• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número4"

Copied!
4
0
0

Texto

(1)

Spin Pair Correlation of the ANNNI

Chain in a Field

Nelson AlvesJr. and Carlos S.O. Yokoi

Instituto deFsia,UniversidadedeS~aoPaulo,

CaixaPostal66318,05315-970 S~aoPaulo,SP, Brazil

Reeivedon10Otober,2000

We study the spin pair orrelation funtion of the one-dimensional Ising model with ompeting

nearest and next-nearest neighbor interations, or ANNNIhain, in the presene of anexternal

eld. Ofpartiularinterestarethedisorderlineswhereexponentialdeayofthespinpairorrelation

hangesfrommonotonitoosillatory. Weextendpreviousstudiesforhighereldvaluesandobtain

asymptotiexpressions for disorderlinesatlowtemperatures. Wealsoobservereentrant disorder

lines.

I Introdution

Theaxial next-nearestneighborIsing(ANNNI)model

isanexampleofafrustratedsystem[1℄displaying

mod-ulated orderat lowtemperatures in twoandthree

di-mensions [2, 3℄. Inonedimensionthemodelisexatly

solvableandhasbeeninvestigatedinzeroeld[4-10℄,in

thepreseneofaeld[11,12℄andatzerotemperature

[13,14℄. Ofpartiularinterestistheexponentialdeay

ofthespinpairorrelationfuntionwhihmaybe

mod-ulatedbyanosillatoryfatorwithatemperature-and

eld-dependent wave number. The line in the phase

diagramthatseparatestheregionwithzerowave

num-ber from non-zero wave number has been alled the

disorderline [7,8℄. The mainpurpose ofthis paperis

to further investigate the ANNNI hain in aeld and

examine someaspetsof the spin pairorrelation not

onsidered previously.

Theenergyofthemodel anbewritten

E= N

X

i=1 (J

1

i

i+1 +J

2

i

i+2 +H

i )+E

0 ; (1)

where

i

= 1 and the periodi boundary ondition

i+N

=

i

is assumed. J

1 and J

2

are the

near-est andthenext-nearest neighbor interations,

respe-tively, and H is the magneti eld. For low

tempera-turenumerialalulationsit isonvenientto takeE

0

to bethegroundstateenergy, sinethishoieavoids

the divergene of the eigenvalues of the transfer

ma-trix. We will restrit our disussion to ferromagneti

nearest neighbor interation (J

1

> 0),

antiferromag-neti next-nearest neighbor interation (J

2

< 0) and

positiveeld(H >0). Theratio J

2 =J

1

measuresthe

ompetition between nearest and next-nearest

neigh-bor interations. Thezerotemperaturephasediagram

intheplaneHversus J

2 =J

1

isshowninFig. 1. There

areonlytwophases: Intheferromagnetiphaseallthe

spinspoint up,whereas in theantiphasestatetwoup

spinsalternate withtwodown spins[13, 14℄. Weshall

prinipally onsider parametervaluesyielding a

ferro-magnetigroundstatewith

E

0 =

N

X

i=1 (J

1 +J

2

+H): (2)

Thesolutionofthisproblemanbeformulatedinterms

ofthetransfermatrixVwithelements[9,12,15℄

h

1

2 jV j

3

4 i=Æ

2;3 x

1

1

2

y 1

1

4

z 1

1

; (3)

where

x=e J

1

; y=e J

2

; z=e H

; (4)

with =1=k

B T, k

B

beingBoltzmann's onstant and

T theabsolutetemperature. Theeigenvaluesaregiven

bytheseularequation

f()=a

0

4

+4a

1

3

+6a

2

2

+4a

3 +a

4

=0; (5)

where

a

0

=1; a

1 =

1

4 (1+z

2

); a

2 =

1

6 (1 x

4

)z 2

;

a

3 =

1

4 x

4

z 2

(1+z 2

)w; a

4 = x

4

z 4

w 2

; (6)

with

w=y 4

1: (7)

The nature of these eigenvalues is determined by the

disriminant[16℄ofthequartiequation(5),

=(a

0 a

4 4a

1 a

3 +3a

2

(2)

27(a

0 a

2 a

4 a

0 a

2

3 a

2

1 a

4 +2a

1 a

2 a

3 a

3

2 )

2

: (8)

The ondition for two real and two omplex roots is

<0, andthat for fourreal or four omplexrootsis

>0[16℄. Sinef(1)=1andf(0)<0,therewill

alwaysbetworealrootswiththelargestrootbeingreal

and positive. Moreover, sine f 0

() < 0for < 0, if

theseondlargestrootinmagnitudeisrealthenitwill

bepositive. Let

1

denote the largest eigenvalueand

2

the seondlargesteigenvaluein magnitude. Inthe

thermodynamilimitN !1thespinpairorrelation

atlargedistanesr1hastheasymptotiform[12℄

h

i

i+r im

2

+Ae r=

osqr; (9)

where m = h

i

i is the magnetization, A is the

am-plitude, is the orrelation length and q is the wave

number,where

=ln

1

j

2 j

; q=arg

2

: (10)

If

2

is real then q = 0 and the orrelation will have

a monotoni exponentialdeay, whereas if

2

is

om-plextherewill beanosillatorydeaywithwave

num-ber q. The hangeover from monotoni to osillatory

deaydenes thedisorderline [7, 8℄orLifshitz

ondi-tion[10℄. Therefore theonditionforthedisorderline

is the vanishing of the disriminant given by (8).

Figure 1. Zerotemperature phasediagram ofthe ANNNI

hainin amagnetield. The solidline J

2 =J

1

=1=2+

H=2J1separatestheferromagnetiphasefromtheantiphase

(shaded region). The numbers indiate the limiting

val-ues taken by the wave numberq= as T ! 0 inside the

regions and over the lines separating them. The

disor-der lines interset the T = 0 axis for H=J1 < 2 on the

dashedline J2=J1 =1=2 H=4J1. The dot-dashed line

J2=J1=H=2J1 1separatesregionswithdierent

limit-ingwavenumbervaluesfor H=J1>2.

II Numerial Results

Let us rst onsider eld values H=J

1

< 2. Fig. 2

showsdisorderlinesintheplaneoftemperatureT

ver-sus J

2 =J

1

forvariousxedvaluesofthemagnetield

H. Thewavenumberofthespinpairorrelation(9)is

zerototheleftofthedisorderlineandnon-zerotothe

right. The behavior of the wavenumber q as a

fun-tion of temperature T is illustrated in Fig. 3for the

eld H=J

1

= 1:5 and various xed values of J

2 =J

1 .

An interesting aspet of these graphs [12℄ is that for

0:125 J

2 =J

1

1:25thelimitingvalueofwave

num-berqasT !0isnon-zerodespitethegroundstate

be-ingferromagneti. Thereis noontradition,however,

sinein the ferromagnetiphasem !1and !0as

T !0. Thustheseondtermin therighthand sideof

Eq. (9) vanishesand thewavenumberis notrelevant

as far as the ground state ordering is onerned. On

theotherhand,in theantiphasem!0and!1as

T !0. Thereforeitisthersttermin therighthand

side of Eq. (9) that vanishes and the wave number

q==2orretlydesribestheantiphasestate[12℄. In

thezerotemperaturephasediagramofFig. 1wehave

indiatedthelimitingvaluestakenbythewavenumber

q asT ! 0. Another interesting feature is the

reen-trantbehaviorexhibited bythedisorderlinesforlarge

enoughelds: As thetemperatureis loweredthewave

numberrstvanishesbut atstilllowertemperaturesit

beomesnon-zeroagain,asshowninFig. 3forthease

J

2 =J

1

= 0:08. We found numerially that the

reen-trant behaviorof disorderlines is presentfor allelds

H=J

1

>1:333.

Figure2. Disorderlinesforvariousxedvaluesofthe

mag-neti eldH=J1 <2. Thewave numberis zero tothe left

andnon-zerototherightoftheselines.Thestraightdashed

lines orrespond tothe asymptotiresultsfor T !0. For

(3)

Figure 3. Wave numberq as afuntionof temperature T

for H=J1 = 1:5 and various xedvalues of J2=J1. The

graph for J2=J1 = 0:08 shows the vanishingof thewave

numberatintermediatetemperaturesorrespondingtothe

reentrantbehaviorofthedisorderline.

Wewillnowonsider eldvaluesH=J

1

2. Fig. 4

showsthedisorderlinesin theplaneoftemperatureT

versus J

2 =J

1

for various xed valuesof the eld H.

Thewavenumberofthespinpairorrelation(9)iszero

totheleftofthedisorderlineandnon-zerototheright.

We observethatin ontrastto theaseH=J

1

<2, all

disorderlinestendto J

2 =J

1

=0asT !0. InFig. 5

thegraphsofthewavenumberqasafuntion of

tem-peratureT areshownfortheeldH=J

1

=3andseveral

valuesof J

2 =J

1

. Thelimitingvalueofthewave

num-ber q asT !0 is always non-zero. Also, although it

is outsidethe range of temperaturesshown, the wave

numberfor J

2 =J

1

=0:01vanishesonlyin some

tem-perature interval, reeting the reentrant behavior of

the disorder line. Finally we observe that, no matter

the eld strengthH, allthe disorderlinestend to the

T axisasT !1.

Figure4.Disorderlinesforvariousxedvaluesofthe

mag-netieldH=J12. Thewavenumbersarezerototheleft

and non-zero to the right ofthese lines. The dashedlines

orrespond to the asymptoti results for T ! 0. All the

Figure 5. Wave number q as a funtion of temperature

T for H=J1 =3 and various xed values of J2=J1. For

J2=J1 =0:01 the wave numbervanishesat intermediate

temperaturesorrespondingtothereentrantbehaviorofthe

disorderline,butthetemperaturevalueatwhihthewave

numberassumes non-zero value again is o the sale and

annotbeseen.

III Asymptoti Results

Inthissetionweobtainasymptotiexpressionsfor

dis-orderlinesatlowtemperatures. Sinex!0andz!0

asT !0,thedisriminant(8)isgiventoleadingorder

by

z 12

6912 "

4

1 12x 4

w 2

3 x

4

w

z 2

3

2 27 x

4

w 2

z 2

9 x

4

w

z 2

2 #

: (11)

Werstassumethat w!1asT !0. Then the

dis-riminant(11)anvanishonlyifx 4

w 2

=O(z 2

)andwe

have

z 12

6912 "

4

2 27 x

4

w 2

z 2

2 #

: (12)

The disorder line ondition = 0 gives x 4

w 2

=z 2

=

4=27or

J

2

J

1

1

2 H

4J

1 k

B T

8J

1 ln

27

4

: (13)

This result,validonly for H=J

1

< 2,implies that the

disorderlinesmeet theT =0axiswith eld

indepen-dentslope ln(27=4)=8= 0:238:::at

J

2

J

1 =

1

2 H

4J

1

; (14)

in good agreement with the numerial results of Fig.

(4)

withq==1=3inthezerotemperaturephasediagram

of Fig. 1. Letus nextassume that w !0as T ! 0.

Wethenhave

z 12

6912 "

4

1 3 x

4

w

z 2

3

2 9 x

4

w

z 2

2 #

: (15)

Thedisorderlineondition=0givesx 4

w=z 2

=1=4

or

J

2

J

1

k

B T

16J

1 exp

4J

1 2H

k

B T

: (16)

Thisresult,validforH=J

1

>2,impliesexponential

ap-proahofthedisorderlines tothetemperatureaxisas

T !0, in good agreement with thenumerial results

of Fig. 4. Finally, the asewhere w remains nite as

T !0shouldorrespondtoH=J

1

=2. Thenx 4

=z 2

=1

andwehave

z 12

6912 h

4(1 3w) 3

2 27w 2

9w

2 i

: (17)

The disorder line ondition = 0 gives w = 5=27.

Therefore

J

2

J

1

1

4 ln

32

27

k

B T

J

1

: (18)

Thisresultshowsthatthedisorderlineapproahesthe

originasT !0with slopeln(32=27)=4=0:04247:::,

in goodagreementwiththenumerialresultofFig. 4.

IV Summary

Wehaveextendedpreviouswork ontheANNNI hain

in aeld [12℄byonsidering thespinpair orrelations

for all eld values. We have shown that the

disor-der lines have dierent low temperature behavior for

H=J

1

<2,H=J

1

=2andH=J

1

>2. Numerialresults

were onrmed byasymptoti alulationsforT ! 0.

Wehavealso shown that thedisorderlines have

reen-trantbehaviorforH=J >1:333.

Aknowledgments

The authors aknowledge nanial support from

BrazilianageniesFunda~aodeAmparoaPesquisa do

EstadodeS~aoPaulo(FAPESP)andConselhoNaional

deDesenvolvimentoCientoeTenologio(CNPq).

Referenes

[1℄ G.Toulouse,Commun.Phys.2,115(1977).

[2℄ W.Selke,Phys.Rep.170,213(1988).

[3℄ J. M. Yeomans, in Solid State Physis, edited by H.

Ehrenreih and D. Turnbull (Aademi Press, San

Diego(CA),1988),Vol.41,pp.151{200.

[4℄ E.W.Montroll,J.Chem.Phys.10,61(1942).

[5℄ J.S.Marsh,Phys.Rev.145,251(1966).

[6℄ J.F.Dobson,J.Math.Phys.10,40(1969).

[7℄ J.Stephenson,Phys.Rev.B1,4405 (1970).

[8℄ J.Stephenson,Can.J.Phys.48,1724 (1970).

[9℄ S.KatsuraandM.Ohminami,J.Phys.A5,95(1972).

[10℄ R.M.Hornreih,R.Liebmann,H.G.Shuster,andW.

Selke,Z.Phys.B35,91(1979).

[11℄ P.Rujan,W.Selke,andG.V.Uimin,Z. Phys.B53,

221(1983).

[12℄ N. Bhattaharyya and S. Dasgupta, J. Phys. A 24,

3927(1991).

[13℄ T. Morita and T. Horiguhi, Phys. Lett. 38A, 223

(1972).

[14℄ C.S.O.Yokoi, M.D.Coutinho-Filho,andS.R.

Sali-nas,Phys.Rev.B24,4047(1981).

[15℄ F. A. Kasssan-Ogly, E. V. Kormil'tsev, V. E. Nash,

andI.V.Sagaradze,Fiz.Tverd.Tela(Leningrad)31,

43(1989),[Sov.Phys.|SolidState31,939(1989)℄.

[16℄ H.W.Turnbull,TheoryofEquations(OliverandBoyd,

Imagem

Figure 2. Disorder lines for various xed values of the mag-
Figure 4. Disorder lines for various xed values of the mag-

Referências

Documentos relacionados

We obtain the loal magnetization of a planar Ising model with defets of dierent types.. It

ritial behavior is haraterized at high magneti onentrations..

body transverse Ising model with random bonds and elds. The ouplings and the magneti elds are

transition in suh a model, and study the orresponding ritial temperature as the spin value ande. the

the master equation on the phase spae, and the evolution of loal and global spin autoorrelation.. funtions, in terms of independent relaxation modes, whih are eigenvetors of the

We propose an improvement of a Monte Carlo method designed to treat the Ising model in a

universality lass at the ritial point marking

We alulate the spatial and temperature dependenes of various spin orre-.. lation funtions, as well as the wave-vetor dependene of the spin suseptibility for