• Nenhum resultado encontrado

5 Pré-História tecnológica

5.6 Computadores analógicos

Figura 26: Dispositivo analógico simples

Há uma história interessante sobre os computadores analógicos, cujas origens remontam ao passado distante. Muitos dispositivos analógicos foram desenvolvidos a partir do ano 400 a.C. Típicos são os astrolábios (ver anexo sobre o assunto), o já mencionado mecanismo Antikythera, os instrumentos de sinalização e os planetários [Wil97]. Irá interessar particularmente para esse trabalho uma classe específica de instrumentos analógicos: as máquinas integradoras, que remontam a Maxwell, Faraday, Kelvin e Michelson, entre outros, que tentaram desenvolver dispositivos para executar operações matemáticas [Lil45]. Essas foram usadas em projetos que exigiam a solução de equações diferenciais e modelagem de sistemas mais complexos, como o movimento das ondas do mar, evoluindo até os computadores eletrônicos analógicos, alguns ainda usados até os dias de hoje para aplicações especiais. Tais desenvolvimentos formam uma parte dessa infra-estrutura que constituiu a base para o aparecimento dos computadores digitais.

Um computador analógico é um dispositivo no qual os números são representados por quantidades físicas medidas, e nos quais equações ou relações matemáticas são representadas por diferentes componentes, correspondendo a operações matemáticas singulares, tais como integração, adição ou multiplicação.

Um dispositivo analógico muito conhecido é a régua de cálculo. Ela consiste basicamente de dois trilhos graduados de acordo com os logaritmos de números, e os trilhos deslizam um sobre o outro. Os números são representados através de comprimentos nos trilhos e a operação física que pode ser executada é a soma de dois comprimentos nos trilhos. Sabe-se que o logaritmo de um produto de dois números é a soma dos logaritmos deles. Assim pode-se com a régua de cálculo formar a soma de dois comprimentos e executar multiplicação e operações correlatas.

Os componentes analógicos podem ser divididos em duas classes, dependendo da maneira como os números são representados: i) por quantidades mecânicas, como um deslocamento linear ou rotação angular; ii) quantidades elétricas, como voltagem, corrente, impedância, condutividade.

Se os deslocamentos lineares são usados para representar números, há caminhos simples, nos quais relações geométricas podem aparecer através de formas mecânicas. As operações matemáticas podem ser realizadas usando-se uma relação geométrica correspondente. Na figura ao lado pode-se ver um computador analógico muito simples.

No final do século XIX, as equações matemáticas que apareciam nos estudos de física passaram a exigir uma grande quantidade de cálculos, quase impossíveis de se resolver na prática. Os físicos começaram a desenvolver sofisticadas ferramentas matemáticas para descrever, através de equações*, a operação de determinados tipos de mecanismos, assim

como conceber máquinas cujo movimento era feito de acordo com equações. Uma solução foi a de se criar um sistema físico análogo e cujo comportamento pudesse ser quantitativamente observado. Por exemplo: o fluxo de calor é análogo ao fluxo de eletricidade, onde temperatura corresponde a potencial elétrico. Logo, pela análise de camadas eletricamente condutoras, dispostas de maneira a simular às características de uma estrutura, pode-se investigar o fluxo de calor dentro dessa estrutura ([Bri79a], volume XI). Alguém que quisesse projetar um dispositivo desse tipo deveria:

i) analisar quais operações desejaria executar;

ii) procurar um aparato físico cujas leis de operação sejam análogas àquelas que se deseja executar;

iii) construir o aparelho;

iv) resolver o problema medindo as quantidades físicas envolvidas.

Dois nomes famosos estão diretamente ligados à efetiva produção de dispositivos analógicos para resolução de cálculos mais complexos: James Clerk Maxwell (1831-1879), o criador da teoria sobre a eletricidade e o magnetismo, e James Thomson. Ambos inventaram dispositivos analógicos por volta de 1860 [Gol72].

* Como por exemplo equações diferenciais ordinárias, séries de transformações de Fourier, sistemas de equações algébricas lineares

Em todos os dispositivos analógicos que começaram a aparecer, a operação fundamental é a da integral, isto é, todos eles produziam como saída

b a dx x f( ) , dado f(x) como entrada.

Dentro da evolução das máquinas analógicas, os analisadores diferenciais foram os dispositivos que mais tarde passaram a ser chamados propriamente de computadores analógicos.

5.6.1 Primeiras evoluções: século XV

É por volta do século XV que aparecem dispositivos analógicos mais sofisticados, utilizados para prever os intervalos de tempos de maré alta e baixa em alguns portos europeus. São os chamados “tide predictors”, com suas escalas circulares, seus ponteiros que marcavam a posição do sol e da lua – e um interessante sistema de checagem desses dados – e que, juntamente com algumas informações específicas do porto, permitia ao usuário ler nas escalas do instrumento o tempo aproximado entre a maré alta e baixa. Quando na metade do século XVIII foi possível encontrar uma fórmula para o cálculo de séries de coeficientes de coseno (y = A cos(u) + B cos(v) + C cos(w) + ...), Lord Kelvin construiu uma máquina analógica para avaliar essa fórmula. Chamou-a analisador harmônico, e um exemplo pode ser visto na próxima figura.

Um desses primeiros dispositivos foi elaborado em 1878. Escrevendo sobre seu analisador harmônico de ondas do mar Kelvin disse: “O objetivo desta máquina é substituir o grande trabalho mecânico de calcular os fatores elementares que constituem a subida e descida da maré (...)”[Gol72]. Uma análise harmônica consiste em se formar um número de integrais do tipo geral

f(t)g(t)dt, onde g é uma função seno ou coseno. A avaliação das integrais desse tipo foi o que Kelvin conseguiu, fazendo uma engenhosa adaptação de um integrador* elaborado por seu irmão.

A última invenção de Kelvin relevante para nossa história foi o que agora é chamado Analisador Diferencial, um dispositivo para a solução de sistemas de equações diferenciais ordinárias. Dos dispositivos chamados integradores é possível obter uma integral que é o produto de duas variáveis. Uma grande gama de sistemas de equações pode ser computada por esses componentes. Kelvin nunca chegou a construir sua máquina por não dispor de tecnologia suficiente. A dificuldade estava em como usar a saída de um integrador como entrada em outro. Na explicação de Maxwell, o problema central era a saída estar medida pela rotação de um disco ligado a uma roda. Esta roda é acionada por estar apoiada sobre um disco que gira em torno de um eixo. O torque desse disco − sua capacidade de girar a roda − é muito pequeno e conseqüentemente ele, de fato, não pode fornecer uma entrada

* Integrador é também um dispositivo analógico, que produz como resultado a integral de f(x). Seria exaustivo e fugiria do escopo do trabalho falar sobre esses dispositivos – existem ainda os planímetros, para medir áreas de figuras traçadas por um operador humano, etc. – que fazem parte desses primeiros esforços em direção a sofisticados mecanismos analógicos.

para outro integrador*. Esses problemas permaneceram suspensos por quase 50 anos até o

desenvolvimento dos amplificadores de torque. Analisadores diferenciais mecânicos foram revitalizados por volta de 1925 e o mais famoso destes foi o construído no Instituto de Tecnologia de Massachusetts (MIT) por Vannevar Bush†.

Figura 27: Dispositivo analógico de Lord Kelvin

5.6.2 Michelson e seu analisador harmônico; I Guerra Mundial

“O principal obstáculo na construção de tal máquina está na acumulação de erros envolvida no processo de adição. O único instrumento projetado para efetuar esta adição é o de Lord Kelvin (...). O alcance da máquina é, no entanto, limitado pelo pequeno número de elementos na conta (...), pois com um considerável aumento no número de elementos, os erros acumulados devido aos fatores já mencionados logo neutralizariam as vantagens do aumento do número de termos na série.”

São palavras de Albert A. Michelson (1852 - 1931) em 1898 [MS98], um dos grandes físicos do século XX. Interessou-se pelo desenvolvimento de um analisador harmônico que pudesse manipular uma série de Fourier de até 20 termos, continuando a tradição das máquinas analógicas.

* Outra dificuldade substancial: não é possível aumentar muito o número de termos em uma série pois o seu dispositivo de adição de termos levava a um acúmulo de erros. Para uma longa série de termos o resultado poderia estar completamente viciado.

Após a Segunda Guerra Mundial, analisadores diferenciais mecânicos começaram a se tornar obsoletos com o desenvolvimento de analisadores diferenciais eletrônicos e com o aparecimento da Computação eletrônica digital.

Figura 28: Analisador harmônico de Michelson

Durante a I Guerra Mundial tornaram-se estratégicos os problemas referentes aos cálculos balísticos, o que foi um incentivo à continuidade do desenvolvimento de máquinas computacionais. Um desses problemas é o de como determinar a função de deslocamento, observando-se a resistência do ar, em função da velocidade. Quando a artilharia aponta para objetos que se movem, como navios ou aviões, é essencial prever o movimento dos alvos.

Foram duas décadas (1910 e 1920) em que houve um grande aprofundamento teórico, com a formação de grupos de matemáticos nos EUA e Inglaterra, cujas principais descobertas estão nos procedimentos numéricos para solução de equações diferenciais com grande precisão [Gol72].

5.6.3 Computadores analógicos eletromecânicos

Nos primeiros anos do século XX muitos físicos e engenheiros de todo o mundo estiveram trabalhando em questões fundamentais da área de eletricidade. Centros de pesquisa foram criados em Harvard, no MIT, na IBM, na General Electric, e outros lugares. Tiveram sucesso na formulação matemática dos problemas em teoria de circuitos e muitos textos foram escritos nos anos da década de 1920, especialmente por Vannevar Bush no MIT, A.E. Kennelly de Harvard e do MIT, C.P Steinmetz da General Electric, entre outros [Gol72]. Também não se pode esquecer o trabalho fundamental de Oliver Heaviside (1850-1897), um inglês que desenvolveu um dispositivo matemático para manipular equações e analisar indução eletromagnética, e o trabalho de Norbert Wiener junto a Bush.

Como se disse sobre Kelvin e seu analisador harmônico, o grande problema foi ele não dispor da suficiente tecnologia para desenvolver um dispositivo que executasse a

operação de gerar a integral do produto de duas funções,

b a dx x f x

f1( ) 2( ) , e por vários anos a idéia esteve esquecida até o desenvolvimento dos amplificadores de torque.

A partir de 1927 até 1931, Vannevar Bush e sua equipe no MIT desenvolveram mecanismos para resolver equações diferenciais ordinárias. Bush deve especialmente a C. W. Niemann, engenheiro e inventor do amplificador de torque Bethlehem, a possibilidade de ter construído seu famoso analisador diferencial, terminado em 1931. Usando o amplificador de Niemann, Bush pôde construir uma máquina usando exclusivamente integradores. Ainda mecânico, este dispositivo foi aprimorado durante a II Guerra Mundial, pela substituição dos mecanismos puramente mecânicos por corrente e voltagem, obtidas através de potenciômetros instalados sobre os discos cuja rotação representava quantidades. As voltagens correspondiam à soma, produto e a uma função de uma variável. Entram aqui conceitos de servo-mecanismos e amplificadores operacionais [Ryd67].

Ainda dentro do mundo dos computadores analógicos, deve-se destacar o trabalho do físico inglês Douglas Hartree, das universidades de Manchester e Cambridge, que tentou resolver equações diferenciais parciais com analisadores diferenciais, e que, ao deparar-se com cálculos altamente complexos, anteviu e preparou o advento dos computadores eletrônicos [Gol72].

As novas descobertas da indústria e da ciência no campo da eletricidade − proporcionando rapidez e precisão aos equipamentos − juntamente com a limitação dos equivalentes analógicos eletromecânicos, acabaria por impor a nova tecnologia de circuitos. Uma nova era da Computação começava a ser desvelada. É necessário assinalar, no entanto, que novas máquinas analógicas eletromecânicas − sucedâneas da última máquina de Bush, no MIT, em 1942 − foram construídas e até 1960 ainda estavam em uso ([Bri79a], volume XI).