva-López,2010).Therefore,thereisanurgentneedfornewdrugs thatcanbeusedbothfortheprophylaxisandforthetreatment ofleishmaniasis.Inthisrespect,beeproductsarepromisingcan- didatessincetheyareimportantsourcesofbioactivecompounds (BankovaandPopova,2007;Lavinasetal.,2019).

https://doi.org/10.1016/j.bjp.2019.02.009

0102-695X/©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

IntheStateofMaranhão,northeastBrazil,Meliponafasciculata Smith,popularlyknownas“tiúba”or“tiúba-do-maranhão”,isthe mostwidelycultivated stinglessbeespecies becauseof itshigh productivityofhoneyandgeopropolis.Thisspeciesisthereforeone ofthemainsourcesofincomeformanyfamiliesinthestate(Dutra etal.,2008)andthegeopropolisproducedispopularlyusedfor thetreatmentofinflammation,weakness,hemorrhoids,gastritis, cough,andalsoasahealingagent(Kerr,1987;Araújoetal.,2016b).

Geopropolisisproducedfromplantresinsthataremixedwith pollen,wax,salivarysecretions,andsoil.Inthebeehive,thisprod- uct is used to fill small cracks, to seal entry holes, and as an antimicrobialagent(Araújoetal.,2016b;Sanchesetal.,2017).

Thechemicalcompositionofgeopropolisproducedbydiffer- ent species of Melipona has shown phenolic acids, flavonoids, coumarins,hydrolysabletannins,prenylatedbenzophenone,ter- penes,steroids,saponins,fattyacidsandsugars(Dutraetal.,2008, 2014;DaSilvaetal.,2013;Souzaetal.,2013,2014;Araújoetal., 2015;Batistaetal.,2016;Cunhaetal.,2016).

Thefollowingactivitieshavebeenattributedtothis product:

antimicrobial(Mulietal.,2008;Liberioetal.,2011;Araújoetal., 2016b;Santosetal.,2017),antioxidant(DaSilvaetal.,2013;Souza etal.,2013;Dutraetal.,2014;Batistaetal.,2016;Ferreiraetal., 2017),anti-inflammatory(Liberioetal.,2011;Franchinetal.,2013), antiproliferative,cytotoxic(Cunhaetal.,2013,2016;Camposetal., 2014), anti-nociceptive(Souzaet al.,2014), immunomodulatory (Liberioetal.,2011;Araújoetal.,2015),antitumor(Cinegagliaetal., 2013;Bartolomeuetal.,2016)andgastroprotective(Ribeiro-Junior etal.,2015).

There are studies investigating the antileishmanial activity ofpropolis produced by Apis melliferabees (Ayreset al., 2007;

Machadoetal.,2007;Duranetal.,2008,2011;Pontinetal.,2008).

However,therearenoreportsdescribingtheantileishmanialactiv- ityoftheM.fasciculatageopropolis.

Therefore,thepresent studyinvestigated theantileishmanial activity, cytotoxicity and chemical composition of geopropolis producedbyM.fasciculataSmithinordertocontributethebio- prospection of new products with activity against Leishmania infection.

Materialandmethods

Geopropolissample

The geopropolis sample was collected from beehive in meliponary in the municipality of Fernando Falcão, Maranhão, Brazil(23730S445230W), asavannah regionfrom Maran- hãoState,northeastBrazilinNovemberof2008.Geopropoliswas removedfromthehiveswithaspatula,storedinsterilecontainer, andtransportedtothelaboratoryforpreparationoftheextractand chemicalandbiologicalanalysis.

Extractionandfractionationofgeopropolisextract

Thegeopropolissample(500g)wasseparatelymaceratedwith 1:2 (w/v) in 70% ethanol for 48h and filteredto separate the inorganic part(soil). The hydroalcoholic extract of geopropolis (HEG)wasfractionatedbyliquid–liquidpartitionusingsolventsof increasingpolarity,obtaininghexane(HF),chloroform(CF),ethyl acetate(EAF)andhydroalcoholic(HAF)fractions,asdescribedby Dutraetal.(2014).

Parasites

Leishmaniaamazonensis(MHOM/BR/1987/BA-125)promastig- otesweremaintainedin axeniccultures containing Schneider’s

medium(Sigma,St.Louis,MO,USA)supplementedwith10%inacti- vatedfetalbovineserum(Gibco,Carlsbad,CA,USA)andgentamicin (50␮g/ml;Sigma),incubatedat24C.Thegrowthofthecultures wasmonitoreddailyandparasites werecountedinaNeubauer chamber.OnlyL.amazonensispromastigoteformsinthestationary phasewereusedintheassays.

Obtentionofmurineperitonealmacrophages

Thecellswereobtainedbywashingtheperitonealcavityfrom Balb/cmice withcoldsterilephosphate-bufferedsaline(PBS) 5 daysafterintraperitonealinjectionof 1mlof3%sterilethiogly- colate.The cellsuspensionswere placedin 96-wellflat-bottom microplatesandafter3hofadherence,thenonadherentcellswere removedbywashingwithPBSat37C.Theadherentcellsin100␮l ofcompletemediumwereusedinmostoftheexperiments.The cellswerecentrifuged(160×g,10min,4C)andresuspendedin completemediumRPMIand10%fetalbovineserum(FBS)(Ribeiro- Diasetal.,1999).Allexperimentsinvolvingtheuseofexperimental animalswereperformedinaccordancetotheethicalstandardsof FederalUniversityofMaranhãoandwereapprovedbytheethics committee(Protocol:23115-012975/2008-43).

Evaluationofextract,fractionsandphenolicacidsagainst Leishmaniaamazonensispromastigotes

Theantileishmanialactivityoftheextract,fractionsandphe- nolicacidsgallic andellagic(SigmaAldrich,StLouis,MO, USA) wereevaluated against promastigotes of L.amazonensis in cul- ture using microplates. The HEG, fractions and phenolic acids were resuspended in PBS and diluted in complete RPMI 1640 medium to final concentrations of 500, 250, 125, 62.5, 31.25, and15.62␮g/ml.Aliquotsof 10␮lof thesuspensioncontaining 5×106/mlpromastigoteforms ofL.amazonensiswereaddedto thewells.AmphotericinB(SigmaAldrich,StLouis,MO,USA),the referencedrugforthetreatmentofleishmaniasis,wasusedaspos- itivecontrolinconcentrationsvaryingfrom0.07to10␮g/ml,and comparedtothenegativecontrol(culturemedium).After24hof incubation,thetotalnumberoflivepromastigoteswasdetermined byflagellamotilityinaNeubauerchamber,undera bright-field lightmicroscopy.Theconcentrationthatinhibitedculturegrowth by50% (IC50)wasdeterminedby nonlinearregression (Bezerra etal.,2006).

Evaluationofextractandfractioninmacrophagesinfectedwith Leishmaniaamazonensisamastigotes

PeritonealmacrophagesfromBalb/cmicewereharvestedand plated at 2×106cell/mlin a 24-well plate containinga cover- slipof13mmdiameter,allowedtoadherefor2hat37Cin5%

CO2. Afterthis periodthewells werewashed threetimes with unsupplementedRPMI1640toremovenon-adherentcells.Then the macrophages were infected with promastigotes at ratio of promastigote/macrophage(10:1),andthecellswereincubatedat 37C in 5% CO2. After4h incubation, free promastigotes were removedandcounted(Silvaetal.,2018).Theinfectedmacrophages weretreatedduring24hwithHEG(47␮g/ml)andEAF(29␮g/ml) accordingtheinhibitoryconcentrationdetectedattheinvitroanti- promastigote assay. Afterincubation, thecells werefixed with methanol,Giemsastainedandexaminedbylightmicroscopy.The numberofamastigotes/100macrophagecellsandthepercentage ofinfectedcellsweredetermined.Theinfectionindexwascalcu- latedbymultiplyingthepercentageofinfectedmacrophagesbythe meannumberofamastigotesperinfectedcells(LimaJunioretal., 2014;Silvaetal.,2018).

(3)

Cytotoxicityassay

Peritoneal macrophages wereplated at 2×105cells/well on coverslipsin96-wellplatefor24hinthepresenceorabsenceofthe HEGandfractionsindifferentconcentrations(15.62,31.25,62.5, 125,250and500␮g/ml).Attheendoftheperiodwereadded10␮l of3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT,Sigma Aldrich,St Louis, MO, USA) 5mg/mland the cells wereincubatedfor 3hat37Cin5%CO2.Thesupernatantwas removedandtheplateswereincubatedovernightatroomtemper- aturewith100␮lof10%solutionofsodiumdodecylsulfate–HCl todissolution offormazancrystals.Absorbancewasdetermined in a spectrophotometer (MR 5000, Dynatech Laboratories Inc., Gainesville,VA,USA)at540nm.The50%cytotoxicconcentration (CC50)wasdeterminedbyregressionanalysis.Theselectivityindex (SI)wasdeterminedastheratioofCC50forthemacrophagesto IC50forthepromastigote.Eachassaywascarriedoutintriplicate inthreeindependentexperiments(Ribeiro-Diasetal.,1999).

Samplepreparationforgaschromatography–massspectrometry (GC–MS)analysis

The HEG and fractions of geopropolis (10mg) were solu- bilized in pyridine (300␮l) and bis-(trimethylsilyl) trifluoroac- etamide(BSTFA,SigmaAldrich,StLouis,MO, USA)including1%

trimethylchlorosilane(TMCS)(BSTFA/TMCS),100␮l,andheatedat 80Cfor20minaccordingtoBatistaetal.(2016).

AnalysisoftheextractandfractionsbyGC/MS

AnalysisoftheHEGandfractionswereperformedongaschro- matograph(GC)(Agilent6890) coupledtoamass spectrometer (MS)(Agilent5973NMSD),equippedwithaHP-5MSfusedsilica (30m×0.25mmi.d.,filmthickness0.25␮m)andoperatinginthe electronimpactionizationmode(70eV),wasusedfor analyses.

Thetemperaturesoftheinjectoranddetectorweremaintainedat 230Cand250C,respectively.Heliumwasusedasthecarriergas ataflowrateof1ml/min,andtheinjectionvolumewas1␮linsplit ratio10:1.Analysisconsistedof5minofisothermalheating(70C), atemperaturegradientof5C/minat310C,andalastminuteof heatingat310C.Theinterfacewasmaintainedat200Candthe detectorwasoperatedinthescanningmode(m/z50–650)anda scanintervalof2scans1.Theidentificationofgeopropoliscom- poundswasbasedonthepercentageofsimilaritypluscomparison ofmassspectra(MS)usingsoftwareNISTAMIDSversion2.0data library,withthepercentageoftotalionchromatograms(TIC%).

AnalysisoftheextractandfractionsbyHPLC/UV

Theidentificationandquantificationofgallic(GA)andellagic acids(EA)intheHEGandEAFfractionwereperformedbyhighper- formanceliquidchromatographycoupledtoanultraviolet–visible detector(HPLC–UV).Theanalysiswasproceededinchromatograph VarianHPLCsystemequippedwithaProStarAutosampler410,2 ProStar215pumps,ProStar325UV-Visdetector(Varian,PaloAlto, USA)controlledwithGalaxiesoftware(Varianv1.9.3.2),usinga PhenomenexRP-GeminiC18column(250mm×4.6mm,5␮m)at roomtemperature.Themobilephasewascomprisedof0.1%(v/v) formicacidacidifiedultrapurewater(assolventA)andacetoni- trile(assolventB).Thegradientprogramwasasfollows:90–10%B (5min),80–20%B(10min),70–30%B(25min),65–35%B(30min).

Thedetectionofcompoundsofinterestwasperformedatawave- length()of254nm,andthevolumeinjectedwas20␮l,withthe mobilephaseflowof1.0ml/min.

TheconcentrationofGAandEAinthesampleswereobtained fromtheregression-equationresultedbythelinearregressionof

Table1

Antileishmanicidalactivityoftheextractandfractionsofgeopropolis,gallicacid, andellagicacidagainstpromastigoteforms,cytotoxicityandselectivityindexfor Leishmaniaamazonensis.

Sample L.amazonensis Macrophage

IC50(␮g/ml)a CC50(␮g/ml)a SIprob

HEG 47.00±2.70a 292.70±35.49a 6.22

HF Noactivity Nd Nd

CF 43.21±2.32a 78.34±32.64b 1.81

EAF 29.90±2.93b 244.90±22.60c 8.19

HAF 49.48±1.40a 381.70±9.29d 7.71

Gallicacid 14.48±1.87 Nd Nd

Ellagicacid 151.7±19.50 Nd Nd

AmphotericinB 1.0±0.46c Nd Nd

aValuesrepresentthemeanoftriplicatemeasurements±standarddeviation.

Differentlettersinthesamecolumnindicateasignificantdifference(Tukeytest, p<0.05).HEG,hydroalcoholicextractofgeopropolis;HF,hexanefraction;CF,chlo- roformfraction;EAF,ethylacetatefraction;HAF,hydroalcoholicfraction;Nd,not determined.

bSIpro(selectivityindex)=CC50macrophages/IC50promastigoteforms.

IC50=concentrationproducing50%inhibitionofL.amazonensispromastigotes.

CC50=concentrationproducing50%inhibitionofperitonealmacrophages.

a calibrationcurve, correlating the chromatographic peak area referredtothegallicacidandellagicacidpurchasedfromSigma- Aldrich(St.Louis,MO,USA)andtheirconcentrationinthesample (1mg/ml). Calibration curve (five points)was used toquantify eachstandardwiththerangeof5–100␮g/mlforgallicacid,and 2.5–40␮g/mlforellagicacid.

Statisticalanalysis

Allassayswererepeatedthreetimesandtheresultsexpressed areexpressedasthemean±standarddeviationandwereanalyzed.

Alldatawerecomparedbyanalysisofvariance(one-wayANOVA) followedbytheTukeytest.Differenceswereconsideredsignificant whenp<0.05.AlldatawereanalyzedwiththeGraphPadPrism 7.0software(SanDiego,CA,USA).Allanalyseswereperformedin triplicate.

Results

TheHEG,CF,EAF,andHAFshowedanti-leishmaniaactivitysince theywereabletoreducethenumberoflivepromastigotes.HEG reducedthenumberofviablepromastigotesofL.amazonensisin adose-dependentmannerwithIC50of47␮g/ml,andatthecon- centrationof250␮g/mlwasabletoinhibit100%ofpromastigote forms(Table1).Afterfractionation,theEAFfractionwasthemost active (IC50 29.89␮g/ml),inhibiting 100% of thepromastigotes from62.5␮g/ml.Theotherfractionsalsoshowinhibitoryeffectfor L.amazonensispromastigotesatthetestedconcentrations(CF:IC50

43.21␮g/mlandHAF:IC5049.48␮g/ml).FHshowednoantileish- manialactivity(Table1).

The antileishmanialactivityagainst promastigotesand cyto- toxicity toHEGand theactivefractions(CF, EAF,andHAF) was comparedusingtheselectivityindex.TheHEGdemonstratedCC50 of292.7␮g/mland EAFCC50of 244.9␮g/ml, whileHAFand CF 381.7␮g/mland78.34␮g/mlrespectively.Theselectivityindexfor promastigoteshasshownthatthemostactivefraction(EAF)also haslowercytotoxicactivityformacrophages(Table1).

The extract (HEG) and the active fraction (EAF) induced a significant reduction in the number of amastigotes within the macrophagescomparedtothecontrolgroup,intheexperimen- talinfectioninvitrowithperitonealmacrophagesinfectedwithL.

amazonensis.

Treatment of infection of macrophages with HEG and EAF reduced number of amastigotes inside macrophages. This

(4)

A B

10

* *

* *

8 6 4 2 0

10 8 6 4 2

Control 47 µg/ml 0 Control

HEG

47 µg/ml HEG 29 µg/ml

EAF

29 µg/ml EAF

Amastigotes / 100 macrophages Infection index

Fig.1. Invitroeffectofgeopropolisextract(HEG)andfraction(EAF)onLeishmaniaamazonensisintracellularamastigotes.Thenumberofamastigotesininfectedmacrophages (A),andinfectionindex(B).ThenegativecontrolisL.amazonensisintracellularamastigotesnottreated.Theresultsrepresentmean±standarddeviationofindividualsamples testedintriplicate(*):p<0.05incomparisontothenegativecontrol.

antileishmanialeffectwasassociatedwithareductionontheinfec- tionindex.Thepercentagereductionininfectionwas37%inthe macrophagestreatedwithHEG,whereasthosetreatedwithEAF reducedby33%(Fig.1).

TheanalysisofHEGandfractionsbyGC/MS,identifiedtwenty threecompoundsbycomparisonofretentiontimes,massspectra usingNISTLibraryandliteraturedata.Thecompoundsidentified belongtotheclassoffattyacids,organicacids,phenolicacids,triter- penes,steroids,sugarsandalcohols.Fattyacidswereidentifiedin thesamples,withtheexceptionoftheEAFfraction,withahigher concentrationofpalmiticandstearicacids.Inthehexanefraction thetriterpenes␤-amyrin,lupenoneandsteroidscampesterol,stig- masteroland␤-sitosterolwereidentified,whileinthechloroform fractionoleanolicacidand␤-sitosterol.Phenolicacids,sugarsand alcoholswereidentifiedmainlyinHEGandEAFfraction(Table2).

AccordingtheresultsobtainedbyHPLC/UVitwaspossibleto confirmthepresenceofgallicandellagicacid(Fig.2).Thecalibra- tioncurves obtainedtoquantifytheconcentrationofgallicacid andellagicacidpresentedcorrelationcoefficient≥0.998,confirm- ingthelinearityofthemethod.Thedetectedconcentrationofgallic acidwas2.66␮g/mgand9.85␮g/mgforHEGandEAF,respectively, whiletheellagicacidconcentrationwas20.32␮g/mgforHEGand 27.73␮g/mgfortheEAFfraction.

The fractionation of the extract by liquid–liquid partition increasedtheconcentrationofellagicandgallicacidsinEAF,mainly gallicacidsincetheconcentrationwasabout3.7timeshigherthan HEG.

Thegeopropolissampleswithantileishmanialactivityshowed thepresenceandhigherconcentrationsofphenolicacids,mainly EAF fraction with gallic acid (40.5%) and ellagic acid (31.6%) (Table2).ThemassspectraobtainedbytheGC–MSanalysisafter silylationwithBSTFAfromtheextractandfractionsofthegeo- propolisshowedtheionsm/z458,443,281,73forgallicacid(4TMS) andionsm/z590,575,487,281,73forellagicacid(4TMS).

Consideringthehighconcentrationofgallicandellagicacids in themost active fraction(EAF), analytical standards of these compoundswereevaluatedforantileishmanialactivityagainstL.

amazonensispromastigotes.Thephenolicacidsexhibitedantileish- manialactivity,however,gallicacidwasmoreeffectiveininhibit againstpromastigotesforms(IC5014.48␮g/ml)thanellagicacid (IC50151.7␮g/ml)(Table2).

Discussion

Theextractandfractionsofthegeopropolispresentedananti- Leishmaniaactivity,withtheEAFfractionbeingmoreeffectivethan theextract(HEG)inreducethepromastigotesnumbers,andalsoto

reducethenumberofamastigotesininfectedmacrophages,despite thelowcytotoxicityforuninfectedmurinemacrophages.

The selectivity index (SI) foundfor geopropolis extract and itsfractionsindicatehighertoxicitytopromastigoteformsanda moderatetoxicitytouninfectedmacrophages(SI<10)(Bringmann etal.,2013).Theseresultsareimportantinthesearchforeffec- tivenatural productsfor the treatmentof leishmaniasis (Alves etal.,2017).AccordingtoVeigaetal.(2017)extractswithIC50

≤100␮g/mlforpromastigoteformsareconsideredpromisingfor thebioprospectionofproductswithanti-Leishmaniaactivity,espe- ciallywhentheyshowlowtoxicity(CC50>200␮g/ml)tonoinfected cellsvalues,asshowedheretotheEHGandEAF.

Aftertheliquidchromatography tandem–massspectrometry (LC–MS/MS)itwaspossibletoidentifyelevencompoundspresent inHEGandEAF,includinggallicandellagicphenolicacids,aswell asthehydrolysabletanninsas:corilagin,HHDP-glucose,peduncu- lagin,trigalloylglucose,tellimagrandinI,valoneicaciddilactone, casuarictin, tellimagrandinIIetrisgalloyl-HHDP-glucose)(Dutra etal.,2014).

The presence of gallic acid in M. fasciculata geopropolis is expectedsincethiscompoundhasbeenidentifiedasoneofthe maincompoundsingeopropolisfromotherspeciesofthegenus Melipona as: M. quadrifasciata, M. scutellaris, and M. marginata (Velikovaetal.,2000;Dutraetal.,2014;Batistaetal.,2016).Few studieshaveidentifiedellagicacidinpropolisandgeopropolissam- ples(Dutraetal.,2014;Araújoetal.,2016a;Batistaetal.,2016).The qualitativeandquantitativevariationsinphenoliccompoundsseen betweendifferentbeeproductsaremainlyinfluencedbytheplant speciesvisitedbythebees,typeofbeespecies,geographicregion, andclimaticfactors(Gómez-Caravacaetal.,2006).

Itispossiblethattheanti-Leishmaniaactivityisrelatedtothe presenceofthegallicand ellagicacids,identifiedintheextract and EAF, as confirmed by the mass spectra (Zoechling et al., 2009;Deganietal.,2014)sincethesetwophenolic acidsexhib- itedantileishmanialactivityagainstpromastigotes(Tasdemiretal., 2006;Shuaibuetal.,2008),butitisimportanttoemphasizesthat accordingourresultsthegallicacidwasmoreeffective.

Previous results also showed a lower anti-Leishmania effect againstthepromastigotesofL.majorforthegallicacidincompar- isontotheellagicacid(IC5016.4and9.8␮g/ml,respectively).The bothphenolicacidswerealsoeffectiveagainstamastigotes,since theywereabletoreducetheinfectionandinfectivityonBalb/c macrophagesinfectedbyL.major(IC50values5.0and0.9␮g/ml, respectively),withselectivityindexhigherthan20(Alvesetal., 2017).

Inaddition,severalauthors(Kolodziejetal.,2001; Kolodziej andKinderlen,2005)showedlowtoxicitytothegallicaciddespite theanti-LeishmaniaactivitytoL.donovanipromastigotesdatathat

(5)

Table2

ChemicalcompositionidentifiedintheextractandfractionsofthegeopropolisaftersilylationbyGC–MS.

Compoundclass Identifiedcompounda HEG HF CF EAF HAF

TIC(%)b

Fattyacids Palmiticacid 0.52 7.27 0.96 0.51

Oleicacid 1.72

Stearicacid 1.53 2.12 5.29 2.47

Arachidicacid 0.33

Behenicacid 0.44

Lignocericacid 0.25

Organicacid Quinicacid 1.68 1.01

Phenolicacids Gallicacid 22.30 4.80 40.5 5.76

Ellagicacid 14.70 1.53 31.6 21.60

Protocatechuicacid 0.10 0.14

Triterpenes ␤-Amirin 0.42

Lupenona 0.43

Oleanolicacid 0.13 2.35

Steroids Campesterol 0.07

Stigmasterol 0.55

␤-Sitosterol 1.47 0.39

Sugars Frutose 0.32

Glucose 21.0 3.15 18.60

Mannose 12.8 10.33

Xylose 0.61 0.28

Alcohols Glycerol 0.22 0.35

Xylitol 0.92 1.22

Inositol 0.10 0.10

aNameofthecompoundswithoutthetrimethylsilyl(TMS)constituent.

bExpressedinpercentageoftotalionchromatograms(TIC%).

HEG,hydroalcoholicextractofgeopropolis;HF,hexanefraction;CF,chloroformfraction;EAF,ethylacetatefraction;HAF,hydroalcoholicfraction.

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20

0 5,71 18,35

RT [min]

mAU

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 450 400 350 300 250 200 150 100 50 0

5,73 18,37

RT [min]

mAU

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20

5,74 18,38

RT [min]

mAU

EAF

Standards

GA

EA

HEG

Fig.2.HPLCchromatogramsofhydroalcoholicextractofgeopropolis(HEG),ethylacetatefraction(EAF),standardsofgallicacid(GA)andellagicacid(EA)in254nm.

(6)

corroboratewiththoseonesfoundinthepresentstudywiththe extractofgeopropolisandthegallicacid.

Conclusions

Theantileishmanial activityof the hydroalcoholic extract of geopropolis fromM.fasciculata and its ethyl acetate fractionis probablyrelatedtothepresenceof gallicacid, andellagic acid, withhigheffectonthepromastigotesandamastigotesformand withamoderatetoxicitytomurinemacrophageswhatmayopena newperspectiveintheresearchofnewdrugswithantileishmanial effect.

Authors’contributions

RPD,JLBandMCPScontributedtobiologicalstudies.RPDand MCABcontributedbycollectinggeopropolissamples,andperform- ingchromatographicanalysis.FJBPcontributedtothecytotoxicity test.FRFNcontributedtocriticalreadingofthemanuscript.MNSR andRNMGdesignedthestudy,supervisedthelaboratoryworkand contributedtocriticalreadingofthemanuscript.Alltheauthors havereadthefinalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsthankthefundingagencyCAPES,andFAPEMAfor thedoctoralfellowshipandforthegranttodevelopthepresent study.Wearealsoindebtedtothebeekeepersforprovidingthe geopropolissamples,andtoDr.AldinaBarral,CentrodePesquisas Gonc¸aloMoniz, FIOCRUZ,Bahia,Brazil,forkindly providingthe Leishmaniaamazonensis.

References

Alves,M.M.M.,Brito,L.M.,Souza,A.C.,Queiroz,B.C.S.H.,deCarvalho,T.P.,Batista,J.F., Oliveira,J.S.S.M.,deMendonc¸a,I.L.,Lira,S.R.S.,Chaves,M.H.,Gonc¸alves,J.C.R., Carneiro,S.M.P.,Arcanjo,D.D.R.,Carvalho,F.A.A.,2017.Gallicandellagicacids:

twonaturalimmunomodulatorcompoundssolveinfectionofmacrophagesby Leishmaniamajor.NaunynSchmiedebergsArch.Pharmacol.390,893–903.

Araújo,K.S.S.,Júnior,J.F.S.,Sato,M.O.,Finco,F.D.B.A.,Soares,I.M.,Barbosa,R.S., Alvim,T.C.,Ascêncio,S.D.,Mariano,S.M.B.,2016a.Physicochemicalproperties andantioxidantcapacityofpropolisofstinglessbees(Meliponinae)andApis fromtworegionsofTocantins,Brazil.ActaAmaz.46,61–68.

Araújo,M.J.A.M.,Búfalo,M.C.,Conti,B.J.,FernandesJr.,A.,Trusheva,B.,Bankova,V., Sforcin,J.M.,2015.Thechemicalcompositionandpharmacologicalactivitiesof geopropolisproducedbyMeliponafasciculataSmithinNortheastBrazil.J.Mol.

Pathophysiol.4,12–20.

Araújo,M.J.A.M.,Bosco,S.M.G.,Sforcin,J.M.,2016b.Pythiuminsidiosum:inhibitory effectsofpropolisandgeopropolisonhyphalgrowth.Braz.J.Microbiol.47, 863–869.

Ayres,D.C.,Marcucci,M.C.,Giorgio,S.,2007.EffectsofBrazilianpropolisonLeish- maniaamazonensis.Mem.Inst.OswaldoCruz102,215–220.

Bankova,V.,Popova,M.,2007.Propolisofstinglessbees:apromisingsourceof biologicallyactivecompounds.Pharmacogn.Rev.1,88–92.

Bartolomeu,A.R.,Frión-Herrera,Y.,daSilva,L.M.,Romagnoli,G.G.,deOliveira,D.E., Sforcin,J.M.,2016.CombinatorialeffectsofgeopropolisproducedbyMelipona fasciculataSmithwithanticancerdrugsagainsthumanlaryngealepidermoid carcinoma(HEp-2)cells.Biomed.Pharmacother.81,48–55.

Batista,M.C.A.,Abreu,B.V.B.,Dutra,R.P.,Cunha,M.S.,Amaral,F.M.M.,Torres,L.M.B., Ribeiro,M.N.S.,2016.Chemicalcompositionandantioxidantactivityofgeo- propolisproducedbyMeliponafasciculata(Meliponinae)infloodedfieldsand cerradoareasofMaranhãoState,northeasternBrazil.ActaAmaz.46,315–322.

Bezerra,J.L.,Costa,G.C.,Lopes,T.C.,Carvalho,I.C.D.S.,Patrício,F.J.,Sousa,S.M.,Ama- ral,F.M.M.,Rebelo,J.M.M.,Guerra,R.N.M.,Ribeiro,M.N.S.,Nascimento,F.R.F., 2006.Avaliac¸ãodaatividadeleishmanicidainvitrodeplantasmedicinais.Rev.

Bras.Farmacogn.16,631–637.

Bringmann,G.,Thomale,K.,Bischof,S.,Schneider,C.,Schultheis,M.,Schwarz,T., Moll,H.,Schurigt,U.,2013.AnovelLeishmaniamajoramastigoteassayin96- wellformatforrapiddrugscreeninganditsusefordiscoveryandevaluationof

anewclassofleishmanicidalquinoliniumsalts.Antimicrob.AgentsChemother.

57,3003–3011.

Campos, J.F., Santos, U.P., Macorini, L.F.B., Melo, A.M.M.F., Balestieri, B.P.J., Paredes-Gamero,E.J.,Cardoso,C.A.L.,Souza,K.P.,Santos,E.L.,2014.Antimi- crobial,antioxidantandcytotoxicactivitiesofpropolisfromMeliponaorbignyi (Hymenoptera,Apidae).FoodChem.Toxicol.65,374–380.

Cinegaglia, N.C., Bersano, P.R.O., Araújo, M.J.A.M., Bufalo, M.C., Sforcin, J.M., 2013. Anticancer effects of geopropolis produced by stingless bees on canineosteosarcoma cellsinvitro. Evid.BasedComplement.Altern.Med., http://dx.doi.org/10.1155/2013/737386.

Croft,S.L.,Coombs,G.H.,2003.Leishmaniasiscurrentchemotherapyandrecent advancesinthesearchfornoveldrugs.TrendsParasitol.19,502–508.

Cunha,M.G.,Rosalen,P.L.,Franchin,M.,DEAlencar,S.M.,Ikegaki,M.,Ransom,T., Beutler,J.A.,2016.Antiproliferativeconstituentsofgeopropolisfromthebee Meliponascutellaris.PlantaMed.82,190–194.

Cunha,M.G.,Franchin,M.,Galvão,L.C.C.,Ruiz,A.L.T.G.,Carvalho,J.E.,Ikegaki,M., Alencar,S.M.,Koo,H.,Rosalen,P.L.,2013.Antimicrobialandantiproliferative activitiesofstinglessbeeMeliponascutellarisgeopropolis.BMCComplement.

Altern.Med.,http://dx.doi.org/10.1186/1472-6882-13-23.

DaSilva,S.S.,Thomé,G.S.,Cataneo,A.H.D.,Miranda,M.M.,Felipe,I.,Andrade,C.G.T.J., Watanabe,M.A.E.,Piana,G.M.,Sforcin,J.M.,Pavanelli,W.R.,Conchon-Costa,I., 2013.Brazilianpropolisantileishmanialandimmunomodulatoryeffects.Evid.

BasedComplement.Altern.Med.,http://dx.doi.org/10.1155/2013/673058.

Degani,L.,Riedo,C.,Gulmini,M.,Chiantore,O.,2014.Fromplantextractstohis- toricaltextiles:characterizationofdyestuffsbyGC–MS.Chromatographia77, 1683–1696.

Duran,G.,Duran,N.,Culha,G.,Ozcan,B.,Oztas,H.,Ozer,B.,2008.Invitroantileish- manialactivityofAdanapropolissamplesonLeishmaniatropica:apreliminary study.Parasitol.Res.102,1217–1225.

Duran,N.,Muztafa,M.,Culha,G.,Duran,G.,Ozer,B.,2011.GC–MSanalysisand antileishmanialactivitiesoftwoTurkishpropolistypes.Parasitol.Res.108, 95–105.

Dutra,R.P.,Abreu,B.V.B.,Cunha,M.S.,Batista,M.C.A.,Torres,L.M.B.,Nascimento, F.R.F.,Ribeiro,M.N.S.,Guerra,R.N.M.,2014.Phenolicacids,hydrolyzabletan- nins,andantioxidantactivityofgeopropolisfromthestinglessbeeMelipona fasciculataSmith.J.Agric.FoodChem.62,2549–2557.

Dutra,R.P.,Nogueira,A.M.C.,Marques,R.R.O.,Costa,M.C.P.,Ribeiro,M.N.S.,2008.

Avaliac¸ãofarmacognósticadegeoprópolisdeMeliponafasciculataSmithdaBaix- adaMaranhense,Brasil.Rev.Bras.Farmacogn.18,557–562.

Ferreira, J.M., Fernandes-Silva, C.C., Salatino, A., Message, D.,Negri, G., 2017.

AntioxidantactivityofageopropolisfromnortheastBrazil:chemicalcharac- terizationandlikelybotanicalorigin.Evid.BasedComplement.Altern.Med., http://dx.doi.org/10.1155/2017/4024721.

Franchin,M.,Cunha,M.G.,Denny,C.,Napimoga,M.H.,Cunha,T.M.,Koo,H.,Alen- car,S.M.,Ikegaki,M.,Rosalen,P.L.,2013.Bioactivefractionofgeopropolisfrom Meliponascutellarisdecreasesneutrophilsmigrationintheinflammatorypro- cess:involvementofnitricoxidepathway.Evid.BasedComplement.Altern.

Med.,http://dx.doi.org/10.1155/2013/907041.

Gómez-Caravaca,A.M.,Gómez-Romero,M.,Arráez-Román,D.,Segura-Carretero,A., Fernández-Gutiérrez,A.,2006.Advancesintheanalysisofphenoliccompounds inproductsderivedfrombees.J.Pharm.Biomed.Anal.41,1220–1234.

Kerr, W.E., 1987. Abelhas indígenasbrasileiras (meliponíneos) na polinizac¸ão e na produc¸ão de mel,pólen, geoprópolis e cera.Informe Agropecu.13, 15–27.

Kolodziej,H.,Kayser,O.,Kiderlen,A.F.,Ito,H.,Hatano,T.,Yoshida,T.,Foo,L.Y.,2001.

Antileishmanialactivityofhydrolyzabletanninsandtheirmodulatoryeffects onnitricoxideandtumournecrosisfactor-␣releaseinmacrophagesinvitro.

PlantaMed.67,825–832.

Kolodziej,H.,Kinderlen,A.F.,2005.Antileishmanialactivityandimmunemodula- toryeffectsoftanninsandrelatedcompoundsonLeishmaniaparasitizedRAW 264.7cells.Phytochemistry66,2056–2071.

Lavinas, F.C.,Macedo, E.H.B.C.,Sá, G.B.L.,Amaral, A.C.F., Silva,J.R.A., Azevedo, M.M.B.,Vieira,B.A.,Domingos,T.F.S.,Vermelho,A.B.,Carneiro,C.S.,Rodrigues, I.A., 2019. Brazilian stingless bee propolis and geopropolis: promis- ing sources of biologically active compounds. Rev. Bras. Farmacogn., http://dx.doi.org/10.1016/j.bjp.2018.11.007.

Liberio, A.S., Pereira, A.L.A., Dutra, R.P., Aramys, S.R., Araújo, M.J.A.M., Mat- tar, N.S., Silva, L.A., Ribeiro, M.N.S., Nascimento, F.R.F., Guerra, R.N.M., Monteiro-Neto,V.,2011.Antimicrobialactivityagainstoralpathogensand immunomodulatory effects and toxicity of geopropolis produced by the stinglessbee Melipona fasciculataSmith. BMC Complement.Altern. Med., http://dx.doi.org/10.1186/1472-6882-11-108.

LimaJunior,J.A.C.,Costa,G.C.,Reis,A.S.,Bezerra,J.L.,Patricio,F.J.B.,Silva,L.A.,Amaral, F.M.M.,Nascimento,F.R.F.,2014.Inibic¸ãodainfecc¸ãoinvitrodemacrófagospor Leishmaniaamazonensisporextratoefrac¸õesdeChenopodiumambrosioidesL.

Rev.Cienc.Saúde16,46–53.

Machado,G.M.,Leon,L.L.,DeCastro,S.L.,2007.ActivityofBrazilianandBulgarian propolisagainstdifferentspeciesofLeishmania.Mem.Inst.OswaldoCruz102, 73–77.

Marzochi, M.C., Fagundes, A., Andrade, M.V., Souza, M.B., Madeira, M.F., Mouta-Confort,E.,2009.VisceralleishmaniasisinRiodeJaneiro,Brazil:eco- epidemiologicalaspectsandcontrol.Rev.Soc.Bras.Med.Trop.42,570–580.

Muli,E.M.,Maingi,J.M.,Macharia,J.,2008.Antimicrobialpropertiesofpropolis andhoneyfromtheKenyanstinglessbee,Dactylurinaschimidti.Apiacta43, 49–61.

(7)

Pontin,K.,DaSilvaFilho,A.A.,Santos,F.F.,Silva,M.L.,Cunha,W.R.,Nanayakkara, N.P.,Bastos,J.K.,DeAlbuquerque,S.,2008.Invitroandinvivoantileishmanial activitiesofaBraziliangreenpropolisextract.Parasitol.Res.103,487–492.

Ribeiro-Dias,F.,Russo,M.,Barbuto,J.A.M.,Nascimento,F.R.F.,Timenetsky,J.,Jancar, S.,1999.Mycoplasmaargininienhancescytotoxicityofthioglycollate-elicited murinemacrophagestowardYAC-1tumorcellsthroughproductionofNO.J.

Leukoc.Biol.65,808–814.

Ribeiro-Junior,J.A.,Franchin,M.,Cavallini,M.E.,Denny,C.,DeAlencar,S.M.,Ikegaki, M.,Rosalen,P.L.,2015.GastroprotectiveeffectofgeopropolisfromMelipona scutellarisisdependentonproductionofnitricoxideandprostaglandin.Evid.

BasedComplement.Altern.Med.,http://dx.doi.org/10.1155/2015/459846.

Sanches,M.A.,Pereira,A.M.S.,Serrão,J.E.,2017.Pharmacologicalactionsofextracts ofpropolisofstinglessbees(Meliponini).J.Apic.Res.56,50–57.

Santos,H.F.D.,Campos,J.F.,Santos,C.M.D.,Balestieri,J.B.P.,Silva,D.B.,Carollo,C.A., dePicoliSouza,K.,Estevinho,L.M.,dosSantos,E.L.,2017.Chemicalprofile andantioxidant,anti-inflammatory,antimutagenicandantimicrobialactivi- tiesofgeopropolisfromthestinglessbeeMeliponaorbignyi.Int.J.Mol.Sci., http://dx.doi.org/10.3390/ijms18050953.

Silva,M.C.P.,Brito,J.M.,Ferreira,A.S.,Vale,A.A.,Santos,A.P.A.,Silva,L.A.,Pereira,P.V., Nascimento,F.R.F.,Guerra,R.N.M.,2018.Antileishmanialandimmunomodula- toryeffectofBabassu-loadedPLGAmicroandnanoparticles:anusefuldrug targettoLeishmaniaamazonensisinfection.Evid.BasedComplement.Altern.

Med.,http://dx.doi.org/10.1155/2018/3161045.

Shuaibu,M.N.K.,Pandey,P.A.,Wuyep,T.,Yanagi,K.,Hirayama,A.,Ichinose,A., Tanaka,T.,Kouno,I.,2008.CastalaginfromAnogeissusleiocarpusmediatesthe killingofLeishmaniainvitro.Parasitol.Res.108,1333–1338.

Silva-López,R.E.,2010.ProteasesdeLeishmania:novosalvosparaodesenvolvimento racionaldefármacos.Quim.Nova33,1541–1548.

Souza,S.A.,Camara,C.A.,Silva,E.M.S.,Silva,T.M.S.,2013.Compositionandantioxi- dantactivityofgeopropoliscollectedbyMeliponasubnitida(jandaíra)bees.Evid.

BasedComplement.Altern.Med.,http://dx.doi.org/10.1155/2013/801383.

Souza,S.A.,Dias,T.L.M.F.,Silva,T.M.G.,Falcão,R.A.,Moreira,M.S.A.,Silva,E.M.S., Camara,C.A.,Silva,T.M.S.,2014.Chemicalcomposition,antinociceptiveand freeradical-scavengingactivitiesofgeopropolisfromMeliponasubnitidaDucke (Hymenoptera:Apidae:Meliponini).Sociobiology61,560–565.

Tasdemir,D.,Kaiser,M.,Brun, R.,Yardley,V., Schmidt,T.J.,Tosun,F.,Rüedi1, P.,2006.Antitrypanosomalandantileishmanialactivitiesofflavonoidsand theiranalogues:invitro,invivo,structure–activityrelationship,andquantita- tivestructure–activityrelationshipstudies.Antimicrob.AgentsChemother.50, 1352–1364.

Veiga,A.,Albuquerque,K.,Elinete,Correa,M.,Brigido,H.,Silva,E.,Silva,J.,Campos, M.,Silveira,F.,Santos,L.,Dolabela,M.,2017.LeishmaniaamazonensisandLeish- maniachagasi:invitroleishmanicideactivityofVirolasurinamensis(Rol.)Warb.

Exp.Parasitol.175,68–73.

Velikova,M.,Bankova,V.,Marcucci,M.C.,Tsvetkova,I.,Kujumgiev,A.,2000.Chem- icalcompositionandbiologicalactivityofpropolisfromBrazilianMeliponinae.

Z.Naturforsch.C55,785–789.

WHO, 2018. Leishmaniasis. World Health Organization, http://www.who.int/leishmaniasis/en/(accessed01.07.18).

Zoechling,A.,Reiter,E.,Eder,R.,Wendelin,S.,Leiber,F.,Jungbauer,A.,2009.The flavonoidkaempferolisresponsibleformajorityofestrogenicactivityinred wine.Am.J.Enol.Vitic.60,223–232.

Referências

Documentos relacionados

Y éstas han sido todas las actividades presentadas y trabajadas en el taller supramencionado; por algunas tuvimos que pasar “en volandas” debido a la escasez de tiempo destinado a

Abstract: This study aims to assess the microbiological parameters and the chemical composition of 21 samples of stingless bee pollen (Melipona mandacaia) from two regions of

orbignyi HEGP, different compounds were identified from the ones found in geopropolis produced by other species of stingless bees, such as derivatives of glycosylated phenolic

La educació matemátic refleja tambié Ia posició que Ias mat 10s profesionales de Iamisma tienen en Ia sociedad. Si se haceunaeducació especulativa o contemplativa,

Thus, honey samples from two Water Catchment Areas in Maranhão (Munim and Pericumã, sample size 20 for each) were collected and submitted for microbiological analysis

components and (b) projection of the higher alcohols, acetaldehyde, ethyl acetate and volatile compounds profile according to chemical classes and samples of red wine produced

The chemical composition of the fractions and the antiparasitic effects of fractions and their main compounds suggest that the activity of the VP is related with the presence

In this study, we investigated the chemical compositions and antioxidant and antimicrobial activities of propolis produced by the stingless bee Frieseomelitta longipes and the