• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número4"

Copied!
12
0
0

Texto

(1)

Exat Solution of Asymmetri Diusion With N

Classes of Partiles of Arbitrary Size

and Hierarhial Order

F. C. Alaraz

Departamentode Fsia, UniversidadeFederalde S~aoCarlos, 13565-905,S~aoCarlos,SPBrazil

R. Z.Bariev

Departamentode Fsia, UniversidadeFederalde S~aoCarlos, 13565-905,S~aoCarlos,SPBrazil

The KazanPhysio-TehnialInstitute oftheRussianAademyofSienes,Kazan 420029,Russia

Reeivedon5August,2000

Theexatsolutionof theasymmetriexlusionproblem withN distint lassesof partiles( =

1;2;:::;N),withhierarhialorderispresented. Inthismodelthepartiles(size1)areloatedat

lattiepoints,anddiusewithequalasymmetrirates,butpartilesinalassdonotdistinguish

thoseinthelasses 0

>fromholes(emptysites). Wegeneralizeandsolveexatlythismodelby

onsideringthe moleulesineahdistint lass =1;2;:::;N with sizess (s =0;1;2;::: ), in

unitsofthelattiespaing. ThesolutionisderivedviaaBetheansatzofnestedtype.

I Introdution

Thesimilaritybetweenthemaster equationdesribing

time utuationsin nonequilibrium problems and the

Shrodinger equation desribing the quantum

utua-tions of quantum spin hains turns out to be fruitful

for both areas of researh [1℄-[15℄. Sine many

quan-tum hainsareknowntobeexatlyintegrablethrough

the Bethe ansatz, this provides exat information on

the related stohasti model. At the same time

las-sial physial intuitionand probabilisti methods

su-essfully applied to nonequilibrium systems give new

insights into the physial and algebrai properties of

quantum hains.

Anexampleofthisfruitfulinterhangeisthe

prob-lem of asymmetri diusion of hard-ore partiles on

the one dimensional lattie ( see [16, 17, 18℄ for

re-views). This model is related to the exatly

inte-grableanisotropiHeisenberghaininitsferromagneti

regime [19℄ (XXZ model). Howeverif wedemand this

quantumhaintobeinvariantunderaquantumgroup

symmetry U

q

(SU(2)), we have to introdue, for the

equilibrium statistial system, unusual surfae terms,

whihonthe otherhandhaveanieandsimple

inter-pretationfortherelatedstohastisystem[3,4℄.

In the area of exatly integrable models it is well 1

2

XXZ hain to higherspins is theanisotropi spin-S

Sutherlandmodel(grading

1 =

2

=:::=

2s+1 =1)

[20℄. Ontheotherhand intheareaofdiusionlimited

reationsa simple extension of the asymmetri

diu-sionproblemis theproblemof diusionwith partiles

belonging to N distint lasses( =1;2;:::;N) with

hierarhial order [22℄-[24℄ . In this problem a

mix-tureofhard-orepartilesdiusesonthelattie.

Par-tiles belonging to alass ( =1;:::;N) ignore the

preseneof those in lasses 0

>, i.e., they see them

in the same way as they see the holes (empty sites).

In[3℄itwasshownthat foropen boundaryonditions

the anisotropispin-1 Sutherland model and this last

stohastimodel,intheaseN =2,areexatlyrelated.

TheHamiltoniangoverningthe quantum ortime

u-tuationsofbothmodelsisgivenintermsofgenerators

ofaHekealgebra,invariantunderthequantumgroup

U

q

SU(3). In fat this relation anbeextended to

ar-bitraryvaluesofN,andthequantumhain assoiated

tothestohastimodelisinvariantunderthequantum

U

q

(SU(N+1))group. Inthispaperwederivethrough

the Bethe ansatz the exat solution of the assoiated

quantum hain, onalosed lattie. Reently [15℄ (see

also [14℄) we have shown that without losing its

ex-atintegrability,weanonsidertheproblemof

asym-metridiusionwithanarbitrarymixtureofmoleules

(2)

in-terhange positions, that is, there is no reations. In

thispaperweextendtheasymmetridiusionproblem

withN typesofpartileswithhierarhialorder,tothe

asewherethepartilesineahlasshaveanarbitrary

size,in units ofthe lattiespaing. Unliketheaseof

asymmetri diusion problem, we have in this ase a

nested Bethe ansatz [25℄. A pedagogial presentation

forthesimplestaseN=2waspresentedin [26℄.

Thepaperisorganizedasfollows. Inthenext

se-tion we introdue the generalized asymmetri model

with N types of partiles with hierarhial order and

derivetheassoiated quantum hain. Insetion3the

Betheansatzsolutionofthemodelispresented. Finally

insetion4wepresentouronlusions,withsome

possi-blegeneralizationsofthestohastiproblemonsidered

inthis paper,andsomeperspetivesonfuture work.

II The generalized asymmetri

diusion model with N lasses

of partiles with hierarhial

order

Asimpleextensionoftheasymmetriexlusionmodel,

in whih hard-ore partiles diuse on the lattie, is

theproblem where amixture ofpartiles belonging to

dierent lasses ( = 1;2;:::;N) diuses on the

lat-tie.. This problem in the ase where we have only

N = 2 lasses was used to desribe shoks [22℄-[24℄

in nonequilibrium and also has a stationary

probabil-itydistribution that an be expressedvia the

matrix-produt ansatz [27℄. In [28℄ it was also shown that

thestationary stateofthe aseN =3analso be

ex-pressedbythematrix-produtansatz. Inthismodelwe

have n

1 ;n

2 ;:::n

N

moleules belonging to the lasses

= 1;2;:::;N, respetively. All lasses of moleules

diuse asymmetrially, but with thesame

asymmetri-al rates,whenevertheyenounteremptysites (holes)

at nearest-neighborsites. However,whenmoleules of

dierentlasses,and 0

(< 0

),areattheirminimum

separation, the moleules of lass exhange position

with the same rate as they diuse, and onsequently

the moleules in the lass see no dierenebetween

moleulesbelongingtothelasses 0

> andholes.

We now introdue a generalization of the above

model,whereinsteadofhavingunitsize,themoleules

in eah distint lass = 1;2;:::;N have in general

distint sizes s

1 ;s

2 ;:::;s

N (s

1 ;:::;s

N

= 1;2;:::),

re-spetively, in units of lattie spaing. In Fig. 1 we

show some examples of moleules of dierent sizes.

We may think of a moleuleof size s as formed by s

monomers (size 1), and for simpliity, we dene the

position of the moleule as the enter of its leftmost

monomer. The moleules havea hard-ore repulsion:

theminimumdistaned

,in unitsofthelattie

spa-ing, between moleules and , with in the left,

is given by d

= s

. In order to desribe the

o-upany of a given onguration of moleules we

de-ne at eah lattie site i (i = 1;2;:::;L) a variable

i

(i=1;2;:::;L), taking thevalues

i

=0;1;:::;N.

Thevalues =1;2;:::;N representsites oupied by

moleules oflass=1;2;:::;N,respetively. Onthe

otherhandthevalue=0representsanemptysiteor

anexludedone,duetothenitesizeofthemoleules.

Asanexample,inahainofL=8sites,the

ongura-tioninwhihapartileoflass1,withsizes

1

=2isat

site1,andanotherpartile,oflass2,withsizes

2 =3

isatsite3,isrepresentedbyfg=f1;0;0;2;0;0;0;0g.

Thus the allowed ongurations are given by the set

f

i

g (i = 1;:::;L), where for eah pair (

i ;

j ) 6= 0

withj>iweshould havej is

i .

000000

000000

000000

111111

111111

111111

000000

000000

000000

111111

111111

111111

00000000000

00000000000

00000000000

11111111111

11111111111

11111111111

00000000000

00000000000

00000000000

11111111111

11111111111

11111111111

000000000000000000000

000000000000000000000

000000000000000000000

111111111111111111111

111111111111111111111

111111111111111111111

s = 1

s = 2

s = 4

Figura.1 Example of ongurations of moleuleswith

dis-tint sizess inalattie of sizeL =6. Theoordinates of

themoleulesaredenotedbytheblaksquares.

The time evolution of the probability distribution

P(fg;t),of agivenonguration fgis givenby the

masterequation

P(fg;t)

t =

X

f 0

g

[ (fg!f 0

g)P(fg;t)+ (f 0

g!fg)P(f 0

g;t);℄ (1)

(3)

where (fg!f 0

g)isthetransitionratefor

ongu-ration fgtohange tof 0

g. Inthepresentmodel we

onlyallow,whenevertheonstraintofexludedvolume

is satised,thepartiles todiuse to nearest-neighbor

sites, or to exhange positions. The possible motions

arediusion totheright

i ;

i+1 !;

i

i+1

; ( =1;:::;N) (rate

R )

(2)

diusion totheleft

;

i

i+1 !

i ;

i+1

; (=1;:::;N) (rate

L )

(3)

andinterhangeofpartiles

i

0

i+s

!

0

i

i+s

0

; (< 0

=1;:::;N) (rate

R )

i

0

i+s

!

0

i

i+s

0

; (> 0

=1;:::;N) (rate

L ): (4)

Asweseefrom(4),partilesbelongingtoagivenlass

interhangepositionswiththoseoflass 0

>withthe

samerateastheyinterhangepositionswiththeempty

sites (diusion). We should remark however that

un-lessthepartilesinlass 0

haveunit size(s

=1),the

neteetofthesepartilesinthoseoflassisdistint

fromthe eet produedby theholes,sineasthe

re-sult of theexhange the partiles in lass will move

bys

0

lattiesizeunits,aeleratingitsdiusion.

The master equation (1) an be written as a

Shrodinger equation in Eulidean time (see Ref. [3℄

forgeneralappliationfortwobodyproesses)

jP >

t

= HjP >; (5)

if we interpret jP > P(fg;t) as the assoiated

wavefuntion. If we represent

i

asj >

i

the vetor

j >

1

j >

2

j >

L

will give us the

assoi-ated Hilbert spae. The proess (2)-(4) gives us the

Hamiltonian(seeRef. [3℄forgeneralappliations)

H = D

X

j H

j

H

j

= Pf

N

X

=1

+ (E

0

j E

0

j+1 E

j E

00

j+1

)+ (E 0

j E

0

j+1 E

00

j E

j+1 )

+ N

X

=1 N

X

=1

; (E

j E

0

j+s

E

0

j+s E

j E

00

j+s

E

j+s

)gP (6)

with

D=

R +

L ;

+ =

R

R +

L

; =

L

R +

L (

+

+ =1); (7)

d

=

(

+

<

0 =

>

(8)

and periodi boundaryonditions. ThematriesE ;

are (N +1)(N+1) matrieswith asingle nonzero

element(E ;

)

i;j =Æ

;i Æ

;j

(;;i;j=0;:::;N). The

projetor P in (6), projets out from the assoiated

Hilbert spae the vetorsjfg> whih represent

for-bidden positions of the moleules due to their nite

size,whihmathematiallymeansthatfor alli;j with

i ;

j

6= 0; ji jj s

i

(j > i). The

on-stant D in (6) xes the time sale; for simpliity we

hose D=1. A partiularsimpliation of (6)ours

when the moleules in all lasses have the same size

s

1 =s

2

=:::=s

N

=s. Inthis asethe Hamiltonian

anbeexpressedasananisotropinearest-neighbor

in-teration spin-N=2SU(N+1) hain. Moreoverin the

asewheretheirsizesareunity(s=1)themodelanbe

relatedtotheanisotropiversion[21℄oftheSU(N+1)

Sutherland model [20℄ with twisted boundary

ondi-tions.

III The Bethe ansatz equations

Wepresentinthissetiontheexatsolutionofthe

gen-eralquantumhain(6). Apedagogialpresentationfor

thepartiularasewhereN =2waspresentedin[26℄.

Duetotheonservationofpartilesinthediusion

andinterhangeproessesthetotalnumberofpartiles

n

1 ;n

2 ;:::;n

N

ineahlassaregoodquantumnumbers

and onsequently we an split the assoiated Hilbert

spaeintoblokdisjointsetorslabeledbythenumbers

(4)

onsidertheeigenvalueequation

Hjn

1 ;n

2 ;:::;n

N

>=Ejn

1 ;n

2 :::;n

N

>; (9)

where

jn

1 ;n

2 ;:::;n

N >=

X

fQg X

fxg f(x

1 ;Q

1 ;:::;x

n ;Q

n )jx

1 ;Q

1 ;:::;x

n ;Q

n

>; (10)

d

and n = P

N

i=1 n

i

is the total number of

parti-les. In (10) jx

1 ;Q

1 ;:::;x

n ;Q

n

> means the

ong-urationwhereapartile oflass Q

i (Q

i

=1;2;:::;N)

is at position x

i (x

i

= 1;:::;L). The summation

fQg =fQ

1 ;:::;Q

n

g extendsoverall permutations of

then integernumbersf1;2;:::;Ngin whih n

i terms

havethevaluei(i=1;2;:::;N),whilethesummation

fxg=fx

1 ;:::;x

n

gruns,foreahpermutation fQg,in

thesetofthennondereasingintegerssatisfying

x

i+1 x

i +s

Q

i

; i=1;:::;n 1;

s

Q1 x

n x

1

N s

Qn

: (11)

Beforegettingtheresultsforgeneralvaluesofnletus

onsiderinitially theaseswhere wehave1or2

parti-les.

n= 1. For onepartile onthehain,in anylass

= 1;2;:::;N, as a onsequeneof the translational

invarianeof(6)itissimpleto verifydiretlythatthe

eigenfuntionsarethemomentum-k eigenfuntions

j0;:::;0;1

;0;:::;0>= L

X

x=1

f(x;)jx;>; =1;:::;N

(12)

with

f(x;)=e ik x

; k= 2l

L

; l=0;1;:::;L 1; (13)

andenergygivenby

E=e(k) ( e ik

+

+ e

ik

1): (14)

n =2. For two partiles of lasses Q

1

and Q

2

(Q

1 ;Q

2

= 1;2;:::;N) on the lattie, the eigenvalue

equation (9) gives us twodistint relationsdepending

ontherelativeloationofthepartiles. Therst

rela-tionappliesto theasein whih apartileoflass Q

1

(sizes

Q1

)isatpositionx

1

andapartileQ

2 (sizes

Q2 )

is at position x

2

, where x

2 >x

1 +s

Q

1

. Weobtain in

thisasetherelation

Ef(x

1 ;Q

1 ;x

2 ;Q

2

) =

+ f(x

1 1;Q

1 ;x

2 ;Q

2

) f(x

1 ;Q

1 ;x

2 +1;Q

2 )

f(x

1 +1;Q

1 ;x

2 ;Q

2

)

+ f(x

1 ;Q

1 ;x

2 1;Q

2

)+2f(x

1 ;Q

1 ;x

2 ;Q

2

); (15)

wherewehaveusedtherelation

+

+ =1. Thislastequationanbesolvedpromptlybytheansatz

f(x

1 ;Q

1 ;x

2 ;Q

2 ) =

X

P A

Q1;Q2

P

1 ;P

2 e

i(k

P

1 x

1 +k

P

2 x

2 )

= A

Q

1 ;Q

2

1;2 e

i(k

1 x

1 +k

2 x

2 )

+A Q

1 ;Q

2

2;1 e

i(k

2 x

1 +k

1 x

2 )

(16)

withenergy

E=e(k

1 )+e(k

2

); (17)

where k

1 ;k

2 ;A

Q1;Q2

1;2

and A Q1;Q2

2;1

are freeparametersto bexed. In(16)thesummation isoverthepermutations

P =P

1 ;P

2

of(1,2). Theseondrelationapplieswhenx

2 =x

1 +s

Q1

. Inthisaseinsteadof(15)wehave

Ef(x

1 ;Q

1

; x

1 +s

Q

1 ;Q

2 )=

+ f(x

1 1;Q

1 ;x

1 +s

Q

2 ;Q

2

) f(x

1 ;Q

1 ;x

1 +s

Q

1 +1;Q

2 )

~

Q

2 ;Q

1 f(x

1 ;Q

2 ;x

1 +s

Q

2 ;Q

1

)+(1+~

Q

1 ;Q

2 )f(x

1 ;Q

1 ;x

1 +s

Q

1 ;Q

2

): (18)

If we nowsubstitute the ansatz (16) with the energy (17), theonstants A Q1;Q2

12

and A Q1;Q2

21

(5)

X

P f

D

P

1 ;P

2 +e

ikP

2

(1 ~

Q

1 ;Q

2 )

e ikP

2 (sQ

1 1)

A Q1;Q2

P

1 ;P

2 +~

Q

2 ;Q

1 e

ikP

2 sQ

2

A Q2;Q1

P

1 ;P

2

g=0 (19)

where

D

l;m

= (

+ + e

i(k

l +km)

): (20)

At this point it is onvenient to onsider separately the ase where Q

1 = Q

2

from those where Q

1 6= Q

2 . If

Q

1 =Q

2

=Q(Q=1;:::;N)eq. (19)gives

X

P D

P1;P2 +e

ikP

2

e ikP

2 (sQ 1)

A Q;Q

P1;P2

=0 (21)

andtheasesQ

1 6=Q

2

giveus theequations

X

P

D

P

1 ;P

2 +e

ikP

2

Q

2 ;Q

1

Q

2 ;Q

1 e

ikP

2

Q

1 ;Q

2 e

ikP

2

D

P

1 ;P

2 +

Q

1 ;Q

2 e

ikP

2

"

e ikP

2 (sQ

1 1)

A Q1;Q2

P1;P2

e ikP

2 (sQ

2 1)

A Q2;Q1

P

1 ;P

2 #

=0:

Performingtheabovesummationweobtain,afterlengthybutstraightforwardalgebra,thefollowingrelationamong

theamplitudes

"

A Q

1 ;Q

2

1;2 e

ik

2 (s

Q

1 1)

A Q2;Q1

1;2 e

ik2(sQ

2 1)

#

= D

1;2 +e

ik1

D

1;2 +e

ik

2

1 (k

1 ;k

2 )

Q

1 ;Q

2

Q

2 ;Q

1

Q

1 ;Q

2

Q

2 ;Q

1

"

A Q

1 ;Q

2

2;1 e

ik1(sQ

1 1)

A Q2;Q1

2;1 e

ik

1 (s

Q

2 1)

#

;

where

(k

1 ;k

2 )=

e ik1

e ik2

D

1;2 +e

ik1

: (22)

Equations(21)and(22)anbewritteninaompatform

A Q1;Q2

P1;P2

=

P1;P2 N

X

Q 0

1 ;Q

0

2 =1

S Q

1 ;Q

2

Q 0

1 ;Q

0

2 (k

P1 ;k

P2 )A

Q 0

2 ;Q

0

1

P2;P1 ; (Q

1 ;Q

2

=1;:::;N) (23)

with

l;j =

D

l;j +e

ik

l

D

l;j +e

ikj =

+ + e

i(k

l +k

j )

e ik

l

+ + e

i(k

l +kj)

e ikj

; (24)

where wehaveintroduedtheS matrix. From(21)and(22)thisSmatrixhasonlyN(2N 1)nonzeroelements,

namely

S Q1;Q2

Q

2 ;Q

1 (k

1 ;k

2

) = [1

Q

1 ;Q

2 (k

1 ;k

2 )℄e

i(k1 k2)(sQ

1 1)

(Q

1 ;Q

2

=1;:::;N);

S Q

1 ;Q

2

Q1;Q2 (k

1 ;k

2

) =

Q2;Q1 (k

1 ;k

2 )e

ik

1 (s

Q

2 1)

e ik

2 (s

Q

1 1)

(Q

1 ;Q

2

=1;:::;N;Q

1 6=Q

2

): (25)

Equations(23)donotxthe\wavenumbers"k

1 andk

2

. Ingeneral,thesenumbersareomplex,andarexeddue

to theyli boundaryondition

f(x

1 ;Q

1 ;x

2 ;Q

2 )=f(x

2 ;Q

2 ;x

1

+N;Q

1

); (26)

whihfrom (16)givetherelations

A Q

1 Q

2

1;2 =e

ik

1 N

A Q

2 ;Q

1

2;1

; A

Q

1 ;Q

2

2;1 =e

ik

2 N

A Q

2 ;Q

1

2;1

: (27)

Thislastequation,whensolvedbyexploiting(23)-(25),givesusthepossiblevaluesofk

1 andk

2

,andfrom(17)the

(6)

Generaln. Theabovealulationanbegeneralizedforarbitraryoupation

fn

1 ;n

2 ;:::;n

N

gof partilesin lasses1;2;:::;N,respetively. Theansatzforthewavefuntion (10)beomes

f(x

1 ;Q

1 ;:::;x

n ;Q

n )=

X

P A

Q

1 ;;Q

n

P1;:::;Pn e

i(k

P

1 x

1 ++k

Pn x

n )

; (28)

wherethesumextendsoverallpermutationsP oftheintegers1;2;:::;n,andn= P

N

i=1 n

i

isthetotalnumberof

partiles.

Appliationofthetranslationoperatortotheabovewavefuntionsimpliesthat(10)arealsoeigenfuntionsof

themomentumoperator witheigenvalues

p= n

X

j=1 k

j =

2l

L

; (l=0;1;:::;L 1): (29)

For the omponentsjx

1 ;Q

1 ;:::;x

n ;Q

n

> where x

i+1 x

i > s

Q

i

for i = 1;2;:::;n, it is simpleto see that the

eigenvalueequation(9)is satisedbytheansatz(28)withenergy

E= n

X

j=1 e(k

j

): (30)

Ontheother handifapairofpartilesoflass Q

i ;Q

i+1

isat positionsx

i ; x

i+1

, wherex

i+1 =x

i +s

Q

i

,equation

(9)withtheansatz(28)andtherelation(30)giveusthegeneralizationofrelation(23),namely

A

;Qi;Qi+1;

:::;Pi;Pi+1;:::

=

Pi;Pi+1 N

X

Q 0

1 ;Q

0

2 S

Qi;Qi+1

Q 0

1 ;Q

0

2 (k

Pi ;k

Pi+1 )A

;Q 0

2 ;Q

0

1 ;

:::;Pi+1;Pi;::: (Q

i ;Q

i+1

=1;2;;:::;N); (31)

withS givenbyeq. (25). Insertingtheansatz(28)in theboundaryondition

f(x

1 ;Q

1 ;:::;x

n ;Q

n )=f(x

2 ;Q

2 ;:::;x

n ;Q

n ;x

1 +N;Q

1

) (32)

weobtaintheadditionalrelation

A Q

1 ;;Q

n

P1;:::;Pn =e

ik

P

1 N

A Q

2 ;;Q

n ;Q

1

P2;:::;Pn;P1

; (33)

whihtogetherwith(31)should giveustheenergies.

Suessive appliations of (31) give us in general distint relations between the amplitudes. For example

A

:::;;;;:::

:::;k1;k2;k3;:::

relate to A

:::;;;;:::

:::;k3;k2;k1;:::

by performing the permutations ! ! ! or !

!!,andonsequentlytheS-matrixshouldsatisfytheYang-Baxter[19,29℄equation

N

X

; 0

; 00

=1 S

; 0

; 0

(k

1 ;k

2 )S

; 00

; 00

(k

1 ;k

3

) S

0

; 00

0

; 00

(k

2 ;k

3 )=

N

X

; 0

; 00

=1 S

0

; 00

0

; 00

(k

2 ;k

3 )S

; 00

; 00

(k

1 ;k

3 )S

; 0

; 0

(k

1 ;k

2

); (34)

for ; 0

; 00

;; 0

; 00

=1;2;:::;N and S given by (25). Atuallythe relation (34) is a neessaryand suÆient

ondition[19,29℄toobtainanon-trivialsolutionfortheamplitudesin Eq. (31).

Wean verifyby alongand straightforwardalulationthat forarbitrary number oflasses N and valuesof

thesizes s

1 ;s

2 ;:::;s

N

, theS matrix(25), satisesthe Yang-Baxterequation(34), and onsequentlywemay use

relations(31)and (33)to obtaintheeigenenergiesof theHamiltonian(6). Applyingrelation(31)n timeson the

rightofequation(33)weobtainarelationbetweentheamplitudeswiththesameorderinginthelowerindies:

A Q

1 ;:::;Q

n

P1;:::;Pn =e

ik

P

1 N

A Q

2 ;:::;Q

n ;Q

1

P2;:::;Pn;P1 =

n

Y

i=2

Pi;P1 !

e ik

P

1 N

X

Q 0

1 ;:::;Q

0

n X

Q 00

1 ;:::;Q

00

n

S Q1;Q

00

2

Q 0

1 ;Q

00

1 (k

P

1 ;k

P

1 )S

Q2;Q 00

3

Q 0

2 ;Q

00

2 (k

P

2 ;k

P

1 )S

Qn 1;Q 00

n

Q 0

n 1 ;Q

00

n 1 (k

P

n 1 ;k

P

1 )S

Qn;Q 00

1

Q 0

n ;Q

00

n (k

P

n ;k

P

1 )A

Q 0

1 ;:::;Q

0

n

P

1 ;:::;P

n

; (35)

(7)

1= N

X

Q 00

1 ;Q

00

2 =1

Æ

Q 00

2 ;Q

0

1 Æ

Q 00

1 ;Q

1 =

N

X

Q 00

1 ;Q

00

2 =1

S Q1;Q

00

2

Q 0

1 ;Q

00

1 (k

P1 ;k

P1 )

(36)

(see [26℄ for illustrations of the above equations). In

ordertoxthevaluesoffk

j

gweshouldsolve(35),i.e.,

weshould ndtheeigenvalues(k)ofthematrix

T(k) fQg

fQ 0

g =

N

X

Q 00

1 ;:::;Q

00

n =1

n

Y

l=1 S

Ql;Q 00

l+1

Q 0

l ;Q

00

l (k

P

l ;k)

!

; (37)

withperiodiboundaryondition

S Qn;Q

00

n+1

Q 0

n ;Q

00

n (k

Pn

;k)=S Qn;Q

00

1

Q 0

n ;Q

00

n (k

Pn

;k): (38)

TheBethe-ansatzequationswhihxtheset fk

l gwill

begivenfrom(35)by

e ikjN

=( 1) n 1

n

Y

l=1

l;j !

(k

j

); j =1;:::;n:

(39)

The matrixT(k)has dimensionN n

N n

and anbe

interpretedasthetransfermatrixofaninhomogeneous

N(2N 1)-vertex model in a twodimensional lattie

withperiodiboundaryonditionsinthehorizontal

di-retion(nsites). DuetothespeialformoftheSmatrix

(25)theeigenvaluesof (37)areinvariantunder aloal

gaugetransformationwhereforeahfatorS(k

P

l ;k)in

(37):

S Q

l ;Q

00

l+1

Q 0

l ;Q

00

l (k

Pl

;k)!S Q

l ;Q

00

l+1

Q 0

l ;Q

00

l (k

Pl ;k)

(l)

Q 00

l+1

(l)

Q 00

l

; (40)

where (l)

(l =1;:::;L; =1;:::;N)are arbitrary

funtions. If we perform thetransformation(40) with

thespeialhoie

(l+1)

(l)

=e

ikP

l (s 1)

; (l=2;3;:::;N); (41)

the equivalent transfer matrix to be diagonalized is

givenby

~

T(k) fQg

fQ 0

g =e

ik P

n

i=1 (sQ

i 1)

T

0 (k)

fQg

fQ 0

g

(42)

where

T

0 (k)

fQg

fQ 0

g =

N

X

Q 00

1 ;:::;Q

00

n =1

n

Y

l=1 ~

S Ql;Q

00

l+1

Q 0

l ;Q

00

l (k

P

l ;k)

!

; (43)

withthetwistedboundaryondition

~

S Qn;Q

00

n+1

Q 0

n ;Q

00

n (k

P

n ;k)=

~

S Qn;Q

00

1

Q 0

n ;Q

00

n (k

P

n ;k)

Q 00

1

(44)

withtwistedphase

l =e

i(s

l 1)

P

n

j=1 kj

; l=1;:::;N: (45)

Thematrix ~

Sin(43)and(44)isobtainedfromthosein

(25)bytakingthesizeofallpartilesequaltounity. In

thiswaytheproblemistransformedintotheevaluation

oftheeigenvaluesofaregular(allpartileswithsize1)

inhomogeneoustransfermatrixT

0

withn(2N 1)

non-zerovertexand twistedboundaryondition.

DiagonalizationofT

0 (k)

Thesimplest wayto diagonalizeT

0

isthrough the

in-trodutionofthemonodromymatrixM(k)[25℄,whih

isatransfermatrixoftheinhomogeneousvertexmodel

underonsideration,wheretherstandlastlinkinthe

horizontaldiretionarexedtothevalues

1 and

n+1

(

1 ;

n+1

=1;2;:::;N),that is

M fQg;

n+1

fQ 0

g;

1

(k) =

1 N

X

2;:::;n=1 ~

S Q1;2

Q 0

1 ;1

(k

P

1 ;k)

~

S Q2;3

Q 0

2 ;2

(k

P

2 ;k)

~

S Q

n 1 ;

n

Q 0

n 1 ;

n 1 (k

P

n 1 ;k)

~

S Q

n ;

n+1

Q 0

n ;

n (k

P

n

;k): (46)

ThemonodromymatrixM

fQg;n+1

fQ 0

g;1

(k)hasoordinatesfQg;fQ 0

ginthevertialspae(N n

dimensions) and

oor-dinates

1 ;

n+1

inthehorizontalspae(N 2

dimensions). Thismatrixsatisesthefollowingimportantrelations

N

X

0

1 ;

0

1 =1

~

S

0

1 ;

0

1

1;1 (k

0

;k)M f

l g;n+1

f

l g;

0

1

(k)M f

l g;n+1

f

l g;

0

1 (k

0

) =

N

X

0

n+1 ;

0

n+1 =1

M f

l g;

0

n+1

flg;1 (k

0

) M

f

l g;

0

n+1

flg;1 (k)

~

S

n+1;n+1

0

n+1 ;

0

n+1 (k

0

(8)

for

1 ;

1 ;

n+1 ;

n+1

= 1;2;:::;N.This relation

fol-lowsdiretlyfromsuessiveappliationsofthe

Yang-Baxter equations (34) (see [26℄, for agraphial

repre-sentationofthese equations).

In order to exploit relation (47) let us denote the

omponentsof themonodromymatrix in the

horizon-tal spaeby

A(k)

= M

flg;

f

l g;

(k); B(k)

=M flg;

f

l g;N

(k);

C(k)

= M

f

l g;N

flg;

(k); D(k)=M f

l g;N

flg;N

(k);(48)

where ; =1;2;:::;N 1. Clearlythe transfer

ma-trix T

0

(k) of the inhomogeneous lattie with twisted

boundaryonditions, wewant to diagonalize,is given

by

T

0 (k)=

N 1

X

=1 A

(k)+D(k): (49)

Asaonsequeneof(47)thematriesA

,B

,C

and

D in (48) obey some algebrai relations. By setting

(

1 ;

1 ;

n+1 ;

n+1

)=(N;;;)in (47)weobtain

A

(k)B

(k 0

)= ~

S ;N

N; (k

0

;k)

~

S N;

N; (k

0

;k) B

(k)A

(k

0

)+ N 1

X

0

; 0

=1 ~

S ;

0

; 0

(k 0

;k)

~

S N;

N; (k

0

;k) B

0

(k 0

)A

0

(k); (50)

with(;=1;:::;N 1). Bysetting (

1 ;

1 ;

n+1 ;

n+1

)=(N;N;N;)weobtain

D(k)B

(k 0

)= ~

S N;N

N;N (k;k

0

)

~

S N;

N; (k;k

0

) B

(k 0

)D(k) ~

S N;

;N (k;k

0

)

~

S N;

N; (k;k

0

) B

(k)D(k 0

); (51)

where(=1;:::;N 1). ThediagonalizationofT

0

(k)in(49)willbedonebyexploitingtheaboverelations. This

proedureis knownin theliteratureasthealgebraiBetheansatz[25℄. Therststepin thismethod followsfrom

theidentiationofareferenestatej>,whihshouldbeaneigenstateofA

(k)andD(k),andheneT

0

(k),but

notofB

(k). Inthepresentaseasuitablereferenestateisj>=jf

l

=Ng>

l=1;:::;n

, whih orrespondsto a

statewithN-lasspartilesonly. Itissimpletoalulate

A

(k)j> = a

(k)j>; D(k)j>=d(k)j>;

C

(k)j> = 0; B

(k)j>= n

X

i=1 b

i (k)j

(i)

>; (52)

where

a

(k) = Æ

;

n

Y

i=1 ~

S N;

N; (k

Pi

;k); d(k)=

N n

Y

i=1 ~

S N;N

N;N (k

Pi ;k);

b

i

(k) =

N i 1

Y

l=1 ~

S N;N

N;N (k

Pl ;k)

n

Y

l=i ~

S N;

N; (k

Pl

;k); (53)

and j (i)

>= jf

l6=i

=Ng;

i

=>. Thematries B

(k) atasreationoperators in thereferene (\vauum")

state, by reating partiles of lass (1;2;:::;N) in asea of partiles of Nth lass j >. We then expet that

theeigenvetorsofT

0

(k) orresponding to m

1

(1;2;:::;n) partiles, belonging to lassesdistintfrom N, anbe

expressedas

jk (1)

l

;F>= X

fg F

1 ;:::;

m

1 B

1

(k (1)

1 )B

2

(k (1)

2 )B

m

1

(k (1)

m1

)j>; (54)

wherefk (1)

l

;l=1;:::;m

1

gandF

1;:::;m

1

arevariablesto bexedbytheeigenvalueequation

T

0 (k)jk

(1)

l

;F >= (0)

(k)jk (1)

l

;F >: (55)

Using(50)suessively,and(52),(53)weobtain

A

(k)B

1

(k (1)

1 )B

2

(k (1)

2 )B

m

1

(k (1)

m1 )=

N

X

f 0

1 ;:::;

0

m

1 =1g

N

X

f 0

1 ;:::;

0

m

1 =1g

~

S

1 ;

0

1 ;

0

1 (k

(1)

1 ;k)

~

S

2 ;

0

1

0

2 ;

0

2 (k

(1)

2

;k) ~

S m

1 1;

0

m

1 2

0

m

1 1

; 0

m

1 1

(k (1)

m

1 1

;k)

~

S m

1 ;

0

m

1 1

0

m

1 ;

(k (1)

m

1 ;k)

Q

n

j=1 ~

S N;

N; (k

j ;k)

Q

m1

~

S N;

(k (1)

j ;k)

B

0

1

(k (1)

1 )B

0

2

(k (1)

2 )B

0

m

1

(k (1)

m1

(9)

wherethe\unwantedterms"arethoseoneswhiharenotexpressedinthe\Bethebasis"produedbytheB

(k (1)

j )

operators. Similarly,using(51)suessivelyand(52)-(53)weobtain

D(k)B

1

(k (1)

1 )B

m

1

(k (1)

m

1

)j>=

N n

Y

l=1 ~

S N;N

N;N (k

l ;k)

!

m1

Y

l=1 ~

S N;N

N;N (k;k

(1)

l )

~

S N;l

N;

l (k;k

(1)

l )

!

B 1

(k (1)

1 )B

m

1

(k (1)

m1

)j> + "unwantedterms": (57)

Therelations(56)and (57)whenusedin (54)-(55)giveus

T

0

(k) jk (1)

;F >= Q

n

j=1 ~

S N;1

N;1 (k

j ;k)

Q

m

1

j=1 ~

S N;1

N;1 (k

(1)

j ;k)

X

fg X

f 0

g T

1 (k)

fg

f 0

g F

fg B

0

1

(k (1)

1 )B

0

m

1

(k (1)

m1 )j>

+

N n

Y

i=1 ~

S N;N

N;N (k

i ;k)

X

fg m1

Y

l=1 ~

S N;N

N;N (k;k

(1)

l )

~

S N;

l

N;l (k;k

(1)

l )

!

F

fg B

1

(k (1)

1 )B

m

1

(k (1)

m1 )j>

+"unwantedterms"; (58)

where

T

1 (k)

fg

f 0

g =

N 1

X

=1

N 1

X

0

1 ;:::;

0

m

1 =1

~

S 1;

0

1 ;

0

1 (k

(1)

1 ;k)

m

1 1

Y

i=1 ~

S i;

0

i

0

i ;

0

i+1 (k

(1)

i ;k)

!

~

S m

1 ;

0

m

1 1

0

m

1 ;

(k (1)

m

;k) (59)

isa(N 1) m

1

-dimensionaltransfermatrixofainhomogeneousvertexmodel,withinhomogenetiesfk (1)

m1 ;k

(1)

m1 1 ;:::;k

(1)

1 g

(notie the reverse order of the inohomogeneties, when ompared with (43)) and twisted boundary onditions

(boundaryphases

;=1;:::;N 1).

Inorder toproeedweneednowtodiagonalizethenewtransfermatrixT

1

(k), thatiswemustsolve

X

fg T

1 (k)

fg

f 0

g F

fg =

(1)

(k)F

f 0

g

(60)

andthen (58)giveus

T

0 (k)jk

(1)

;F>= (0)

(k)jk (1)

;F >+\unwantedterms"; (61)

where, usingthefatthat ~

S N;N

N;N (k

l

;k)=1,

(0)

(k)= Q

n

j=1 ~

S N;

N; (k

j ;k)

Q

m

1

j=1 ~

S N;1

N;1 (k

(1)

j ;k)

(1)

(k)+

N m1

Y

l=1 1

~

S N;1

N;1 (k;k

(1)

l )

: (62)

Inordertoprovethat (0)

andjK (1)

;F >aretheeigenvaluesandeigenvetorsofT

0

(k),weshouldxfk (1)

1

;:::;k (1)

m

1 g

byrequiringthatthe\unwantedterms"in(61)vanish. AlthoughforN=2thisalulationisnotompliated[26℄

for arbitraryN itis notsimple. Sinethe expression(62)forthe eigenvaluesshould bevalid forarbitraryvalues

of k weanobtain (1)

(k (1)

j

)in analternativeway from thefollowingtrik[31℄. At k=k (1)

j

(j=1;:::;m

1 )the

denominatorsofthefatorsin (62)vanish( ~

S N;l

n;l (k

(1)

j ;k

(1)

j

)=0;l6=N),andsineweshouldhaveaniteresult,we

havetheonditions

(1)

(k (1)

j )=

N n

Y

i=1

1

~

S N;1

N;1 (k

i ;k

(1)

j )

m1

Y

l 0

=1;l 0

6=j ~

S N;1

N;1 (k

(1)

l 0

;k (1)

j )

~

S N;1

N;1 (k

(1)

j ;k

(1)

l 0

)

;j=1;:::;m

1

: (63)

Notie that our result in (63) does not depend on the partiular ordering of the additional variables k (1)

j (j =

1;:::;m

1

). This meansthat ifinsteadoftheorderinghosenin(54),wehosethereverseorder,namely,

jk (1)

;F>= X

fg F

1;:::;m

1 B

m

1

(k (1)

m

1 )B

m

1 1

(k (1)

m

1 1

)B 1

(k (1)

1

)j>; (64)

wewouldobtainthesameresults(61)-(63),butnowT

1

isthetransfermatrix,withboundaryonditionspeiedby

thephase

,ofaproblemwith (N 1)speiesandinhomogeneitiesk (1)

;:::;k (1)

m

1

(10)

order ofthe inhomogenetiesasin (43)). Thismeans that theeigenvalue(k)= (0)

(k)of thetransfermatrixof

theproblem withN lassesandinhomogeneities (k (0)

1 ;k

(0)

2

;:::;k (0)

n

)(k

1 ;k

2 ;:::;k

n

)isrelatedto theeigenvalue

(1)

(k)oftheproblemwith(N 1)lassesandinhomogeneitiesk (1)

1 ;k

(1)

2

;:::;k (1)

m1

. Iteratingthesealulationswe

obtainthegeneralizationoftherelation(62)andtheondition(63)

(l)

(k) = m

l

Y

l 0

=1 ~

S N;1

N;1 (k

(l)

l 0

;k) !

ml+1

Y

l 0

=1

1

~

S N;1

N;1 (k

(l+1)

l 0

;k) !

(l+1)

(k)+

N l m

l+1

Y

l 0

=1

1

~

S N;1

N;1 (k;k

(l+1)

l 0

)

;l=0;1;:::;N 1; (65)

(l+1)

(k (l+1)

j

)=

N l m

l

Y

l 0

=1

1

~

S N;1

N;1 (k

(l)

l 0

;k (l+1)

j )

!

m

l+1

Y

l 0

=1;l 0

6=j ~

S N;1

N;1 (k

(l+1)

l 0

;k (l+1)

j )

~

S N;1

N;1 (k

(l+1)

j ;k

(l+1)

l 0

)

; (66)

d

whih onnets the eigenvalues of the inhomogeneous

transfermatrixT

l

(k)andT

l+1

(k),withinhomogeneities

fk (l)

j

g and fk (l+1)

j

g, related with the problem with

(N l)and(N l 1)lassesofpartiles,respetively.

Howeverfrom(39)and(42)-(43),inordertoobtain

theBethe-ansatzequationsforouroriginalproblemwe

needtheeigenvaluesofthetransfermatriesevaluated

atk

j

(j=1;:::;n),i.e., (0)

(k

j

),whiharegivenby

(0)

(k

Pj )=

N m

1

Y

l=1

1

~

S N;1

N;1 (k

Pj ;k

(1)

l )

; (67)

sine Q

n

j=1 ~

S N;

n; (k

j ;k

P

j

)=0. The onditionsthat x

thevariables(k (1)

j

;j=1;:::;m

1

)aregivenby(63). In

theleft sideofthis equationwehave (1)

(k (1)

j

), whih

are the eigenvalues of the transfer matrix T

1 of the

model with (N 1) lasses of partiles and

inhomo-geneitiesfk (1)

j

;j =1;:::;m

1

g,evaluatedatthe

partu-lar point k (1)

j

. This value an be obtained from (65)

whihgivesageneralizationof(67)

(l)

(k (l)

j )=

N l ml+1

Y

l 0

=1

1

~

S N;1

N;1 (k

(l)

j ;k

(l+1)

l 0

)

(l=0;1;:::;N 1): (68)

Theondition(63)isthenreplaedby

(1)

(k (1)

j )=

N 1 m2

Y

l 0

=1

1

~

S N;1

N;1 (k

(1)

j ;k

(2)

l 0

) =

N n

Y

i=1

1

~

S N;1

N;1 (k

(1)

i ;k

(1)

j )

m1

Y

l 0

=1;l 0

6=j ~

S N;1

N;1 (k

(1)

l 0

;k (1)

j )

~

S N;1

N;1 (k

(1)

j ;k

(1)

l 0

)

; (69)

wherenowweneedtondtherelationsthatxfk (2)

j

g. Iteratingthisproesswendthegeneralizationof(69)

N l m

l+1

Y

l=1

1

~

S N;1

N;1 (k

(l)

j ;k

(l+1)

l 0

) =

N (l 1) m

l 1

Y

i=1

1

~

S N;1

N;1 (k

(l+1)

i ;k

(l)

j )

ml

Y

l 0

=1;l 0

6=j ~

S N;1

N;1 (k

(l)

l 0

;k (l)

j )

~

S N;1

N;1 (k

(l)

j ;k

(l)

l 0

)

;(j=1;2;:::;m

l

; l=0;1;:::;N 2): (70)

Equations (67)and (70) giveus the eigenvaluesof the transfermatrix T

0

(k) evaluated at the points fk

j g, i. e.

(0)

(k

j

). Insertingtheaboveresultsin (42)and thenin(39)weobtaintheBethe-ansatzequationsof ouroriginal

problem.

Theeigenenergiesof theHamiltonian(6) in thesetorontainingn

i

partilesin lass i(i=1;2;:::;N)(n=

P

N

j=1 n

j

)andtotalmomentum p= 2

L

(l=0;1;:::;L 1)aregivenby

E= n

X

( e ik

(0)

j

+

+ e

ik (0)

j

(11)

where fk (0)

j =k

j

;j =1;:::;ngareobtainedfromthesolutionsfk (l)

j

;l=0;:::;N 1;j =1;:::;m

l

gof theBethe

ansatzequations

e ik

j (L+n

P

N

i=1 n

i s

i )

= ( 1) n 1

e ip(s

N 1)

n

Y

j 0

=1(j 0

6=j)

+ + e

i(k (0)

j +k

(0)

j 0

)

e ik

(0)

j

+ + e

i(k (0)

j +k

(0)

j 0

)

e ik

(0)

j 0

m

1

Y

l=1

+ (e

ik (1)

l

e ik

(0)

j

)

+ + e

i(k (1)

l +k

(0)

j

e ik

(0)

j

j =1;2;:::;n; (72)

and

m

l

Y

=1

+ (e

ik (l+1)

e ik

(l)

)

+ + e

i(k (l+1)

+k

(l)

)

e ik

(l)

=( 1) m

l+1

e ip(s

N l s

N l 1 )

m

l+2

Y

Æ=1

+ (e

ik (l+2)

Æ

e ik

(l+1)

)

+ + e

i(k (l+2)

Æ +k

(l+1)

)

e ik

(l+1)

ml+1

Y

0

=1( 0

6=)

+ + e

i(k (l+1)

+k

(l+1)

0

)

e ik

(l+1)

+ + e

i(k (l+1)

+k

(l+1)

0

)

e ik

(l+1)

0

l=0;1;:::;N 2; =1;:::;m

l

; (73)

d

and m

l =

P

N l

j=1 n

j

, l =0;:::;N (m

0

=N;m

N =0).

It is interestingto observethat in the partiular ase

where n

2 =n

3

=:::= n

N

= 0we obtainthe

Bethe-ansatz equations, reently derived [15℄ (see also [14℄),

for theasymmetri diusion problemwith partilesof

size s

1

. Also the ase s

1 = s

2

=::: = s

N

= 1 gives

us the orresponding Bethe ansatz equations for the

standardproblem of N typesof partiles in

hierarhi-al order. The Bethe-ansatz solution in the

parti-ular ase of N=2 with a a single partile of lass 2

(n

1

= n 1;n

2

= 1) was derived reently [32℄. The

Bethe-ansatzequations forthefully asymmetri

prob-lem are obtained by setting in (72)-(73)

+

= 1 and

=0.

IV Conlusions and

generaliza-tions

WeobtainedthroughtheBetheansatztheexat

solu-tion ofthe problem in whih partiles belonging to N

distint lasses with hierarhial order diuse as well

interhangepositionswithratesdependingontheir

rel-ative hierarhy. We showthat the exatsolution an

also be derivedin the generalasewherethe partiles

havearbitrarysizes.

Someextensionsofourresultsanbemade. Arst

and quiteinteresting generalizationofour model

hap-penswhenweallowmoleulesin anylasstohavesize

s = 0. Moleules of size zero do not oupy spae

on the lattie, having no hard-ore exlusion eet.

Consequently we may have, at a given lattie point,

an arbitrarynumberof them. The Bethe-ansatz

solu-retlyinthisase(theequationsarethesame)andthe

eigenenergiesaregivenbyxingin(71)-(73)the

appro-priatesizesofthemoleules. Itisinterestingtoremark

thatpartilesofagivenlass 0

(2;3;:::;N),withsize

s

0

=0,ontrarytotheases

0

>1,wherethey

\ael-erate"the diusion of partiles in lasses < 0

, they

now \retard" the diusive motion of these partiles.

Thequantum Hamiltonianintheaseswherethe

par-tiles havesize zero is obviously notgiven by (6) but

anbewrittenintermsofspinS=1quantumhains.

Anotherfurther extensionofourmodelisobtainedby

onsidering an arbitrary mixture of moleules, where

moleulesinthesamehierarhymayhavedistintsizes.

Theresultspresentedin[15℄orrespondtothe

partiu-laraseofthisgeneralizationwhereN =1(simple

dif-fusion). ForgeneralN theS matrixweobtainin(25)

isalsoasolutionoftheYang-Baxterequation(34),but

thediagonalizationofthetransfermatrixofthe

assoi-atedinhomogeneousvertexmodelismoreompliated.

TheBethe-ansatzequationsin theaseofasymmetri

diusion, with partiles of unit size [10, 11℄, or with

arbitrary size [15℄, were used to obtain the nite-size

orretionsofthemassgapG

N

oftheassoiated

quan-tumhain. Therealpartofthesenite-sizeorretions

isgovernedbythedynamialritialexponentz,i. e.,

Re(G

N )N

z

: (74)

The alulation of the exponent z for the model

pre-sentedinthispaper,withpartilesofarbitrarysizes,is

presentlyinprogress[30℄.

Aknowledgements

(12)

Na-CNPq-BrazilandbytheRussianFoundationof

Fun-damentalInvestigation(Grant99-02-17646).

Referenes

[1℄ A.A.Lushnikov,Zh.

Eksp.Teor.Fiz.91,1376(1986)

[Sov.Phys.JETP64,811(1986)℄,Phys.Lett.A120,

135(1987).

[2℄ G.Shutz,J.Stat.Phys.71,471(1993).

[3℄ F.C.Alaraz,M.Droz,M.Henkel,andV.Rittenberg,

Ann.Phys.(N.Y.)230,250(1994).

[4℄ F.C. Alarazand V. Rittenberg, Phys.Lett. B324,

377(1993).

[5℄ F.C.Alaraz,Int.J.Mod.Phys.B8,3449(1994).

[6℄ M. D. Grynberg and R. B. Stinhombe, Phys. Rev.

Lett.74,1242 (1995).

[7℄ K. Krebs, M. P. Pfannmuller, B. Wehefritz, and H.

Henrihsen,J.Stat.Phys.78,1429 (1995).

[8℄ J.E.Santos,G.M.Shutz,andR.B.Stinhombe,J.

Chem.Phys.105,2399(1996).

[9℄ M. J. de Oliveira, T. Tome, and R. Dikman, Phys.

Rev.A46,6294 (1992).

[10℄ L. H. Gwa and H. Spohn, Phys. Rev. Lett. 68, 725

(1992),Phys.Rev.A46,844(1992).

[11℄ D.Kim,Phys.Rev.E 52,3512(1995).

[12℄ D.Kim,J.Phys.A30,3817 (1997).

[13℄ F.C.Alaraz,S.DasmahapatraandV.Rittenberg,J.

Phys.A.31,845(1998).

[14℄ T. Sasamoto and M. Wadati, J. Phys. A 31, 6057

(1998).

[15℄ F.C. AlarazandR. Z. Bariev,Phys.Rev.E 60,79

(1999).

[16℄ B.Derrida,PhysisReports301,65(1998).

[17℄ T. M. Liggett, Stohasti Interating Systems:

Con-tat, Voter and Exlusion Proess (Springer Verlag,

1999)

[18℄ G. M. Shutz, Exatly solvable models for many-body

systemsfarfromequilibriumin\PhaseTransitionand

CritialPhenomena".Eds.C.DombandJ.L.Lebowitz

Vol19(toappear).

[19℄ C.N.Yang,Phys.Rev.Lett.19,1312(1967).

[20℄ B.Sutherland,Phys.Rev.B12,3795(1975).

[21℄ S.V. Pokrovskiiand A.M. Tsvelik, Zh.Eksp.Teor.

Fiz.93,2232(1987)(Sov.Phys.-JETP66,6(1987))

[22℄ C.Boldrighini,G.Cosimi,S.Frigio, andG.Nu~nes,J.

Stat.Phys.55,611(1989).

[23℄ P.A.Ferrari,C.KipnisandE.Saada,Ann.Prob.19,

226(1991).

[24℄ P.A.Ferrari,Prob.TheoryRelat.Fields91,81(1992).

[25℄ L.A.TakhtajanandL.D.Faddeev,Russ.Math.Surv.

34,11 (1979); V. E. Korepin, I.G.Izergin andN. M.

Bogoliubov,QuantumInverseSatteringMethod,

Cor-relationFuntions andAlgebraiBethe Ansatz

(Cam-bridgeUniversityPress,Cambridge, 1992).

[26℄ F.C. AlarazandR. Z.Bariev, Braz. J.Phys.30,13

(2000)

[27℄ B.Derrida,M. R.Evans,V.Hakim,and V.Pasquier,

J.Phys.A26,1493(1993).

[28℄ K.Mallik,S.MallikandN.Rajewsky,J.Phys.A32,

48(1999)

[29℄ R.J.Baxter,ExatlySolved ModelsinStatistial

Me-hanis(AademiPress,NewYork,1982).

[30℄ F.C.AlarazandR.Z.Bariev,(tobepublished).

[31℄ P. P.Kulishand N.Yu.Reshetikhin, Zh.Eksp.Teor.

Fiz.80,214(1981);C.L.Shultz,PhysiaA 122,71

(1983); M. Gaudin La fontion d'onde Bethe (Paris,

Masson,1983).

[32℄ B. Derrida and M. R. Evans, J. Phys. A 32, 4833

Referências

Documentos relacionados

Figure 5: Ernest and Jane Ising in Peoria (IL),

Of partiular interest are the disorder lines where exponential deay of the spin pair orrelation1. hanges from monotoni

This work analyzes the emergene of log-periodi osillations in thermodynami funtions of Ising.. models on

The exat solution of the asymmetri exlusion problem with rst- and sond-lass partiles

Considering the higher risks of N losses by leaching with pre-planting N application and the possibility of N deficiency when sidedress fertilisation is applied 30 days after

Regarding the multi-terminal maximum flow problem of a given undirected network G with n nodes, one can solve it naively, by running n ( n − 1 )/ 2 times a maximum flow

With the analysis of the spatial variability of the data, it was observed that the pens positioned in the central region of the two facilities had the least stressful places

The objective of this study was to model, analyze and compare the structure of spatial dependence, as well as the spatial variability of the water depths applied by a